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A B S T R A C T

As a result of human activity, living organisms are faced with the consequences of both climate and landscape 
changes. These disturbances are particularly significant in urban environments, where an increase of areas are 
experiencing a rise in temperatures, creating urban heat islands (UHIs). Knowing the exact location of these areas 
and the factors involved in their formation would help to guide management measures aimed at reducing their 
impact. To locate heat and cool areas, this study uses, compares and combines satellite images (i.e. Land Surface 
Temperature = LST) and spatial modelling of an Heat Mitigation Index (i.e. HMI) in the urban landscape of 
Poitiers (France). We highlighted that the LST value differs according to the land use category. Indeed, while the 
highest temperatures were observed for high building density, moist tree vegetation and water areas are rather 
associated with the lowest temperatures. The results showed that the LST values correlate with the spatial 
modelling of HMI. Moreover, this correlation increases with the precision of the land cover (i.e. the number of 
land cover categories taken into account). While LST provides contextual information about heat, the HMI re
flects the perceived heat according to the land cover. Thus, HMI modelling therefore showed that it appeared to 
be better suited to studying variations in highly heterogeneous landscapes such as urban landscapes and appear 
as a very interesting alternative to LST data when they are not available. Our approach is reinforced and 
corroborated by the installation of thermometers in the field. In addition, taking advantage of our improved HSI, 
we calculated the HSI and LST for two dates in 2020 and 1993. This demonstrated (i) the applicability of our 
method in the analysis of recent and past images and (ii) the contribution of our method to the study of the 
spatio-temporal evolution of heat and cool areas between two dates. The results of this study could help and 
guide future local urban planning in order to improve the mitigation and cooling potential of UHIs in the cities of 
tomorrow.

1. Introduction

Nearly 55 % of the world’s human population live in urban areas and 
this rate could rise to 68 % by 2050 (United Nations, 2018). In France, 
79.2 % of the population live in urban areas (INSEE, 2020)), and this 
phenomenon is expected to increase and contribute to urban sprawl and 

densification (Ramalho and Hobbs, 2012).
However, among human-induced alterations to land use, urbanisa

tion causes the most significant and lasting change of natural landscapes 
on a global scale (Johnson and Munshi-South, 2017; Maxwell et al., 
2016; Ramalho and Hobbs, 2012. Furthermore, the intensification of 
urbanisation, coupled with human activities, leads to an expansion of 

* Corresponding author.
E-mail address: Nicolas.bech@univ-poitiers.fr (N. Bech). 

1 Co-first-authors have contributed equally.
2 Co-last-authors have contributed equally.

Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

https://doi.org/10.1016/j.ecolind.2024.112712
Received 16 February 2024; Received in revised form 4 October 2024; Accepted 4 October 2024  

Ecological Indicators 167 (2024) 112712 

Available online 11 October 2024 
1470-160X/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:Nicolas.bech@univ-poitiers.fr
www.sciencedirect.com/science/journal/1470160X
https://www.elsevier.com/locate/ecolind
https://doi.org/10.1016/j.ecolind.2024.112712
https://doi.org/10.1016/j.ecolind.2024.112712
http://creativecommons.org/licenses/by/4.0/


artificial and mineralized surfaces at the expense of natural and semi- 
natural areas predominantly characterised by greenery (Halder et al., 
2021; Yang et al., 2020). At a local level, this widespread artificializa
tion can create artificial microclimates, causing a localised increase in 
temperature (Yang et al., 2020). In urban areas, surfaces such as tarmac 
roads, car parks, roofs, and walls contribute to heightened absorption of 
solar radiation, releasing stored energy in the form of heat. Although the 
presence of water could potentially mitigate this effect, the extensive 
sealing of soils rapidly drains surface water through run-off. As a result, 
heat is retained and added to the thermal impact generated by human 
activities such as industry and transport (Oke, 1976; Oke et al., 1991).

Cities therefore present areas where heat accumulates and can 
become trapped. These zones will therefore be characterised by a 
localised rise in temperature (compared with neighbouring rural areas) 
and are known as “urban heat islands” (i.e. UHI) (Taha, 2004). 
Depending on the study and on the studied area, UHI areas can be 5 to 
15 ◦C warmer than surrounding areas (Santamouris et al., 2008; World 
Meteorological Organisation, 1984). For a long time, UHI were neglec
ted in regional development plans but in the current context of global 
warming, they are at the centre of concerns as they can increase the 
energy demand in cities (Santamouris et al., 2008) and have a significant 
amount of repercussions on human health (Changnon et al., 1996; 
Hondula and Barnett, 2014). Furthermore, a study was published in 
2022 governing the 3–30-300 rule. This rule is based on the premise that 
for people living in urban areas to have a better mental and physical 
health, they should be able to see at least 3 trees from every home, have 
30 % tree cover in their neighbourhood and have access to an urban park 
within 300 m of their home (Konijnendijk, 2023; Nieuwenhuijsen et al., 
2022). Indeed, local temperature rises can exacerbate heat waves, 
affecting the well-being and quality of life of the organisms occupying 
these areas (Elliott et al., 2020). This can induce a redistribution of or
ganisms, including humans, who can develop thermoregulation prob
lems (e.g. syncope, hyperthermia) and amplify chronic illnesses such as 
diabetes and cardiovascular diseases (Heaviside et al., 2017).

