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A fast procedure for the computation of acoustic fields
given by retarded-potential integrals

Florent Margnat*
Arts et Metiers ParisTech, DynFluid Laboratory, 151 bd de I’Hopital, 75013 Paris, France

An optimized procedure for the computation of acoustic fields given by retarded-time intgrals is provided.
It is written in the time-domain and for fixed sources. It is devoted to applications in which there is a large
amount of source data. Thus, as many observer points are required to build the acoustic image, the resulting
number of source-observer pair may cause an issue in accessing to the source-observer distance, if this quantity
can not be stored in a global variable. The algorithm is validated through comparisons with reference data
in the case of a simple harmonic source and in the case of the aerodynamic noise generated by the cylinder
flow. The extension to the propagation in a moving medium is also presented, with the implementation of the
convected Green function.

I. Introduction

Flow-generated acoustic fields are often predicted by computing retarded-potential integrals which appear in the
formalism of aeroacoustic analogies or wave extrapolation methods. Such procedures return the acoustic emission of
unsteady flows by two steps: firstly, the flow is simulated, giving access to source quantities (or to acoustic quantities
on the control surface in the case of a wave extrapolation method); secondly, those quantities are propagated until
observer/listener locations. This avoids the computation of the flow equation over a large domain including both the
flow region and the acoustic region, which requires a carefull choice of numerical schemes and boundary conditions.
Moreover, thanks to a source modelisation and propagation, access is given to the noise generated by flows simu-
lated using CFD methods that are not able to generate (e. g. the incompressible assumption) or propagate (e. g.
dissipative schemes) acoustic waves. Finally, if source quantities can be stored, the acoustic computation becomes a
post-treatment, so it can be tested, optimised, independantly from the flow computation. Beside, the same acoustic tool
can apply to source data from different CED tools. For that reasons, in the field of computational acroacoustics, hybrid
prediction methods based on acoustic integrals stand as a current topic next to direct noise computation methods (see
the review papers by Colonius & Lele [1] and Wang et al. [2]).

In the present contribution, the numerical implementation of a retarded-potential integral is adressed in the time-
domain. An optimised method is provided for the computation of the acoustic quantity on an observer grid in order
to build an acoustic picture - field. It is very useful when large size source data are considered, thus involving a large
amount of source-observer distances which can not be stored in a global variable. It keeps the advanced time prin-
ciple, which allows an acoustic prediction parallely to the flow simulation and an easy connection with usual CFD
tools. Only fixed source domains are considered, however moving domains may be concerned by the specific technic
presented hereafter.

The paper is organized as follows: first, the general formulation of the problem is presented. Then the principle
of the optimized procedure is described, with an illustration of the CPU-time reduction that can be expected. The
validation of the algorithm is performed through the case of a monopole radiating in a 2D medium. The algorithm
is then extended to take into account a propagation in an uniformly moving medium, with the help of the convected
Green function. Finally, an application example is provided with the noise radiated by the flow over a circular cylinder.
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II. Principle of the procedure

A. Problem formulation

A general form of aeroacoustic integrals can be written, considering a source quantity .S to be integrated over a source
domain D in order to compute the acoustic quantity, pressure, at an observer position x and time ¢, as:

1 X — d
Pa(X,ta) = —./ s (yita - 2 o M
4pi Jp c ) Ix-yl

where y denotes the position over the source domain and ¢y is the ambient sound speed. Such expression is usually
called a retarded potential integral, since, unless the source is compact, the propagation distance deviation between
two source points implies their respective contributions must be collected at different emission times in order to reach
the observer point at the same time. Formally, it can stand for integrals to be handled at computing, e. g., the solution
of Lighthill’s [3] or Howe’s equations in free-field, the volumic or surfacic terms appearing in Curle’s analogy or the
general form provided by Ffowcs-Williams & Hawkings, or wave extrapolations. The following discrete expression is
considered:

A‘/yl
Ixi — yjl

(@)

Ny,
l L Xyl
4mpa (xi,t,) = Z S <yj,ta —— 1
J
where AV, is the elementary volume attached to the jth source element located at y;j» and Ny is the number of
source elements. If it is assumed that Nt datafiles of the source term S can be computed and sampled at At,, one
have to interpolate the source quantity at the time ¢, — % in order to compute the acoustic quantity on given x
and t, grids.

