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Investigation of the far field pressure pulse generated by
vortex-wedge interaction using Howe’s acoustic analogy

Marios I. Spiropoulos∗, Florent Margnat †, Vincent Valeau ‡, Peter Jordan §

Institut PPRIME UPR 3346, CNRS - Université de Poitiers - ISAE ENSMA, Poitiers 86022, France

The far field generated sound by a vortex interacting with a semi-infinite rigid wedge is
studied in the time domain. The theory of vortex sound is used to calculate the far field sound,
under the assumption that the distance between the aerodynamic source and the edge of the
wedge is acoustically compact (𝑘 | ®𝑦0 | << 1). Analytical expressions are presented for different
cases: i) The self induction of a point vortex around the wedge, ii) the convection effects induced
by the free stream flow with velocity U and angle of attack 𝜂 and iii) regions with a Gaussian
distribution of vorticity. The presented models are compared with existing solutions in the
literature, and conclusions regarding the physics of the problem are drawn.

I. Introduction
Air-frame noise is one of the principal components of aircraft noise emission, especially during landing. It is

generated by the interaction of the flow with the aircraft’s structure. The main sources of air-frame noise on an aircraft
are the landing gear, the leading, trailing edges of the airfoils and regions with cavities [1]. The aerodynamic sound
produced by turbulence-airfoil interactions has been extensively studied by detailed numerical simulations, experiments
and analytical methods. An exhaustive review of trailing edge noise is presented by Lee et al. (2021) [2]. Despite the
fact that approximate analytical solutions lack the accuracy of high-fidelity numerical simulations, they provide simple
models which enhance the understanding of the physics of the problem. Analytical models based on Lighthill’s acoustic
analogy [3] and the work of Curle (1955), Ffowcs Wiliams and Hawkings (1969) ([4] , [5]) or the theory of Vortex
Sound ([6], [7]) have been developed in order to shed light on the mechanism of aerodynamic noise generation of wall
bounded flows. Ffowcs Williams and Hall (1970) [8] applied Lighthill’s theory to show that quadrupole sources close
to an edge of a semi-infinite half plane lead to an acoustic intensity that scales with the fifth power of the turbulent
velocity. Crighton and Leppington (1971) calculated scaling laws for quadruple and dipole sources for soft and hard
wedge-like objects by considering that the Green’s function of a compact object can be obtained as the solution of the
Laplace equation when the observer is many wavelengths away and the dimensions of the obstacle immersed in the flow
is acoustically compact [9]. Crighton (1972) examined the aerodynamic sound generated by a line vortex with its axis
parallel to the edge of a semi-infinite rigid half plane [10]. Howe (1975a) [7], (1975b) [11], by introducing the concept
of compact Green’s functions, extended this idea to two dimensional problems in the time domain and obtained simple
closed form analytical solutions that clarify the physical mechanisms underpinning aerodynamic sound generation
[12], [13]. Kambe et al. (1985) [14] solved the problem of a vortex passing very close to the edge of semi-infinite
half plane by assuming that the vortex path is not influenced by the existence of the edge. The results were verified
also experimentally and an extension of this work was proposed by Chang and Chen (1994) [15]. Priddin et al. (2018)
illustrated that simplified models derived in the framework of theory of vortex sound can be extended to investigate
methods for controlling actively and passively the trailing edge noise [16].

In the present work the theory of vortex sound is employed to study the ideal problem of turbulent fluctuations,
modelled as point vortices, impinging on a semi-infinite rigid wedge. In section II the simplified model, proposed by
Howe (2002) [17], that describes the sound generation by a point vortex passing by the edge of a rigid semi-infinite
half plane is reviewed. In section III, this model is extended to wedges with arbitrary angles. In subsection III.B, the
proposed model is further generalised by considering the convection of the point vortex by mean velocity of the free
stream. It is shown that the vortex trajectory and the far-field acoustic pressure pulse are influenced by a non-dimensional
number called the wedge-deflection strength. Finally the effect of viscosity on the far-field pressure pulse is examined in
Section IV.
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II. Edge-Vortex Interaction: Howe’s Half plane problem
The turbulent fluctuations around the edge of a semi-infinite rigid plate (𝑥1 < 0, 𝑥2 = 0) is modelled as a single line

vortex, shown in Fig. 1. It is assumed that the acoustic wavelength 𝜆 is much larger than the closest distance 𝑙 between
the edge and the vortex. Any effect of the freestream flow is omitted and the point vortex is self induced around the edge
of the half plane. Howe’s theory of vortex sound is applied to obtain the pressure pulse in the far field.

𝑝 (®𝑥, 𝑡) = −
∫
𝑡

∫
𝑉

( ®𝜔 × ®𝑣) (®𝑦, 𝑡) ®∇𝐺 (®𝑥, ®𝑦, 𝑡 − 𝜏) 𝑑𝑦3𝑑𝑡 (1)

where the source term ®𝜔×®𝑣 is the Lamb vector and𝐺 denotes the Green function. Howe showed that for two-dimensional
sources close to the edge, the time-domain compact Green’s function for the diffraction field around a half plane [7] can
be written as

𝐺 ≈ 𝜙∗ (®𝑥) 𝜙∗ ( ®𝑦0)
𝜋 | ®𝑥 | 𝛿 (𝑡 − 𝜏) , | ®𝑥 | → ∞ (2)

where ®𝑥 = (𝑥1, 𝑥2) denotes the coordinates of the observer in the far field, such that 𝑘 | ®𝑥 | >> 1 and ®𝑦0 =
(
𝑦01 , 𝑦02