In the coming years, the frequency and intensity of heatwaves are 
expected to increase. (IPCC, 2023; Wouters et al., 2017). These pro
jections, combined with the expected increase in urban dwellers to 68 % 
of the world’s population by 2050 (United Nations, 2018), emphasise 
the need for rapid implementation of heat mitigation measures in cities 
to avoid or reduce heat stress. Accurate knowledge of the UHI location is 
essential for the effective implementation of appropriate measures. 
However, the typology of UHIs is not well defined because it depends on 
numerous environmental characteristics capable of influencing tem
peratures (e.g. latitude, altitude, types of landscapes, etc.). As a result, 
UHIs are not defined by a temperature threshold and can only be 
determined by comparing temperature differences between neighbour
ing areas.

The advancement of Earth monitoring campaigns has played a 
crucial role in acquiring high-resolution satellite images, offering valu
able information for a variety of applications, including land planning, 
tracking pollution, and monitoring natural disasters. These applications 
are allowed by the numerous sensors integrated into satellites providing 
accurate, reliable and timely data recorded in different wavelengths of 
the electromagnetic spectrum. For instance, the Thermal-InfraRed (TIR) 
wavelengths are invisible to the human eye but provide an estimation of 
the temperature of the Earth’s surface (Bonafoni et al., 2017; Moham
mad and Goswami, 2021; Tomlinson et al., 2012). Besides, the estimated 
temperatures given by this wavelength match up significantly with the 
temperatures recorded between the ground and the treetops (Estoque 
and Murayama, 2017; Shi and Zhang, 2018). Although these images 
provide a very interesting estimate of ground temperature throughout 
the world, their coarse spatial resolution (i.e. 60–100 m) can limit their 
applications (Hu and Wendel, 2019; Mushore et al., 2017). For example, 
this can be the case in urban areas, where both the mosaic of micro
habitats and the pronounced spatial heterogeneity can modify temper
ature at a very fine spatial scale (<10 m). Thus, in urban areas, other 

approaches are needed to accurately describe the spatial distribution of 
temperature variations and to locate UHI. Based on the land cover 
description, recently developed methods can describe the attenuation of 
heat by land cover categories such as vegetation (Bherwani et al., 2020; 
Bowler et al., 2010; Jones et al., 2022; Tieskens et al., 2022). Among 
these methods, the aproach implemented in the InVest program (Inte
grated Valuation of Ecosystem Services and Trade-offs) estimates urban 
cooling by calculating a heat mitigation index (i.e. HMI) using land 
cover description and ambient air of the study area (Sharp et al., 2020). 
To verify the credibility of the HMI, Zawadzka et al. (2021) investigated 
the correlation between HMI modelled using InVEST program and the 
empirical Land Surfaces Temperatures (i.e. LST) recorded by the Landsat 
program. The results showed that the HMI is highly correlated with the 
LST data, suggesting that it represents a good complement to the limi
tations of satellite imagery (such as spatial resolution or cloud cover) for 
identifying urban heat island zones. However, results also indicated that 
HMI is sensitive to cooling distance and resolutions of land cover maps 
used. Moreover, the authors only used seven land cover categories and 
did not test the influence of the number and diversity of land use cate
gories on HMI modelling.

Herein, we tested the contribution of the number and diversity of 
land use categories to improve the HMI modelling. The correlation be
tween the different HMI models and the empirical LST data were used as 
indicator of model improvement. Given that UHI effects are driven by 
factors such as building density, vegetation strata and urban surface 
albedo, we considered all of these variables to assess their impact on 
improving the calculation of HMI and enhancing its correlation with LST 
data. As a result, we hypothesised that adding all these land use cate
gories to the calculation of the HMI will increase the correlation with the 
LST values. Low values of HMI are expected to correspond with high 
values of LST as well as for high values of HMI with low values of LST.

In other hand, taking advantage of our improved HMI, we calculated 
the HMI and LST for two dates in 2020 and 1993. This demonstrated (i) 
the applicability of our method in the analysis of recent and past images 
and (ii) the contribution of our methodology to the study of the spatio- 
temporal evolution of heat and cool areas between two dates.

While urban heat islands are on the increase in cities, this study aims 
to provide valuable information on the complex interaction between 
urban land use types, land surface temperature and their temporal dy
namics, with potential implications for understanding urban develop
ment and environmental change.

2. Material and methods

2.1. Study area

The study area is located in the western Europe with a total area of 
77 km2 (from 65 to 144 m of elevation). Specifically, this study focuses 
on the city of Poitiers, France (wgs 84: 46.58◦ N, 0.34◦ E) which has a 
population of 90 033 people (INSEE 2020 census) and features a wide 
diversity of land covers resulting from a broad gradient of anthropic 
pressures (Fig. 1). While this study area is dominated by urbanisation, 
the land uses also include wetlands, agro-pastoral areas as well as an 
Urban Natural Park (along the river Le Clain). The long-established 
historic centre of Poitiers features a high urban density (housing and 
buildings), the peripheral areas are less dense but have experienced 
rapid urbanisation since the 1950 s (Morin, 2022).

The study area shows a predominantly oceanic climate and the 
weather data for the last 30 years shows mild temperatures (average 
annual temperature of 12.2 ◦C) and relatively abundant rainfall 
(average rainfall of 740 mm). All the climatic data required for this study 
is collected on the info climate website: https://www.infoclimat.fr for 
the Poitiers-Biard weather station (France).

This study aimed to investigate the heat and cool areas in recent (i.e. 
2020) and past (i.e. 1993) landscapes, a period during which tempera
tures appear to have increased by 2 ◦C and precipitation to have 
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decreased by around 200 mm/m2 in the study area (Supplementary file 
1). As mentioned above, the analyses in 2020 as well as in 1993 were 
intended to demonstrate (i) the suitability of our method to the analysis 
of past and recent images and (ii) the contribution of our method to the 
study of the spatio-temporal evolution of heat and cool zones between 
two dates.