One key point is how to organise the loops on the source elements, source fields, and in the present case, observer
points. The most straightforward procedure consists in fixing the observer time and location, and collecting the
contribution of each source point in the datafiles which bound the retarded-time. The advanced time principle (Casalino
[4], Kessler & Wagner [5]) consists in fixing the source time first, and then radiating the contribution at the observer
points at a reception time which is determined by the source-observer distance. The present algorithm is dedicated to
configurations for which the source-observer distances cannot be stored in a local variable. This happens when a 2D
acoustic field is computed (not only a signal at a couple of observer points) using 3D or large 2D source grids (e. g.
volumic source distributions).

Let [ be fixed such as #, = [At,, thus defining the reception time when the acoustic picture is to be computed.
Following the advanced time principle, let be fixed a source time interval, bounded by kAt and (k + 1)Ats, where
the source quantity is available. Consequently, the [source-observer] pairs involved at this step of the accumulation
process are such that:

(l — (k + 1))00Ats < Tij < (l — k)CoAts 3)

where r;; = |x; — yj|. Thus, if the source point j is also fixed, its contribution radiates at observer points located
within a circular stripe, ring, centered on him between the radii 1 = (I — (k + 1))coAts and 7o = (I — k)coAts. So
it is necessary to cover this set of observer points.

One method is to scan the whole observer grid, and test the distance condition (3). This method leads to the
computation of all the Nys x Nz, distances at each time step, where Nz, is the number of observer point, and the
CPU-time of the acoustic prediction is mainly spent for that. Tests simulations are performed in which the extent of
the source and observer domains are fixed ; consequently, the number of time steps Nt;, = 755 is fixed too. The
results for this method are shown in figure 1-left for 6 combinations of the source and observer grids. The resulting
linear regression function is:

Tscan x 3,4.1071% x Nt, x Nz, x Ny, 4)

where T'scan is the CPU-time in minutes of a simulation using the scanning emission time algorithm.
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Figure 1. CPU-time of test simulations with respect to the number of source-observer pairs, for different grid combination. Left: scanning
emission-time procedure; right: ring-guided emission-time procedure (solid line from estimation (5).)

B. An optimized algorithm

The optimised method developed here consists in covering the set of observer points defined by (3) without having
the source-observer distances stored nor computing all of them at each time step: split a rectangular shaped acoustic
field with a uniform grid, in 4 arcs with right angles from the main directions; then, e. g. for the top right arc, start
vertically above the source point and outside the ring (suburbs), move down testing the source observer distance ;
once the intramural district is reached, move right to the next observer vertical line and start again from outside.
This behaves like a recursive marching, and by avoiding numerous source-observer distance computations, it is much
less consuming than the scanning algorithm, as visible in figure 1-right. For example, the ratio is 35 for the case
Ny, = 4,06.10° and Nz, = 1,02.10%, and the ratio is 50 for the case Ny, = 4,06.10° and Nz, = 2,04.10%. The
ring-guided algorithm has also a different behavior with respect to the observer grid, however it is still proportional to
the number of source points Ny,. The key parameter is Az, /(coAts), where Az, is the observer grid step. If it is
low, there are statistically many observer points found on the ring with respect to the number of points tested, since
the ring thickness is (coAtg). Thus, the effiency is increased. It is obtained that:

Az,
coAts

TrinGg X (1,02 + 0,92) 1079 x Nz, x Ny, 3)
where Trr v 1s the CPU-time in minutes of a present simulation using the ring-guided procedure. Unlike T'sc an,
Tring does not depend explicitely on Nt because it is linked to the total number of integration operation, which is

always Nx, X Nys,.