)
corresponds to the coordinates of the vortex, which is located close to the edge of the semi-infinite half plane, such that
𝑘 | ®𝑦0 | << 1. 𝜙∗ represents the velocity potential of the incompressible, irrotational flow around the edge of the half plane
in the absence of any vortex and 𝜏 = 𝑡 − |®𝑥 |/𝑐0 corresponds to the retarded time. Expanding the source term yields:

®𝜔 × ®𝑣 = Γ𝑥3 ×
𝑑®𝑦
𝑑𝑡

𝛿 (®𝑦 − ®𝑦0 (𝑡)) (3)

From here on, the polar coordinate system will be used: i) ®𝑥 = 𝑟 (cos 𝜃, sin 𝜃) and ii) ®𝑦0 = 𝑟0 (cos 𝜃0, sin 𝜃0) unless
stated otherwise. Substituting Equations (2), (3) into (1) the pressure pulse in the far field can be written form,

𝑝 (®𝑥, 𝜏) = 𝜌0Γ sin (𝜃/2)
𝜋
√
𝑟

[
𝑑 ®𝑦0
𝑑𝜏

· ®∇Ψ∗
]
(®𝑦0) , (4)

where Ψ∗ is the stream-function of the potential flow (𝜙∗ ( ®𝑦0)) around the edge of a half-plane when no vortices are
present. The operator 𝐷

𝐷𝜏
corresponds to the material derivative with respect to the vortex trajectory. For 2-D flows we

can write (cartesian coordinates for simplicity)
𝑑 ®𝑦0
𝑑𝜏

· ∇Ψ∗ =
𝑑𝑦01
𝑑𝜏

𝑑Ψ∗

𝑑𝑦01
+ 𝑑𝑦02

𝑑𝜏

𝑑Ψ∗

𝑑𝑦02
=

𝐷Ψ∗

𝐷𝜏
(®𝑦0) ,

Fig. 1 Two-Dimensional Problem: Interaction of line vortex (blue dot) with semi-infinite half plane. The
red-dashed line corresponds to the vortex trajectory, due to the interaction with its image point, while the black
solid lines are the streamlines (𝚿∗) in the absence of any vortex.
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One of the main results of this ideal problem is that it enables the following physical interpretation regarding the
mechanism of sound generation. The noise in the far field is generated when the vortex path crosses the streamlines,
given by Ψ∗. Vortices that follow these streamlines do not produce sound. For example a vortex far from the edge travels
with an equivalent velocity 𝑈 = Γ/(8𝜋𝑙), parallel to those streamlines and no sound is produced [12],[13],[7].

𝐷Ψ∗/𝐷𝜏 is deduced from the vortex path, which is obtained by taking into account the presence of the vortex
around the half-plane and its image point, details shown in [13]. In the present problem, it is given by the velocity
potential flow of a vortex and its image close to a semi-infinite half plane. Then, it yields

𝑝 (®𝑥, 𝜏) = 𝜌0Γ
2 sin (𝜃/2)
(4𝜋𝑙)2

√︂
𝑙

𝑟


Γ𝜏/

(
8𝜋𝑙2

)[
1 +

(
Γ𝜏/

(
8𝜋𝑙2

) )2
]5/4

 , (5)

Kambe et al. [14] studied the same problem experimentally and theoretically, by applying the theory of vortex sound,
using the inverse-Fourier-transformed asymptotic forms for low frequencies of the Green functions for half-plane
scattering. Kambe’s method is more accurate since it is based on the exact Green function, however due to the higher
mathematical complexity of that approach it is not easy to develop a closed form analytical solution as in Eq. (5) and
study the physics of the problem more closely. Furthermore, the work of Kambe et al. was restricted to vortices purely
convected by the mean flow while the bending of the vortex path close to the edge was not taken into account.

III. Semi Infinite Wedge-problem
The results of Section II will now be generalised for any arbitrary wedge with half angle Ω. Figure 2 depicts

the geometry of the problem. The wedge parameter 𝛾 = 2 (𝜋 −Ω) /𝜋 is introduced and ranges from 𝛾 = 2 which
corresponds to the limiting case of a half plane (very sharp edge) to 𝛾 = 1 (infinite wall). The physical space is restricted
from the lower to the upper face of the wedge, 𝜃0 ∈ [−𝛾𝜋/2, 𝛾𝜋/2]. It should be noted that for 𝛾 < 1 the problem
resembles rather the aerodynamic sound generated by a closed triangular cavity, which is not the subject of the present
study. Following Howe’s methodology [13], the complex velocity potential close to the edge is given by:

𝑊
(
𝑧 𝑗

)
= −𝑖𝑧1/𝛾

𝑗
= −𝑖𝑟1/𝛾

𝑗

(
cos

(
𝜃 𝑗/𝛾

)
+ 𝑖 sin

(
𝜃 𝑗/𝛾

) )
, (6)

here 𝑟 𝑗 , 𝜃 𝑗 denote source or receiver coordinates, 𝜙∗ = 𝑅𝑒
[
−𝑖𝑊

(
𝑧 𝑗

) ]
and Ψ∗ = 𝐼𝑚

[
−𝑖𝑊

(
𝑧 𝑗

) ]
[13]. Combining

Eqs.(1), (2), (3) one obtains:

𝑝 (𝑟, 𝜃, 𝜏) = 𝜌0Γ sin (𝜃/𝛾)

𝜋𝑟
𝛾−1
𝛾

[
−
𝑟

1/𝛾−1
0
𝛾

𝑑𝑟0
𝑑𝜏

cos (𝜃0/𝛾) +
𝑟

1/𝛾
0
𝛾

sin (𝜃0/𝛾)
𝑑𝜃0
𝑑𝜏

]
(7)

-2 -1 0 1 2
-2

-1

0

1

2

(

Fig. 2 Geometry of the wedge problem.
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Chang and Chen [15] using the same analysis presented by Kambe et al (1985), derived a similar expression for the far
field pressure pulse, by using the low-frequency asymptotic expansion of the Green’s function for wedge scattering.
This analysis was also restricted to cases where the edge effect is omitted.