2.2. Description of data used

2.2.1. Images recovered from satellite data
The satellites in the Landsat program (NASA and USGS) record and 

provide information reflected and emitted by the Earth in different 
wavelengths of the electromagnetic spectrum. From this program, we 
downloaded images of the study zone in 1993 (Landsat-5 Thematic 
Mapper (TM) scene acquired on 28 July 1993) and in 2020 (Landsat-8 
Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) 
scene acquired on 29 July 2020). These images were available on the 
USGS website (https://earthexplorer.usgs.gov/) (path 200, row28) and 

were free of clouds. July is expected to be a hot month with a wide 
temperature range. We resampled these images at 30 m.

2.2.2. Land cover maps
Land cover map of 1993: We used the existing land cover map 

developed in Morin et al. (2024). This map was built from existing 
institutionnal databases (i.e. BD TOPO vector database of the French 
National Geographic Institute (IGN)) that were modified using photo 
interpretation in order to describe built surfaces, water bodies and 
transport infrastructures in 1993 (spatial resolution, 0.5 m). Indeed, we 
removed features built after 1993 using the software QGis v.3.10. Trees, 
lawns and artificial areas were detected in urban context using 
geographic object-based classifications (GEOBIA) at a very high spatial 
resolution (0.5 m) from two orthophotos acquired on 28 July and 16 
August 1993 (from IGN). The monotemporal classifications showed high 
global accuracy with an overall accuracy of 93.20 % and a Cohen’s 
kappa of 0.897 for the northern image and an overall accuracy of 92.20 
% and a Cohen’s kappa of 0.881 for the southern image. See Morin et al. 

Fig. 1. Evolution of the land cover of the studied area between 1993 and 2020. The extent of this studied area corresponds to the square encompassing the urban 
fabric of Poitiers city determined by the 2020 French land use map (OSO) (Inglada et al., 2017).

Fig. 2. Workflow and main steps of the whole research process.
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(2024) for more details. Forests, meadows, croplands and urban areas 
were detected at a larger scale using a multitemporal classification using 
several Landsat-5 TM scenes. The classification showed an overall ac
curacy of 86.31 % and a Cohen’s kappa of 0.832. Thus, we obtained a 
land cover map in 1993 at very high spatial resolution (i.e. 1 m per pixel) 
and including 9 land cover categories (Figs. 1 and 2), (supplementary 
file 2).

Land cover of 2020: As previously, we combined existing databases to 
characterise the land cover of the study zone in 2020 using QGis v.3.10 
(Quantum GIS Development Team, 2019) (spatial resolution, 0.5 m). 
Specifically, we used the BD TOPO vector database of IGN to describe 
the distributions of water bodies, wooded wetlands, forests, transport 
infrastructures and buildings.

We characterised the density of buildings using a moving window 
analysis with a radius of 60 m to calculate the percentage of building 
pixels. The density was classified into three categories: low (0–33 %), 
medium (33–66 %) and high (66–100 %).

Furthermore, we obtained the agricultural plots (farming and 
meadows) by downloading the vector data Registre Parcellaire Graph
ique (RPG availaible at https://www.data.gouv.fr). Trees, lawns and 
urban areas were detected using a GEOBIA approach based on an 
orthophoto acquired on 19 July 2020. The classification showed good 
performances with an overall accuracy of 92.28 % and a Cohen’s kappa 
of 0.897. We used a Digital Elevation Model (DEM) to classify tree 
vegetation into two strata: shrubs (1–2 m) and trees (>2 m). This DEM 
also allowed us to distinguish bare soil from bright buildings. We then 
obtained a land cover map in 2020 at very high spatial resolution (i.e. 1 
m per pixel) and including 12 land cover categories (Figs. 1 and 2) 
(supplementary file 2).

2.3. Identification of heat and cool areas

2.3.1. Computing LST values from satellite images
We determined land surface temperatures (LST) from the reflectance 

emitted in TIR light from Landsat scenes recorded on 29 July 2020 and 
28 July 1993. Primarily, we corrected these Landsat scenes with an at
mospheric correction implemented in the Semi-automatic classification 
plugin of the software QGIS v.3.10 (Congedo, 2021). This correction is 
designed to compensate for the effects of absorption and scattering 
caused by the earth’s atmosphere on the luminance measured by the 
optical sensor. Then, we estimated the ground surface temperatures 
using two steps. Firstly, the DN (Digital Number) values of the TIR data 
are converted into spectral radiance corresponding to the light intensity 
emitted by a surface in a given area. The second step consisted of con
verting the radiance into reflectance, which corresponds to the pro
portion of light reflected by the surface of a material (i.e. the ratio 
between the reflected luminous flux and the incident luminous flux). 
The reflectance is calculated by inverting the Planck radiation equation. 
Originally recorded in Kelvin degree, temperatures are then converted 
to Celius degree by subtracting 273.15. Full details of the calculations 
are available in Mueller et al. (2023) and on https://www.usgs.gov/.