III. Validation of the procedure

The simulations which leaded to the cost estimation of the previous section were performed for a two-dimensional
source domain, located in the same plane as the observer domain. The same behavior is expected for a source plane
which would not be placed in the same plane as the observer grid. However, in that case, the condition (3) has to be
projected in the observer plane. Moreover, the solution (1) is obtained using the three-dimensional Green function.
Consequently, a two-dimensional source will not give the physically correct acoustic field which is the solution of the
full 2D problem formulation. In order to provide a general methodology, it is thus necessary to write the algorithm for
the spanwise direction.

A. Implementation in the spanwise direction

Let fix again the reception time and the source time interval. Source-observer pairs involved are such that :

(l — (k‘ + 1))00Ats < Tij < (l — k)CoAts (6)
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where the reception time is defined by tfl = [At,, the source fields are known at kAt and (k + 1)Atg, and 735 =
|xi — y;j|. If the source location is fixed as well, (6) defines two spheres centred on it of radii 71 = (I — (k + 1))coAt
and ro = (I — k)coAts. Thus, in the observer plane, defined by y3 = 0, observer points verifying (6) are within two
circles centred on (z1 = y1, T2 = y2) of radii r} and r} defined by:

, /.2 2 s ]2 2
r; =4/r7 —y; and 71y =4/r5 — Y3

These geometric relations are sketched in figure 2.

!
1
1
[
I
|
i
\
\

Figure 2. Sketch of the configuration for the implementation in the spanwise direction. ) is the source point, located in (y1,y2,y3) ;
(21, 22) are the coordinates in the observer plane ; r1 and r2 are the propagation distances defined by 3 ; v} and r}, are the corresponding
radii of the circles obtained where the spheres centred on the source point cut the observer plane.

If the grid in the spanwise direction is basically an extrusion of the grid in the (y1,y2) plane, the procedure is the
following:

1. fix (loop on) the source field(s)
2. fix (possibly loop on) the reception time(s); the propagation distances r; and ry are computed.

3. fix (loop on) the source location(s) in the spanwise direction; the radii 7} and 75 in the observer plane are
computed.

4. fix (loop on) the source coordinates (y1, y2), search the observer points located within the two circles, and add
the interpolated source contribution to the acoustic pressure at them.

Appropriate tests can be introduced at the third step in order to restrict the loop to spanwise source locations which
effectively radiate in the observer plane at this time step. If ys3 is too far, the propagation distance may be too short
and the emission may not reach the observer plane. If y3 is too small, the propagation distance may be too large and
involve observer locations outside the desired observer grid.

The search procedure at the fourth step is performed using the same methodology as in the previous section:
splitting the ring in 4 arcs, and for each grid step in the x; direction, finding the grid steps in the xg direction
satisfying (6). As sketched in figure 3, for a given step 1 such as 1 = (i1 — 1)Az, the observer points located on
the ring are at indices 7o such as:

\/(7“i)2 +(#1 —y1)? < (i2 — 1)Axy < \/(7“’2)2 + (z1 —y1)? @)

So a loop on the second observer coordinate can be introduced, bounded by iél) and z'g) given by:
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Figure 3. Principle of the extraction of the observer points located on the ring. M, r} and r} are defined in figure 2; Az and Ax> are
the grid steps in the observer plane.

V()2 + (@1 — y1)?

W _ oy | V) (21— 1) .
2

i 1
iy Aty +

+2 and zé) nt

B. Test-case: monopole source

The implementation of the procedure is validated through the case of a harmonic source located at the origin in a
two-dimensional configuration. The source quantity to integrate in (1) is defined as:

S(y,7) =d(y) Ado sin(w T) ®)
where J is the Dirac function, A is the source amplitude, do the elementary surface over which it extends and w is
the angular frequency.
1. The 2D Green function
In the time domain, the 2D Green function is given by:®

H({t—71—71/co)
2my\/cd(t —7)2 —r?