A. Self induced vortex around the edge of a wedge
A single point vortex is first considered in the vicinity of the edge of a semi-infinite wedge and the free-stream flow

is ignored. The equations of motion can be obtained by the following expression according to [13]
𝑑𝑧∗0
𝑑𝑡

= −𝑖 Γ𝜁
′′ (𝑧0)

4𝜋𝜁 ′ (𝑧0)
+ 𝐹′ (𝑧0) (8)

where 𝑧0 is the position of the vortex core in the complex plane, 𝑧∗0 the complex conjugate of 𝑧0, 𝜁 (𝑧0) is the conformal
mapping of 𝑧0 in the 𝜁-plane and 𝐹 (𝑧0) a regular function of 𝑧0. Since the convection of the vortex core is not
considered, we may write

𝐹 (𝑧0) =
𝑖Γ

2𝜋
ln (𝜁 (𝑧) − 𝜁∗ (𝑧0)) ,

which corresponds to the velocity field induced by an image vortex. To account for the presence of a corner the following
conformal transform is applied

𝜁 (𝑧) = 𝑖𝑧1/𝛾 .

Using the polar form of the complex number, 𝑧 = 𝑟𝑒𝑖 𝜃 , Eq.(8) results in a 2 × 2 system of non-linear differential
equations of first order. The vortex position at any time instant is then given by

𝑟0 = 𝑙

√︃
1 + (2𝜏/𝛾)2,

𝜃0 = 𝛾 tan−1 (−2𝜏/𝛾) ,

(9)

where 𝜏 = Γ𝜏

8𝜋𝑙2 is a non dimensional time parameter and l denotes the closest distance from the vortex to the edge.
Full steps of the derivation are shown in Appendix A. Substituting Eq.(9) into Eq.(7) we obtain the expression for the
far-field pressure pulse which can be written as the product of two parameters, one factor that is mainly constant and
contains the amplitude and directivity and a function that depends on time and the wedge angle 𝑇𝑤𝑒𝑑𝑔𝑒.

𝑝 (®𝑥, 𝜏) = 𝐶𝑇𝑤𝑒𝑑𝑔𝑒

𝐶 =
𝜌0Γ

2

8𝜋2𝑙2
sin (𝜃/𝛾) ,

𝑇𝑤𝑒𝑑𝑔𝑒 = 2
(𝑟𝑙)1/𝛾

𝑟

(
𝛾 − 1
𝛾2

) 
2𝜏/𝛾[

1 + (2𝜏/𝛾)2] 3𝛾−1
2𝛾


(10)

Equation (10) is a more general version of Eq.(5) since it contains an arbitrary wedge angle. Indeed, for 𝛾 = 2 one
obtains Eq.(5). It can be seen that the wedge angle influences the vortex path and thus the far-field pressure. In the
limiting case of 𝛾 = 1 (infinite wall), the vortex path is parallel to the stream lines of the hypothetical potential flow,
thus Eq.(10) yields 𝑝 = 0. The pressure pulse is mainly dependent on the time-wedge function 𝑇𝑤𝑒𝑑𝑔𝑒 (𝜏, 𝛾), since the
amplitude is constant and the directivity function (sin(𝜃/𝛾)) takes values from -1 to 1. It is shown in Fig. 3 that for
non-dimensional time units close to zero, the wedge angle does not have a strong influence on the pressure signature
since 𝑇𝑤𝑒𝑑𝑔𝑒 grows linearly with time. However, it seems that the pressure pulse tends to decrease as the wedge angle
increases. By examining the behaviour of the time-wedge function, it can be shown that the maximum value of each
pressure pulse depends explicitly on the wedge angle. The maxima are found by,

𝜕𝑇𝑤𝑒𝑑𝑔𝑒

𝜕𝜏
= 0

and the non-dimensional time when acoustic radiation peak occurs yields,

𝜏∗ = (𝛾/2)
√︂

𝛾

2𝛾 − 1
(11)
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-2 0 2
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0

2

-4 -3 -2 -1 0 1 2 3 4
-0.01

0

0.01

-2 0 2
-2

0

2

-2 0 2
-2

0

2

-2 0 2
-2

0

2

Fig. 3 Pressure pulses in the far field for different wedge angles. The closest distance from the edge is chosen to
be 𝒍 = 0.025𝒎, and the circulation of the vortex 𝚪 = 28𝒎2/𝒔

Substituting Equation (11) into Eq.(10), it follows that the maxima of the pressure pulse are obtained by,

𝑇𝑤𝑒𝑑𝑔𝑒,𝑚𝑎𝑥 = 2
(𝑟𝑙)1/𝛾

𝑟

(
𝛾 − 1
𝛾2

) 
√︃

𝛾

2𝛾−1[
1 + 𝛾

2𝛾−1

] 3𝛾−1
2𝛾

 . (12)

Figure 4 depicts the trends of the maxima of the far field pressure pulses (Eq.(12)) for Ω ∈ [0, 90◦]. As a result,
the present model indicates that large wedge angles generate less sound in the far field when the source distance is
acoustically compact (𝑘𝑟0 << 1).