2.3.2. Modelling the heat mitigation index
The procedure implemented in the InVEST (Integrated Valuation of 

Ecosystem Services and Trade-offs) program calculates values of the 
HMI and models the spatial distribution of its values across a study area. 
The HMI is based on the urban cooling model, recently developed by the 
Natural Capital Project (Sharp et al., 2020), which aims particularly to 
quantify the cooling effect and capacity of land cover categories, such as 
vegetation, in the city (Zawadzka et al., 2021). This index ranges from 
0 (heat zones: UHI) to 1 (cool zones: UCI). We used InvEST to model the 
spatial distribution of HMI values within the studied area and according 
to land cover in 1993 and in 2020. Indeed, for each land cover category, 
the calculation of HMI values requires the determination of four bio
physical variables (i.e. shade, crop coefficient Kc which determining the 
fraction of evapotranspiration evaporated by weighting water 

consumption according to the plant or type of plant cover (Zawadzka 
et al. 2021), albedo and green index) (supplementary file 1). Each bio- 
physical variable was calculated using specific formulae described in 
detail in Zawadzka et al. (2021). Each biophysical can range from 0 to 1 
depending on the land cover category, with the exception of Kc, which 
varies from 0 to 1.1 (InVEST user manual). In order to improve the 
calculation of HMI values, we propose to vary the green index coefficient 
for farming, meadows, herbaceous vegetation and water in order to 
better quantify and distinguish the cooling effect of these different land 
cover categories. Secondly, we propose to increase the thematic reso
lution (i.e. the number of land cover categories taken into account) of 
the land cover map with four supplementary categories (i.e. building 
density, shrub vegetation and bare soil) likely to influence and improve 
the calculation of HMI values. Thus, we carried out six different pa
rameters sets (Fig. 2), (supplementary file 2). 

• The first parameters set (i.e. parameters set 1) considers 8 land 
cover categories (Fig. 2). The other parameters sets represent 
different improved versions of this first parameter set.

• The parameters set 2 proposes an adjustment of the green index 
which is usually a binary variable classified as 0 or 1. For this, we 
used the values of normalised difference vegetation index (NDVI) 
(Rouse et al., 1973), especially for farming, meadows, herbaceous 
vegetation and water surfaces. Indeed, these categories may provide 
a reduced cooling effect during heat waves due to drought. The NDVI 
has been widely used in remote sensing applications to identify and 
quantify vegetation health and density. Herein, we computed the 
NDVI from images recorded by Landsat-8 images on 29 july 2020. 
This index, which varies from − 1 to 1, has been rescaled between 
0 and 1 with the Orfeo Toolbox (OTB v.5.8) (Grizonnet et al., 2017) 
as other biophysical variables (Fig. 2).

• The parameters set 3 distinguished three levels of building density, 
each with a different albedo and crop coefficients (Fig. 2).

• The parameters set 4 considered shrub vegetation (< 2 m) with 
intermediate coefficients compared to herbaceous and tree vegeta
tion (Fig. 2).

• The parameters set 5 considered bare soil to distinguish albedo 
effect of bare soil from that of other artificial surfaces (Fig. 2).

• The parameters set 6 compiled the different variables added in 
parameters sets 2–5 (Fig. 2).

See supplementary file 2 for more details about different parameters 
sets.

Concerning 1993, we computed the HMI values from the only land 
cover categories available for this period (n = 8). So, we did not consider 
the bare soils, the shrub vegetation and the wooded wetlands- moist tree 
vegetation (Fig. 2), (supplementary file 2).

Modelling of the spatial distribution of HMI values was carried out at 
a spatial resolution of 5 m in the study area.

The calculation of the HMI values also takes into account the po
tential annual evapotranspiration (ET0). This ET0 depends on both the 
meteorology and the topography of the studied area. First, we obtained 
the solar radiation using the r.sun.insoltime plugin implemented in the 
software QGis v.3.10 . This radiation was calculated as a function of 
topography (i.e. aspect, elevation and slope) and on the 15th day of each 
month, then averaged over the year. As mentioned previously, the cli
matic data were collected on the info climate website: https://www.info 
climat.fr for the Poitiers-Biard weather station. With the actual evapo
transpiration (ETa), we then obtained by combining the radiation with 
the previous crop coefficient (Kc) specific to each land use category. In 
addition, we gave a higher ETa value for trees than for shrubs because 
trees can have a greater cooling effect than vegetation that is smaller. 
Following Zawadzka et al. (2021), shade was only provided by tree 
vegetation, simulating the sun at its zenith. We finally determined the 
maximum temperature mixing distance at 500 m, as recommended in 
the InVEST user manual. This distance represents the radius over which 
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air temperatures can be averaged, taking account of air mixing. We set 
the maximum cooling distance for vegetated areas at 100 m, as sug
gested by Zawadzka et al (2021). This distance corresponds to the 
perimeter for which large green spaces (i.e. > 2 ha) have a cooling effect 
beyond their boundaries. The other parameters we used to calculate the 
HMI are detailed in the InVEST user manual.

2.4. Relationships between the various studied parameters.

2.4.1. Installation of thermometers to validate the mapping approach
To validate our cartographic modelling (in sillico), we identified 25 

heat zones and 25 cool zones where we installed 50 thermometers. To 
identify these different areas, we classified the HMI and LST values into 
four classes. Then, we selected the highest and lowest HMI and LST 
classes which overlapped to determine the most heatest and coolest 
areas.

The thermometers (LoraWan) were installed in July 2023 and 
recorded the temperature every 15 min. To determine whether the 
temperature was different between warmer and cooler zones, we 
focused on the hottest hours of the day (i.e., between noon and 3p.m.). 
We selected only the days for which at least 15 temperature sensors, 
within both warmer and cooler zones (i.e., 30 sensors in total), had 
recorded at least nine temperature measurements over the three hours 
period (on average one measurement every quarter of an hour).