G2D(Xa t|Y7 T) = - (9)

where H is the Heavyside function and r = [x — y| = /(21 — y1)2 + (22 — y2)2. Thus the general solution of
the inhomogeneous wave equation is:

p(x1,22,t) =

+°°/+°° oo H(t—T—r/co)
N T ey

S (y1,Y2,T) dT) dy1dys (10)

Integrating the Heavyside function,’ it yields:

1 400 ptoo t—r/co S 7
p(x1,x2,t) = “or / ( W1 y2,7) dy1dys (11)

—0 Vit —71)2 —7“2/0

It is relatively straightforward to convert the time integral into an integration over a third spatial direction, noted
y3. One obtains:

5of 10

American Institute of Aeronautics and Astronautics



/12 142
1 +o0  p+oo 0 S(yl’y%o’t_%
’ ’Oat:_

This formulation shows how the procedure developed here can be validated or applied in a 2D configuration,
provided that a 3D Green function is combined with a space integration over the spanwise direction and a replication
of the source data known in the (y1,y2) plane.

dys | dy1dy2 (12)

2. Reference solution

The acoustic field of the source defined by (8) is thus given by:

sin [w(t — Y1203 IHI%—W%)
Ado [
p(r1,22,t) = /
0

co
2w

Vi + 23 + y3
Preliminary tests have shown that at least 200 wavelenthes were necessary in the spanwise direction to obtain less

than 1% of error on the value of the integral. Such bound depends on the grid step in this direction, noted Ays, but us-
ing the trapezoid rule, no improvement of the precision is observed for steps smaller than one eighth of the wavelength.

dys (13)

The acoustic pressure computed with the algorithm presented in sections II and A is compared to the reference
solution obtained by computing directly (13). This allows to valid the implementation of the various loops, of the
interpolation and of the integration operation. As plotted in figure 4 for w = 27, A = 1,do = 1, ¢ = 1 and
t = 107 /w, an excellent agreement is found. 30 points by period were used to discretize the source signal, and the
interpolation is linear. A better precision can be achieved in far field using a finer time resolution of the source signal.

0.15 T T T T

0.1F

0.051

p/ (Ado)
o

-0.05-

Figure 4. Acoustic pressure field for a monopole source in 2D. Straight line: reference solution; Symbols: algorithm solution; dashed line:
—0.5
r laws.

IV. Extension to convection effects

A. The convected Green function

For the propagation in a uniformly moving flow at the subsonic Mach number M in the direction y1, the 3D convected
Green function in the time domain is given by:®

~ o(t—1+71*
Gan(e ty,7) = -2 TET) (14)
Trg
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rg — Mo(x1 —y1)

where (2 =1-MZ , r5=+/(x1 —11)2+ B2 [(x2 —y2)? + (x3 —y3)?] and 7* =

o3
The integral solution for the acoustic pressure is thus given by:
1 rg — Mo(x1 —y1)\ dy
yla) = — S|y, ta— — 15
Palxta) = o /D <y ¢ co3? s (1)

B. Adaptation of the algorithm
According to the present methodology, one have to fix the reception time ¢ and a pair of emission times 7 and 7 + d.
Then one have to find the source-observer pairs for which the propagation time 7 satisfies:
t—(r+dr) <t <t—rT (16)
that is
15 — Mo(x1 —y1)
32

It is relatively straigthforward to show that for a fixed y, the following equation:

(1= (k+1))coAt, < < (1 — k)eoAt, 17

V(@1 —y1)? + B2 (w2 — y2)? + (w3 — y3)?] — Mo(z1 — y1) = RB? (18)

where R is a constant, is the equation of a sphere centred on (y; + RMo, y2,ys3) of radius R. Consequently, the
algorithm presented in section III A can be applied using the convected Green function, provided that the centre of
the circles are moved downstream the source point by the distance RMj, and that |x — y| is replaced by rg at the
denominator in the integration. However, the two circles have not the same centre, and the centre location depends on
the current propagation time. These two trends are more marked when the Mach number increases. The solution for a
fixed observer domain is recovered when making My = 0.

The acoustic pressure computed with the algorithm adapted to the convected propagation case is compared to the
reference solution obtained by computing directly (15). As plotted in figure 5 forw = 2w, A = 1,do =1,¢9 = 1,
t = 87 /w, and My = 0.5, an excellent agreement is found. The propagation in a moving flow leads to a different
wavelength between observers located upstream and observers located downstream.