0 20 40 60 80
0

0.02

0.04

0.06

Fig. 4 Maximum values of 𝑻𝒘𝒆𝒅𝒈𝒆 with respect to the wedge angle, obtained by Eq.(12)

One can extract more information regarding the time evolution of the pressure pulse by examining Eq.(11). Solving
for the dimensional time 𝜏∗ that corresponds to the maximum amplitude yields,

𝜏∗ =
4𝜋𝑙2

Γ
𝛾

√︂
𝛾

2𝛾 − 1
. (13)

The time of the maximum radiation peak thus depends on i) the circulation ii) distance from the edge and iii) the wedge
angle. For sources closer to the edge and/or vortices with strong circulation 𝜏∗ decreases and thus the radiation peak
occurs sooner. Furthermore, 𝜏∗ decreases further as the wedge angle increases. This can be seen also in Fig. 3. For
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vortices with the same circulation and distance from the edge the peak of radiation that corresponds to a wedge angle
of Ω = 45𝑜 (blue line) happens sooner than the one of the half plane (black line). Since at large times the pressure
amplitude decreases significantly, it will be shown that most of the acoustic energy is radiated at the time interval
[0, 𝜅𝜏∗], where 𝜅𝜏∗ is the total time when most of the acoustic energy is radiated to the far field. Thus, the time of
maximum sound radiation is expressed as

Δ𝑡𝑟𝑎𝑑 = 𝜅

√︄(
4𝜋𝛾𝑙2

2Γ

)2
𝛾

2𝛾 − 1
, (14)

From Eq.(14) it can be easily deduced that the time radiation of the half plane is the longest compared to the other
wedges. This will be illustrated by considering the following example. Maximum radiation time obtained for a half
plane (Ω = 0𝑜) is compared to that of a wedge with Ω = 25𝑜, for the same flow conditions. Suppose that 𝜅 = 3.5, then
the results are shown in Fig. 5. Indeed the time radiation of the wedge (Ω = 25𝑜) is shorter than that of the half-plane.

0 1 2 3 4 5
0

50

100

150

Fig. 5 Comparison of radiation times between a half plane (black line) and a wedge angle of 250 (red line). The
results are shown for 𝒍 = 0.025𝒎, 𝚪 = 28𝒎2/𝒔 and an observer in the far field 𝒓 = 25𝒎, 𝜽 = 𝝅.

It is also noted that the area under the curve in the interval [0,Δ𝑡𝑟𝑎𝑑] is larger for the half plane. Therefore, it can
be concluded that less sharp wedges tend to radiate most of the acoustic energy faster, while the amount of radiated
acoustic energy becomes maximum when 𝛾 = 2.

Another point of interest is the asymptotic behaviour of the far field pressure for short and large non-dimensional
times. For short non-dimensional times, that is 2𝜏/𝛾 << 1 the pressure pulse yields

𝑝𝑠ℎ𝑜𝑟𝑡 =
(𝑟𝑙)1/𝛾

𝑟

𝜌0Γ
2

2𝜋2𝑙2
sin (𝜃/𝛾)

(
𝛾 − 1
𝛾3

)
𝜏, (15)

and it depends linearly on 𝜏. However for 2𝜏/𝛾 >> 1:

𝑝𝑙𝑎𝑟𝑔𝑒 =
𝜌0Γ

2

8𝜋2𝑙2
sin (𝜃/𝛾) 2

(𝑟𝑙)1/𝛾

𝑟

(
𝛾 − 1
𝛾2

) (
2𝜏
𝛾

) 1−2𝛾
𝛾

. (16)

It can be observed that for Ω ∈ [0, 90◦], 𝑝𝑙𝑎𝑟𝑔𝑒 has the least contribution to the far field sound. Suppose that the
turbulence around the edge is modeled as a vortex with a circulation given by Γ = 2𝜋𝑣𝑅, where 𝑅 the radius and 𝑣 a
measure of the velocity fluctuation. Then the time scale can be approximated as 𝜏 = 𝑙/𝑣. It yields

2Γ𝜏
8𝜋𝑙2𝛾

=
1

2𝛾

(
𝑅

𝑙

)
.

Thus, the asymptotic expressions can be reformulated in order to derive the following scaling laws.

𝑝𝑠ℎ𝑜𝑟𝑡 ∼ 𝑣2𝑙
1−3𝛾
𝛾 𝑅3, 𝑅/𝑙 << 1

𝑝𝑙𝑎𝑟𝑔𝑒 ∼ 𝑣2𝑅1/𝛾 , 𝑅/𝑙 >> 1

(17)
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Kambe et al. (1985) showed experimentally that vortices passing near a semi-infinite plate, with 𝑅/𝑙 << 1 follow a
scaling law 𝑣2.53𝑙−2.24. For 𝛾 = 2 the asymptotic expresion of Eq.(17) gives 𝑝 ∼ 𝑣2𝑙−2.5. Chang and Chen [15] mention
that the dependence of the acoustic intensity on the shortest distance 𝑙 should not be influenced by the wedge angle.
However, the results of Eq. (10) illustrates that the pressure scales as ∼ 𝑙 (1−2𝛾)/𝛾 , which agrees with the results of the
scaling to a factor of 𝑙−3/2 obtained by Ffowcs Williams and Hall [8] for the infinite plate, when 𝛾 = 2. As a result, it
seems that the velocity scaling is mainly affected by the scattering of the surface (choice of Green’s function) while the
influence of the distance 𝑙 seems to depend on the choice of the flow model close to the edge of the wedge.