The analysis was carried out on the average temperature per sensor 
over the focal period. A total of 109 days were included in the analysis. 
We used a mixed model procedure with a normal error structure and 
geographical site fitted as a random factor to test for an effect of site 
status (i.e., warmer or cooler zones) on temperature (‘lme4′ package, 
(Bates et al., 2015)). This analysis allowed us to control the spatial 
autocorrelation of data. Months were added as fixed factors into the 
model. As temperature could be expected to be a nonlinear function of 
month, the quadratic term month was added to assess whether it 
significantly improved the model fit. Maximal models, including all 
higher order interactions, were simplified by sequentially eliminating 
non-significant terms and interactions to establish a minimal model 
(Crawley, 2012). The significance of the explanatory variables was 
established using a likelihood ratio test (LRT, (Bolker, 2008). The sig
nificant LRT values given in the text are for the minimal model, whereas 
non-significant values correspond to those obtained before the deletion 
of the variable from the model. Statistical analyses were carried out 
using the R software (v.4.2.1) (R Core team, 2022). We then sampled 
and compared LST values in the warmer and cooler zones in 2020 and 
1993. We used a Mann Whitney test to estimate the significance of these 
differences (Zar, 2010).

2.4.2. Relation between recorded temperatures, LST and HMI values
In order to assess the congruence between the LST data and HMI 

values computed using the six different parameters sets, we rescaled the 
spatial modelling of HMI values to 30 m. Consequently, we obtained the 
same spatial resolution for the LST and HMI maps, enabling them to be 
compared.

We then used the ordinary least squares linear regression to test the 
relationship between LST values and HMI values calculated from 
different sets of parameters. We carried out this procedure in 1993 and 
2020. Statistical analyses were conducted using R software (v.4.2.1) (R 
Core team, 2022).

In addition, for each thermometer, we used a least squares linear 
regression to test the relationship between the mean temperature 
recorded by the different thermometers and the HMI values as well as 
LST values sampled on the grid where the thermometers were located. 
This would validate the different methods and give a proper comparison.

2.4.3. Influence of land cover on the surrounding temperature
To estimate the influence of the different land cover categories on 

temperatures, we calculated and averaged LST values for each land 

cover category. We then compared these values using a Kruskall-Wallis 
test followed by a Wilcoxon post-hoc test. We have not determined the 
influence of land use on the HMI values, as the calculation of these 
values is based in particular on the land use categories themselves. 
Statistical analyses were conducted using R software (v.4.2.1) (R Core 
team, 2022).

2.5. Spatio-temporal evolution of LST and HMI values between 1993 and 
2020

To visualise the spatio-temporal evolution of both heat and cool 
zones between 1993 and 2020, we created, within the study area, a 
60x60 meter grid to extract the mean values of LST and HMI (i.e. pa
rameters set 1 – (Fig. 2), (supplementary file 2)). Then, to test the dif
ference in the spatial distribution of heat and cool zones between the 
two dates, we carried out a pairwise comparison of the LST and HMI 
values between 1993 and 2020 using a Student’s t-test. In addition, to 
visualise the spatio-temporal evolution of LST and HMI between the 
involved period, we subtracted the LST and HMI values calculating in 
1993 and 2020 (i.e. HMI modelled using parameters set 3 – (Fig. 2), 
(supplementary file 2).

Parameter 3 offers two more land cover categories than the 1993 
map. However, we believe that the analysis between the two dates is still 
possible, as these two categories (i.e. « bare soil » and « Wooded wet
lands and moist tree vegetation ») represent very small areas in 2020, 
with 2.47 % and 0.34 % of the studied area respectively.

3. Results

3.1. Relation between temperature and land cover

Firstly, the temperature data, recorded by thermometers from 1 July 
2023 to 1 June 2024, showed a lower average temperature in the zones 
identified as cooler than in the zones identified as heater (mean ± se, 
cooler zones = 15.86 ± 0.16; warmer zones: 16.43 ± 0.15). The tem
perature was strongly influenced by the month of the year (LRT =
3569.0, p < 0.0001, estimate = 7.18 CI95%: 6.99–––7.37). Adding the 
quadratic term month2 significantly increases the model’s fit (LRT =
3290.2, p < 0.0001). Indeed, the temperature follows an inverted bell 
curve, with temperatures falling in winter and rising in spring (Fig. 3). 
The status of the geographic site (i.e., cooler or heater zones) also had a 
significant influence on temperature (LRT = 7.8, p = 0.005, estimate =
-0.49, CI95%: − 0.825 − − 0.154, Fig. 3). This suggested that the single 
Landsat image (recorded on 29 July 2020) that we used accurately re
flected the overall climate trend of our study area (at least over the 
period recorded, ~one year) as well as the trend found in the LST data 
values (2020) between the heatest (i.e. mean 33.89 ± 1.05) and coolest 
zones (i.e. mean 28.21 ± 1.69) (p value < 0.0001). We don’t have 
empirical data concerning temperature in 1993, but the heatest and 
coolest areas identified in 2020 are located in regions that also showed 
higher (i.e. mean 28.20 ± 1.64) and lower (i.e. mean 24.76 ± 1.56) LST 
data in 1993 (p-value < 0.0001).

3.2. Correlation between recorded temperature, LST and HMI values

As expected, the congruence between the two involved methods 
reveals HMI values negatively and significantly correlated with LST 
values suggesting that high temperatures result in low HMI values and 
lower temperatures are associated with high HMI values. The degree of 
correlation between these two variables depends on the parameters set 
used to calculate HMI values. Indeed, with the exception of the bare soil 
category (i.e. parameters set 5), the addition of land cover categories as 
well as the adjustment of the green index, for instance, increase and 
improve the correlation between the HMI and the LST values (Fig. 2), 
(supplementary file 2). In 1993, HMI and LST values were also signifi
cantly correlated (estimate = -8,0322, IC95% [-9.4212; − 6,6431], t =
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-244.73, df = 86128, p-value < 0.01; adjusted R2 = 0.64).
Moreover, results showed that the mean temperature recorded by 

thermometers was significantly correlated with HMI values (estimate =
-0.8929, IC95%[-1.457; − 0.329], t = -3.218; p = 0.002833; adjusted R2 

= 0.211) and with LST values (estimate = 0.07261, IC95%[0.005; 
0.140], t = 2,195; p = 0.03507; adjusted R2 = 0.09838) recorded on the 
grid where the thermometers were located.