0.15

0.1

p/ (Ado)
o

~0.05F

4

Figure 5. Acoustic pressure field for a monopole source in 2D, with convection effects. Straight line: reference solution; Symbols: algorithm
solution; dashed line: 7~ -5 laws.

In figure 6, the acoustic field of the same monopole as in section III B but radiating in an uniform flow is plotted
for different Mach numbers of this flow.
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Figure 6. Acoustic pressure field of a harmonic source of unit amplitude placed in a uniform flow, for different Mach numbers of this flow.
Levels are from —0.1 to 0.1
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V. Application to the aeolian tone prediction

Finally, the present methodology is applied to the aeolian tone prediction. This is a test-case with several source
points and with real flow source data. Thus, it illustrates well the practical configuration adressed by the present
algorithm development. In this flow case, the main source quantity is the pressure fluctuation at the cylinder wall,
as written in Curle’s analogy.® The source data is provided by a two-dimensional numerical simulation using a tool
similar to the one presented by Gloerfelt et al.'” The flow is at the Mach number My = (.3 and the Reynolds number
Re = 136. At these conditions, a periodic vortex shedding state is achieved. Two hundred source fields are saved by
period.

The reference computation is performed in the Fourier domain, using the 2D spectral convected Green function.
The spatial derivatives appearing in Curle’s analogy are perfomed on the Green function itself, thus providing an exact
formulation. For the computation in the time domain, the spanwise extent is about 1000a, where « is the cylinder
radius, which corresponds to approximately 30 wavelenthes. The spanwise direction step is Ays = 2.5a, what
provides about 15 points by wavelenth. The spatial derivatives are performed in post-treatment, using an fourth-order
explicit finite difference scheme.

Validation is first provided without convection effect. The acoustic pressure generated along the xo axis by lift
fluctuations is represented in figure 7, and show a very good agreement between the two computation methods. In
the vicinity of the cylinder, the acoustic field becomes singular, since the upper and lower sides are out of phase.
Consequently, the space derivation leads to unphysical results in that region for the temporal computation using a
relatively coarse observer grid.

p (Pa)

Figure 7. Acoustic pressure field generated by lift fluctuations on a cylinder with no convection effect included in the propagation. Straight
line: reference solution; Symbols: algorithm solution.

Finally, the convected case shows the good behavior of the present algorithm in a practical case. The acoustic
pressure field generated by lift fluctuations is plotted in figure 8. The directivity is modified by convection effects, and
this is well tracked by both methods. Some minor oscillations are visible on the field computed in the time domain,
which may be attributed for some part to the space derivation over the observer grid. Also, the source data are not
exactly periodic, what leads to a spurious noise in the computation in the time domain. Indeed, such noise is avoided
in the computation in frequency domain by removing the highest modes from the source spectrum.

VI. Concluding remarks

An optimized method has been developed for the computation of retarded-time integrals. The present optimization
concerns the evaluation of the acoustic field on an observer grid, thus involving a large number of source-observer
distances which can not be stored in a local variable. An iterative ring-guided procedure is proposed which recursively
searches observer points where the contribution of a given source point must be added once both the emission and
reception time are fixed. Such a procedure appeared very faster than an intuitive search method in that context. It can
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Figure 8. Acoustic pressure field generated by lift fluctuation on a cylinder in a 2D uniform flow at Mach number = 0.3. Left: computation
with the spectral convected Green function; right: computation with the temporal convected Green function using the present algorithm.

be used for all kinds of retarded-time integrals, such as volume sources in Lighthill-like formalisms as well as surface
sources in Kirchhoff-like wave extrapolation methods. It keeps the advanced time principle allowing an acoustic
prediction parallel to the flow simulation and an easy connection with usual CFD tools. The observer grid step has
no influence on the precision of the computed acoustic pressure, since there is no relation between the observer points
(through numerical schemes, for instance). However, the observer grid affects the global CPU-time and the efficiency
of the algorithm, and determines the resolution of the output image. Finally, it is worth noting that using the present
methodology, there is no additional cost using a 3D source domain, in relation to a 2D problem.
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