Although the model presented in this section corresponds to an ideal case and lacks the accuracy and rigor of other
existing models in the literature, it provides some physical insight about the important parameters that influence sound
generation by flow around wedges. It is shown that the distance between the aerodynamic source and the edge influences
the sound in the far field. The models presented in [15],[14] assume that the vortex is sufficiently far from the edge so
that edge effects are not important. However, in the case of the half plane, the scaling law obtained experimentally in
[14] lies between the theoretical results of their study (𝑙−2) and those presented here (𝑙−2.5). This indicates that even for
vortex rings with a radius smaller than the distance from the edge, the edge effect does not vanish. It was also shown that
as the wedge angle increases, the far field noise is generated faster, while the smaller the wedge angle the more acoustic
energy is radiated in the far field. Moreover, the fact that peak radiation occurs sooner implies that in the frequency
domain, larger wedge angles are expected to present peaks at higher frequencies.

B. Taking into account the convection of the vortex
In more realistic situations, turbulent fluctuations are influenced by convection effects of the mean flow. In this

subsection, an attempt is made to generalise the previous model and take into account a combination of the phenomena
that occur due to the proximity to the edge and convection. Furthermore, the aim of the following approach is to study
the key parameters that influence the vortex trajectory close to the edge and whether they affect the far-field sound
generation.

Let a line vortex in a free steam, with velocity 𝑈 and an angle 𝜂 with the horizontal axis, pass by the edge of a
semi-infinite wedge. Since the problem becomes more complicated, we cannot now a priori the closest distance to
the edge as in Eq. (9). However, we introduce the length scale 𝑙, which is a measure of the proximity of the vortex to
the edge at the first time instants (Fig. 6). Equation (8) will be used as in subsection III.A to obtain the kinematics of

Fig. 6 Motion of a vortex close to the edge by taking into account convection effects. The red-dashed line
corresponds to the vortex trajectory and 𝒍 is a measure of its initial distance from the edge. The black solid lines
correspond to the stream-function obtained by the potential flow around a wedge, in absence of vortices and
convection effects, as shown in sub-section III.A.

the point vortex. The convection of the vortex core is taken into account by adding the free stream complex velocity
potential to the induced velocity potential by the image vortex.

𝐹 (𝑧0) =
𝑖Γ

2𝜋
𝑙𝑛 (𝜁 (𝑧) − 𝜁∗ (𝑧0)) +𝑈𝑧0𝑒

−𝑖𝜂 . (18)

This results in a flow model with two velocity scales: one that corresponds to the free stream flow 𝑈 and one that can be
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considered as a turbulent fluctuation, such that 𝑣 ∼ Γ/𝑙. By performing the same calculations as in subsection III.A we
obtain: (

cos 𝜃0 −𝑟0 sin 𝜃0

sin 𝜃0 𝑟0 cos 𝜃0

)
𝑑

𝑑𝜏

(
𝑟0

𝜃0

)
=

©«
Γ (𝛾−1)
4𝜋𝛾𝑟0

sin 𝜃0 + Γ
4𝜋𝛾𝑟0

sin
(
𝜃0

𝛾−1
𝛾

)
cos(𝜃0/𝛾) +𝑈 cos 𝜂

−Γ (𝛾−1)
4𝜋𝛾𝑟0

cos 𝜃0 − Γ
4𝜋𝛾𝑟0

cos
(
𝜃0

𝛾−1
𝛾

)
cos(𝜃0/𝛾) +𝑈 sin 𝜂

ª®®¬ . (19)

The system of Equation (19) is solved with the method of determinants and the trajectory of the vortex is described by
the following coupled system of differential equations.

¤𝑟0 = − Γ

4𝜋𝛾𝑟0
tan (𝜃0/𝛾) +𝑈 cos (𝜃0 − 𝜂) ,

¤𝜃0 = − Γ

4𝜋𝑟2
0
− 𝑈

𝑟0
sin (𝜃0 − 𝜂) ,

(20)

where ( ¤𝑓 ) denotes the first time derivative of the function 𝑓 . The system of Eqs. (20) cannot be solved analytically,
however it is possible to gain some insight on the basic parameters of the problem. By introducing the non-dimensional
quantities 𝑟0 = 𝑟0/𝑙, ¤̄𝑟0 = ¤𝑟0/𝑈 and ¤̄𝜃0 = ¤𝜃0𝑙/𝑈, we obtain,

¤̄𝑟0 = − Λ

𝛾𝑟0
tan (𝜃0/𝛾) + cos (𝜃0 − 𝜂) ,

¤̄𝜃0 = − Λ

𝑟02 − sin (𝜃0 − 𝜂)
𝑟0

,

(21)

where Λ is a non-dimensional parameter, which will be called the wedge-deflection effect.

Λ ≡ Γ/(4𝜋𝑈𝑙) = 𝑣/(4𝜋𝑈) (22)

In regions with strong circulation or very close to the edge, the velocity field induced by the vortex is dominant and
corresponds to large values of Λ. On the contrary, away from the edge or in regions where the vorticity is weak,
convection effects are stronger, thus Λ decreases. For instance, at the extreme case when Λ >> 1 (strong circulation
and/or close to the edge and/or very low speed flow) Eq. (21) results asymptotically in the equations of motion obtained
in the previous subsection. In the other extreme case when Λ << 1 (weak circulation and/or far from the edge and/or
higher Mach number flow), it yields the equations of motion of a vortex convected by the mean flow. A similar analysis
restricted to the case of the half plane was presented by Hardin (1980) in an attempt to model the noise generated by
vortices formed at the side edges of flaps [18]. In Hardin’s work it is assumed that the vortex is either carried by the
potential flow or deflected by the influence of the edge. The former would yield a silent vortex since its path would
match with the streamlines of the potential flow around the wedge (as given by Eq. (6)). However, in the present study
we are interested in the convection of the vortex by the free stream velocity.