3.3. Influence of land cover on temperature

LST values differ according to the land use category (Kruskal-Wallis 

chi2 = 5741.8, df = 12, p-value < 0.01). LST values are significantly 
higher in artificial areas than near agricultural ones (p-value < 0.01), 
forests (p-value < 0.01) and water areas (p-value < 2e-16). The highest 
temperatures were observed for high building density (T = 34.7 ◦C) and 
increased significantly as a function of this variable. Moist tree vegeta
tion and water areas are associated with the lowest temperatures 
(Fig. 4).

3.4. Spatio-temporal evolution of LST and HMI between 1993 and 2020

LST values recorded in 1993 and 2020 revealed differences. Indeed, 
the average LST value is significantly different between these two pe
riods with 27 ◦C +/- 1.6 ◦C in 1993 and 32 +/- 2 ◦C in 2020 (t = -666.18, 
df = 86129, p-value < 0.01) (Fig. 4). Specifically, very high LST values 
(>36.6 ◦C) are over-represented in 2020 compared to 1993 while very 
low LST values (<23.4 ◦C) are almost absent in 2020 (Fig. 5). For in
formation, the largest increases are observable on the outskirts of the 
city in large artificial areas (e.g., commercial areas). Conversely, LST 
values decreased slightly in the northwest of the study area where the 
agricultural areas are located.

Subtracting the HMI values between 1993 and 2020 showed spatial 
variation over the period (Fig. 4). Specifically, the average HMI is 
significantly different between the two years with an average value of 
0.29 +/- 0.19 in 1993 and 0.30 +/- 0.19 in 2020 (t = –23.769, df =
86129, p-value < 0.01) (Table 1).

Between these two periods, significant changes in land use between 
1993 and 2020 could partly explain the recorded temperature differ
ences. Cultivated land (− 10 %) and grassland (− 2%) decreased, while 
herbaceous vegetation and trees inside the city (9 %) increased. Indeed, 
it seems that the new residential neighbourhoods have replaced agri
cultural areas, but they include gardens with trees and lawns, as the 
results have shown an increase in low-density buildings (2 %) as well as 
herbaceous vegetation and trees within the city (9 %). The urbanised 
areas have expanded, particularly on the outskirts of the city, in the 
large shopping areas, where we have also recorded an increase in LST 
between 1993 and 2020 (Table 2).

Fig. 3. Variation in temperature differences between cooler and heatest zones 
recorded over one year. The upper limit of each blue or red segment corre
sponds to the highest average temperature measured on a focal day, while the 
lower limit corresponds to the lowest average temperature measured. If the 
segment is red, the areas mapped as warmer are indeed warmer than the areas 
mapped as colder; if it is blue, the areas mapped as colder are warmer than the 
areas mapped as heater. The longer the segment, the greater the temperature 
difference between warmer and cooler areas. The first day of the temperature 
survey was 07–14-2023, i.e. day 195 of the year 2023. The study ended on 
2024–06-01, i.e. day 153 of the year 2024.

Fig. 4. LST values for each land cover category. The diamond represents the mean and the bold black bar the median. According to the Kruskall-Wallis test, followed 
by a Wilcoxon post-hoc test, LST values are significantly higher near artificial areas than agricultural ones (p-value < 0.01), forests (p-value < 0.01) and water areas 
(p-value < 0.01).
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4. Discussion

As a result of human activities, living organisms are faced with the 
consequences of both climate and landscape changes. These disruptions 
are particularly significant in urban environments, where 68 % of the 
human population is expected to live in 2050. Focused on the city of 
Poitiers, this study compares and combines two methods allowing (i) 
locating heat areas and (ii) to highlight the spatio-temporal evolution of 
these heat areas between 1993 and 2020.

4.1. Improving the heat mitigation index

As highlighted by Zawadzka et al. (2021), Our results show that the 
HMI values, provided by the InVEST program, are significantly corre
lated with the LST values when compared at 30 m spatial resolution. 
Even though explained variation did not exceed 51 % in our models for 
2020, they reached 64 % in 1993. However, in 2020, we improved the 
correlation between HMI and LST values by modifying i) the green index 
based on the NDVI, ii) the building density, iii) the bright surfaces and 
iv) by differentiated vegetation strata. Based on the results, the most 
important parameters capable of improving the correlation seemed to be 
the green index adjustment and the consideration of the different 
vegetation strata. Whereas Zawadzka et al. (2021) set the green index at 
1, we demonstrated that modifying this parameter based on the NDVI 
was useful. This parameter could be adapted according to vegetation 
stress scenarios and the specific vegetation types found in each study 
area around the world (Wloczyk et al., 2011). Close attention must also 
be paid to the accuracy of classifications made to detect urban vegeta
tion. As vegetation is the main parameter in HMI modelling, classifica
tions must be as accurate as possible to correctly represent urban heat 
islands. In addition, we observed that differentiating shrubs from trees 
strongly increases the correlation between HMI and LST values. 3D in
formation is not often available, leading to produce land cover maps 
with only two vegetation strata: herbaceous and tree vegetation – shrubs 
are generally assimilated to the tree vegetation (Morin et al., 2022; 
Puissant et al., 2014). The urban cool areas, especially the shadow areas, 
tend to be overrepresented when such maps are used to model HMI 
leading to a lower correlation between HMI and LST. Here we show the 
importance of taking shrubs into account when calculating the HMI.

Interestingly, building density and bright surfaces (i.e. bare soil) did 
not enhance the strength of relationship between HMI and LST. Bright 
surfaces did not represent a large proportion of the study area which 
could explain this result. Concurrently, taking into account the density 
of the building mainly modified the values of the albedo and the crop 
coefficient, but these modifications remained relatively low compared 
with the values implemented in the default parameter set 1.

Numerous factors can affect the relationship between HMI and LST. 
For example, we only used a single LST image acquired on a warm 
summer morning. It would have been interesting to be able to use an 
image later in the day or during a heat wave, when surface temperatures 

Fig. 5. Spatio-temporal evolution of LST (A) and HMI (B) values between 1993 and 2020 in the studied area.

Table 1 
Mean, minimum and maximum values of HMI and LST in 1993 and 2020.

Values 1993 2020

HMI LST HMI LST

Mean +/- SD 0.29 +/- 0.19 27 +/- 1.6 ◦C 0.30 +/- 0.19 32 +/- 2 ◦C
Minimum 0,04 19 ◦C 0,05 23 ◦C
Maximum 0,96 36 ◦C 0,95 40 ◦C

Table 2 
Change in the surface area of different land use categories between 1993 and 
2020.

Land cover categories Area (km2) 
1993

Area (km2) 
2020

Changes 
(%)

Building Building, low 
density

3.53 5.02 1.76

Building, medium 
density

2.14 2.69 0.65

Building, high 
density

0.64 0.81 0.2

Roads and other artificial 
surfaces

13.77 14.56 0.93

Farming 22.78 14.11 − 10.23
Meadows 11.69 9.92 − 2.09
Herbaceous vegetation 5.37 11.51 7.25
Shrub and trees 24.13 25.29 1.37
Water surfaces 0.64 0.78 0.17
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are higher, in order to potentially obtain a more significant correlation. 
Similarly, the use of several different dates for recording the LST would 
have enabled us to obtain a more accurate spatial variation in temper
atures . Unfortunately, we did not have the opportunity to obtain more 
images due to excessive cloud cover on a large number of dates, which 
distorted the temperature data obtained using satellite sensors. A 
notable difference between LST and HMI values is spatial resolution. 
Indeed, LST are recorded at 30 m per pixel, whereas we have estimated 
HMI values at 5 m per pixel (corresponding to the spatial resolution of 
the available land use map in our studied area). HMI modelling calcu
lations therefore seem to be better suited to studying variations in highly 
heterogeneous landscapes such as urban landscapes and appear as a very 
interesting alternative to LST data when they are not available. It should 
be noted that InVEST outputs also provide an estimate of ambient air 
temperature that can be modulated according to the climatic data. For 
example, Bosch et al. (2021) showed that the air temperature observa
tions from monitoring stations better estimated air ambient temperature 
than spatial regression model using satellite data (Bosch et al., 2021). 
One of the strengths of the Urban Cooling Model implemented in the 
InVEST program is that it’s not a black-box and all parameters can be 
adjusted. Consequently, we can adjust these parameters according to 
information available on the studied area. Herein, we modified the 
number of land cover categories and we adjusted the green coefficient 
(using NDVI) to enhance the calculation of HMI values. More in
vestigations could propose integrating, for example, the shadows 
created by buildings (and therefore solar irradiance) which can influ
ence land surface temperature (Freitas et al., 2015). However, the 
calculation of HMI values can also be improved by taking into account 
solar irradiation whose accuracy can be enhanced using models 
including beam, diffuse and reflected irradiance. Based on the Stefan- 
Boltzmann Law, describing the power radiated from a black body in 
terms of its temperature, such a model allows to estimate land surface 
temperature (Hofierka et al., 2020) which can be reinvested in the 
InVEST calculations. Even though this approach is very accurate, it does 
not consider air flow or the cooling distance capacity of large vegetation 
or water areas (Broadbent et al., 2018; Motazedian et al., 2020). Each 
approach has its strengths and weaknesses: methods that are excep
tionally accurate can also be time-consuming and energy-consuming, 
these methods needing strong expertise are not applicable over a large 
study area (Bherwani et al., 2020; Freitas et al., 2015). As a result, the 
InVEST Urban Cool model represents a good compromise between ac
curate process modelling, the skills required, input data, and time/en
ergy consumption.

4.2. Spatio-temporal evolution of temperatures and heat areas between 
1993 and 2020

Although it is difficult to compare the absolute temperatures be
tween 1993 and 2020 using only two snapshot satellite images, LST 
values recorded for the two dates suggested a rise of temperature which 
is in phase with global meteorological data. In concert with this, the 
study area also shows urban sprawl, characterised by an increase in 
artificialized areas (Table 2), which seems to increase local tempera
tures. These results are in line with previous studies showing that vari
ations in land use can amplify the effect of heat zones (Liu et al., 2019; 
Ranagalage et al., 2017). Moreover, during the studied period, meteo
rological data recorded an annual increase in mean temperatures of 
around 2 ◦C as well as a decrease in precipitation in our study area. It is 
noted that the year 2020 was particularly warm (probably favoured by 
the onset of the Niña effect) compared to the year 1993 which was rather 
cold compared to previous and following years (supplementary file 1). 
This could explain, in part, the increase in July LST between these two 
dates (Table 1) since the air temperature varies with the land surface 
temperature (Shi and Zhang, 2018). However, even though we are only 
quoting the main weather trends over the period, it is difficult to 
conclude on the temporal changes in weather as we have only used two 

snapshot satellite images. We would need to use more satellite images to 
show the average temperature level and more time points to show the 
trend over the last 30 years. The difficulty and one of the limits of this 
method is therefore the availability of data, particularly in ancient his
torical periods due to the evolution of technologies over time and the 
availability of archival data.