The system of Eqs (20) is solved numerically by implementing a Runge-Kutta scheme of 4𝑡ℎ order. Figure 7 shows
a comparison of the far field pressure pulse generated by vortices with different wedge effect strengths. It is observed
that for large values of Λ the phenomenon evolves very fast and reduces to the problem presented in sub-section III.A.
Furthermore, as the wedge-deflection effect decreases, the negative peak of the far-field pressure pulse tends to vanish.
This can be explained by the fact that the basic mechanism of sound generation is the crossing of the vortex path with the
hypothetical streamlines around the wedge. When convection effects are absent the vortex path is symmetric around the
edge and it becomes parallel to the streamlines of the hypothetical potential flow at 𝜃0 = 0. Then it passes on the lower
side of the wedge, where 𝜃0 < 0. However, when convection effects become important enough, the vortex trajectory
changes in a way that it does not become parallel to the hypothetical streamlines and therefore, there is no change of
sign. The obtained results can be further investigated by rewriting the far-field pressure signature in the following form.

𝑝 (𝑟, 𝜃, 𝜏) = −𝜌0 sin
(
𝜃

𝛾

)
𝑟

1
𝛾

Γ𝑈

𝑙 (1−1/𝛾) 𝑓 (Λ, 𝛾, 𝑟0, 𝜃0) , (23)
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Fig. 7 Influence of parameter 𝚲 on vortex trajectories (right) and far field pressure signature (left). Different
vortex paths are shown on the left and the corresponding pressure signatures on the right. The results are shown
for 𝒍 = 0.01𝒎, 𝑼 = 30𝒎/𝒔, 𝛀 = 5𝒐 and an observer in the far field 𝒓 = 20𝒍.

where 𝑓 (Λ, 𝛾, 𝑟0, 𝜃0) corresponds to a function that depends on the trajectory of the vortex around the wedge,

𝑓 (Λ, 𝛾, 𝑟0, 𝜃0) = 𝑟
1
𝛾

0


Λ

𝑟2
0

sin (𝜃0/𝛾)
(

1 − 𝛾

𝛾

)
−

cos
(
𝜂 − 𝜃0

𝛾−1
𝛾

)
𝑟0

 (24)

The influence of the main parameters of the problem is more clear in Eqs. (23), (24). The amplitude depends mainly on
the flow velocity, the circulation and the length scale that denotes the distance from the edge as is indicated by the factor

Γ𝑈

𝑙 (1−1/𝛾) . Further conclusions can be drawn by examining Eq. (24). The function 𝑓 can be decomposed into two terms,
one that corresponds to the influence of the vortex close to the edge and a convection term. We therefore have,

𝑓 = 𝑓1 (Λ, 𝑟0, 𝜃0, 𝛾) + 𝑓2 (𝜂, 𝑟0, 𝜃0, 𝛾) .

When 𝑟0 is small, the sound pressure field is mainly influenced by 𝑓1 (Λ, 𝑟0, 𝜃0, 𝛾). On the contrary as the vortex is

convected away from the edge, 𝑓1 decreases as 𝑟
1
𝛾
−2

0 and convection effects take over (𝑟
1
𝛾
−1

0 ).

C. Application to airfoil noise
We apply the results obtained by the previous analysis to model the far field pressure pulses obtained by turbulent

fluctuations impinging on an airfoil with a chord 𝛼. The chord is considered to be large enough so that the airfoil edges
can be considered separately (𝑘𝛼 >> 1). The turbulent fluctuations are approximated by point vortices which lie very
close to the edges of the airfoil. Hence, the proposed model will be valid when the wavelength (𝜆) satisfies,

𝑙 << 𝜆 << 𝛼.

Figure 8 depicts the simplified configuration. For purposes of illustration the edges of the airfoil will be approximated

Ω��
Ω��

Λ��

Λ��

Fig. 8 Simplified configuration for airfoil noise description. The geometry of the airfoil edges is approximated
by the wedge angles 𝛀𝑳𝑬 for the leading edge and 𝛀𝑻𝑬 for the trailing edge.

by wedges of different angles. The leading edge is thicker and thus will be modelled with Ω𝐿𝐸 = 20◦ and the trailing
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edge Ω𝑇𝐸 = 5◦. Furthermore, we assume a mean free-stream flow of 𝑈 = 30m/s, while at the trailing edge it is assumed
that the wake velocity is equal to 𝑈𝑇𝐸 = 0.7𝑈, which is a typical wake velocity used in the literature [19], [20]. The
initial conditions for the vortex that impinges on the leading edge are

𝑟0 = 3𝑙, 𝜃0 = 0.01 (𝛾𝐿𝐸𝜋) ,

while for the trailing edge
𝑟0 = 𝑙, 𝜃0 = −𝛾𝑇𝐸𝜋

2.1
.