It is difficult to estimate the spatial and temporal evolution of heat 
and cool areas as the LST values amplitudes between the two dates 1993 
and 2020 are too different and the maximum LST value recorded in 1993 
remains lower than that recorded in 2020. Based on this LST values 
increase over the studied period, it now seems important to estimate 
how this rise in temperature will impact humans. These estimates can be 
approximated using the HMI index.

The HMI values clearly reveal spatio-temporal changes of heat and 
cool zones between 1993 and 2020. These modifications are likely the 
result of land use changes during the studied period as we observed an 
increase in HMI values on the outskirts of the study area, where new 
commercial areas and buildings appear during the studied period. 
However, while artificial areas have increased on the overall scale of the 
study area, their proportion has not really changed in the city centre 
where we observe an increase of 7 % and 1 % in grassy areas and tree 
areas respectively. This can explain why we observe an increase of the 
HMI values in the centre of the study area. In addition, the HMI values 
calculated in 2020 also benefit from the planting carried out in 1993, 
which has expanded.

The spatial distribution of HMI values is very important for locating 
the cool areas that provide refuge for city dwellers as well as for 
biodiversity. According to our results, high HMI values are often asso
ciated with vegetation that also promotes the well-being of city dwellers 
(Cox et al. 2017, Luck et al. 2011, Nieuwenhuijsen et al., 2022). Spe
cifically, this well-being of city dwellers seems to depend on the pres
ence of at least three visible trees from their homes, a 30 % tree cover in 
the surrounding neighbourhood, and proximity to an urban park or 
forest within a 300-meter radius of their residences (Konijnendijk, 2023; 
Nieuwenhuijsen et al., 2022). In concert with this study, this confirms 
the importance of both thematic and spatial resolutions in cartography, 
especially in highly heterogeneous landscapes such as urban ones.

4.3. Implication in land policy and management

Firstly, it is imperative to prioritise the management of urban surface 
temperature, as it can be effectively controlled through strategic in
terventions. Additionally and in line with our results, addressing heat 
areas concerns requires a shift in perspective, recognizing that UHI ef
fects extend beyond cityscapes alone (Onačillová and Gallay, 2018) and 
can include industrial and commercial areas. The calculation of HMI 
values considers four biophysical variables (i.e. shade, crop coefficient, 
albedo and green index) characterising each land component. These 
biophysical variables could provide a basis for land managers’ actions in 
the field. Indeed, if we want to avoid heat areas in human-dominated 
landscapes, management strategies should incorporate nature-based 
solutions (Jones et al., 2022; Norton et al., 2015). For instance, it 
would be interesting to favour shade and the cooling effect of vegetation 
by promoting the planting of trees, shrubs, or even herbaceous vegeta
tion (Elliott et al., 2020; Konijnendijk, 2023). Also, these green spaces 
serve as vital cooling agents, providing respite from elevated tempera
tures and improving overall environmental quality. By integrating these 
recommendations into urban planning and development practices, cities 
can effectively combat heat areas and create healthier, more resilient 
urban environments for present and future generations. Moreover, 
preserving semi-natural habitats such as wetlands and forests at the 
landscape scale is essential for maintaining ecological balance and 
enhancing the cooling influence of natural elements like rivers and 
forests. For building, it would be preferable to use suitable urban ma
terials with high solar reflectance, thermal emissivity, and heat capacity 
to minimise heat absorption and reduce surface temperatures. In 
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addition, when constructing new buildings, it is important to take into 
account fluctuations in wind speed and air flow, which play an impor
tant role in heat reduction (Kim and Baik, 2005, 2002). Although these 
general suggestions (i.e. promoting vegetation and using environmen
tally friendly construction materials) seem effective in combating tem
perature effects, their implementation requires, beforehand, the precise 
location of vulnerable and at-risk areas. However, our results indicated 
that to effectively locate these vulnerable areas, it is crucial to use a 
highly accurate land cover map with a large number and diversity of 
land cover categories. Thus, attention should be paid to cartographic 
modelling based on low-quality land cover maps, which can lead to 
inaccurate land-use planning conclusions.

5. Conclusion

In this study, we calculated HMI values from different parameters 
sets and examined their correlation with LST derived from Landsat im
agery. The improvement in the HMI has resulted in an improvement in 
thematic resolution. For exemple, HMI values correlate better with LST 
values when the density of buildings and the distinction between 
grasses, shrub and tree strata are taken into account.

We calculated the LST and HMI values for 2020 and 1993 in order to 
compare the spatio-temporal evolution of both heat and cool areas. Even 
if more satellite images should be used to show the average level, and 
more time points are needed to show the trend of the near 30 years, the 
results indicated a substantial increase in LST between 1993 and 2020 −
in accordance with global meteorological data. The advantage of the 
HMI calculation lies in its potential to reflect temperature variations at a 
very fine scale, providing a deeper understanding of critical areas for 
both human and biodiversity considerations. Both approaches comple
ment each other, offering insights into urban heat and cool islands at 
different scales. While LST provides contextual information about heat, 
the HMI values reflect the perceived heat experienced by living organ
isms, considering factors such as shaded areas.

In the context of climate change and increasing land urbanisation, 
these dual approaches emerge as highly relevant for effective land 
planning and predicting the impact of various scenarios. They offer 
valuable tools for finding optimal solutions to urban heat management 
and contribute to informed decision-making. As we navigate the chal
lenges posed by climate change and urban expansion, integrating both 
LST and HMI provides a comprehensive understanding necessary for 
sustainable urban development.
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