The results are shown in Figure 9. It can be seen that the pressure pulse originating from the leading edge is weaker than

-2 0 2 4
-2

0

2

-2 0 2 4
-2

0

2

Fig. 9 Leading and trailing edge simulation. The left column in the first row corresponds to a vortex interacting
with a leading edge of an airfoil and the arrow shows the direction of the flow. The right column shows the
trajectory of a vortex shed at the trailing edge. The plot on the second row depicts the far field pressure pulse
obtained by the turbulent fluctuations close to the leading and trailing edge. Results are shown for a mean flow
velocity 𝑼𝑳𝑬 = 30𝒎/𝒔, 𝑼𝑻𝑬 = 0.7𝑼, 𝒍 = 0.01𝒎 and an observer in the far-field (𝒓, 𝜽) = (20𝒍, 𝝅/2).

the one coming from the trailing edge. This result was expected since sharper edges scatter the sound more efficiently.
The other important parameter is the strength of the vortex at the airfoil edges. Moreover, the pressure signature of the
trailing edge reaches the observer in the far field after 𝜏𝑐ℎ𝑜𝑟𝑑 = 𝛼/𝑈, which corresponds to the a time delay due to the
distance between the leading and trailing edge.

IV. Vortices with finite radius
In the present section, we replace the point vortex with a region of Gaussian vorticity distribution, that is convected

with velocity 𝑈, passing by the edge of an abritrary semi-infinite rigid wedge. In order to simulate such a flow structure,
the Burgers vortex will be used [21]. The velocity and vorticity field are given by the following equations

𝜔𝑧 =
Γ

2𝜋𝑅2 𝑒
− 𝑠2

2𝑅2 ,

𝑣 𝜃 =
Γ

2𝜋𝑠

(
1 − 𝑒

− 𝑠2
2𝑅2

)
,

(25)

where 𝑠 is a measure of distance from the center of the vortex and 𝑅 the vortex radius which is used to account for more
realistic problems. Since the Burgers vortex is a solution of the flow field that does not take into account the presence of
any boundaries, the behavior of the vortex close to the wedge is modeled as follows. It is assumed that the center of the
turbulent region translates as a point vortex at velocity ®𝑣𝑐 and, at any instant, an induced velocity field ®𝑣 𝜃 (Eq. (25)) is
added. Therefore, the source term of Howe’s acoustic analogy can be split into two terms

®𝜔𝑧 × ®𝑣𝑐 + ®𝜔𝑧 × ®𝑣 𝜃 .
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The first term corresponds to a source of sound caused by the displacement of the vortex, while the second one describes
an additional source due to the distribution of vorticity in a finite region. A sketch of the problem is depicted in Fig. 10.
The equivalent circulation of the center is obtained by

Γ𝑐 =

∫ 𝑅2

𝑅1

∫ 2𝜋

0
𝜔𝑧𝑟𝑑𝑟𝑑𝜃,

Γ𝑐 =

∫ 𝑅2

𝑅1

Γ

2𝜋𝑅2 𝑒
− 𝑠2

2𝑅2 𝑠𝑑𝑠𝑑𝜃,

Γ𝑐 = Γ

(
1 − 1

√
𝑒

)
≈ 0.39Γ.

(26)

The motion of the center-point-vortex is described by Equations (20) of Section III. The variables describing the

�

�
�� �

Ω

Fig. 10 Region with vorticity distribution close to a wedge. The vector ®𝒚𝒄 is the position vector of the center of
the vortex, that changes over time, ®𝒚0 an arbitrary position inside the vortex and ®𝒚 = ®𝒚0 − ®𝒚𝒄 .

center-point-vortex are denoted with the subscript ( 𝑐 ), i.e. Γ𝑐, 𝑣𝑟𝑐 , 𝑣 𝜃𝑐 and the position will be given in polar coordinates
at each time instant (𝑟𝑐 (𝜏) , 𝜃𝑐 (𝜏)). The closest distance between the vortex center and the edge is denoted as 𝑙𝑐 = 𝑅 + 𝑙
where 𝑙 denotes the closest distance from the finite vortex to the edge. Equation (1) can be expressed as

𝑝 (𝑟, 𝜃, 𝑡) = 𝜌0
Γ

2𝛾𝜋2𝑅2
sin (𝜃/𝛾)

𝑟
𝛾−1
𝛾

∫ ∞

0

∫ 𝛾𝜋

2

− 𝛾𝜋

2

𝑒
−𝑠2
2𝑅2 𝑟

1/𝛾
0

(
−𝑣𝑟𝑐 cos (𝜃0/𝛾) +

(
𝑣 𝜃𝑐 + 𝑣 𝜃

)
sin (𝜃0/𝛾)

)
𝑑𝜃0𝑑𝑟0, (27)

where 𝑠 = | ®𝑦 | = | ®𝑦0 − ®𝑦𝑐 (𝜏) |. It is noted from Eq.(25), ®𝜔𝑧 vanishes when the radius of the vortical region tends to zero,
that is

lim
𝑅→0

Γ𝑒
− 𝑠2

2𝑅2

2𝜋𝑅2 = 0.

Changing to polar coordinates gives,

®𝑦0 = 𝑟0 (cos 𝜃0, sin 𝜃0) ,

®𝑦𝑐 = 𝑟𝑐 (cos 𝜃𝑐, sin 𝜃𝑐) ,

𝑠2 = 𝑟2
0 + 𝑟2

𝑐 − 2𝑟0𝑟𝑐 cos (𝜃0 − 𝜃𝑐) .

(28)

Furthermore, we use the identity

−𝑣𝑟𝑐 cos (𝜃0/𝛾) + 𝑣 𝜃𝑐 sin (𝜃0/𝛾) =
√︃
𝑣2
𝜃𝑐

+ 𝑣2
𝑟𝑐 sin

(
𝜃0
𝛾

− tan−1
(
𝑣𝑟𝑐

𝑣 𝜃𝑐

))
Substitution into Eq. (27) leads to

𝑝 (𝑟, 𝜃, 𝑡) = 𝜌0
Γ

2𝛾𝜋2𝑅2
sin (𝜃/𝛾)

𝑟
𝛾−1
𝛾

(𝐼1 + 𝐼2)
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where 𝐼1, 𝐼2 are given by

𝐼1 =

√︃
𝑣2
𝜃𝑐

+ 𝑣2
𝑟𝑐

∫ ∞

0

∫ 𝛾𝜋

2

− 𝛾𝜋

2

𝑟
1/𝛾
0 𝑒

−
𝑟2
0 +𝑟2

𝑐−2𝑟0𝑟𝑐 cos(𝜃0−𝜃𝑐 )
2𝑅2 sin

(
𝜃0
𝛾

− tan−1
(
𝑣𝑟𝑐

𝑣 𝜃𝑐

))
𝑑𝜃0𝑑𝑟0 (29)

𝐼2 =

∫ ∞

0

∫ 𝛾𝜋

2

− 𝛾𝜋

2

Γ𝑟
1/𝛾
0 sin (𝜃0/𝛾)

2𝜋
√︃
𝑟2

0 + 𝑟2
𝑐 − 2𝑟0𝑟𝑐 cos (𝜃0 − 𝜃𝑐)

(
𝑒
−

𝑟2
0 +𝑟2

𝑐−2𝑟0𝑟𝑐 cos(𝜃0−𝜃𝑐 )
2𝑅2 − 𝑒

−
𝑟2
0 +𝑟2

𝑐−2𝑟0𝑟𝑐 cos(𝜃0−𝜃𝑐 )
𝑅2

)
𝑑𝜃0𝑑𝑟0 (30)

The integrals of Eqs. (29),(30) are non-dimensionalised in the same way as presented in Section III.B Equations
(29), (30) become

𝐼1 = 𝑈𝑙
𝛾+1
𝛾 𝑒

− 𝑙2
𝑅2

√︃
𝑟2
𝑐
¤̄𝜃2
𝑐 + ¤̄𝑟2

𝑐

∫ ∞

0

∫ 𝛾𝜋

2

− 𝛾𝜋

2

𝑟
1/𝛾
0 𝑒−

𝑟2
0 +𝑟2

𝑐

2 𝑒𝑟0𝑟𝑐 cos(𝜃0−𝜃𝑐 ) sin

(
𝜃0
𝛾

− tan−1

(
¤̄𝑟𝑐

𝑟𝑐 ¤̄𝜃𝑐

))
𝑑𝜃0𝑑𝑟0 (31)

𝐼2 = Γ𝑙
1
𝛾 𝑒

− 𝑙2
𝑅2

∫ ∞

0

∫ 𝛾𝜋

2

− 𝛾𝜋

2

𝑟
1/𝛾
0 sin (𝜃0/𝛾)

(
𝑒−

𝑟2
0 +𝑟2

𝑐−2𝑟0𝑟𝑐 cos(𝜃0−𝜃𝑐 )
2 − 𝑒−𝑟

2
0 −𝑟

2
𝑐+2𝑟0𝑟𝑐 cos(𝜃0−𝜃𝑐 )

)
2𝜋

√︃
𝑟2

0 + 𝑟2
𝑐 − 2𝑟0𝑟𝑐 cos (𝜃0 − 𝜃𝑐)

𝑑𝜃0𝑑𝑟0 (32)

As a result, the far field pressure pulse depends o the main parameters of the problem as follows

𝑝 ∼
(
Γ𝑈𝑙𝐼1 (Λ) + Γ2𝐼2

) 𝑙
1
𝛾 𝑒

− 𝑙2
𝑅2

𝑅2 . (33)

The influence of the vorticity region 𝑅 becomes clearer if we write

𝑅 = 𝑙𝛽

where 𝛽 is the magnitude by which 𝑅 is bigger or smaller than 𝑙. Eq. (33) then becomes,

𝑝 ∼
(
Γ𝑈𝑙𝐼1 (Λ) + Γ2𝐼2

) 𝑙

(
1
𝛾
−2

)
𝑒
− 1

𝛽2

𝛽2 , (34)

The effect of the vortex radius becomes more apparent by the results shown in Figure 11. The far field pressure pulse
induced by a vortex motion close to a half-plane is plotted for different vortex radii and compared against the results
obtained by modelling the same problem with a point vortex. For vortices concentrated in a region 𝑅 < 𝑙 or 𝑅 > 𝑙 the
far-field pressure pulse tends to be weaker. However, for 𝑅 = 𝑙 the far field pressure signature takes its maximum value.
It can be observed that by keeping the distance between the vortex and the edge constant, the distance between the edge
and the vortex center grows for higher radii. As a result, larger vortices yield a weaker and smoother acoustic pressure
signature in comparison to the point vortex.
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Fig. 11 Far field pressure pulse for vortices with different diameters for a wedge angle of 𝛀 = 10𝒐 , 𝑼 = 40𝒎/𝒔,
𝚪 = 2𝑼𝒍, 𝒍 = 0.01 and the observer lies in the far field at 𝒓 = 20𝒍. The right plot shows the trajectory of the center
of the finite vorticity regions, for different values of the radius 𝑹.

V. Conclusions
We studied the aerodynamic sound induced by turbulent fluctuations, modelled as point vortices, interacting with a

rigid semi-infinite wedge. The present work extends the simplified model for sound generation by a point vortex close to
a semi-infinite, rigid half-plane, which was first presented by Crighton (1972) [10] and then treated by Howe, details
shown in [7], [12],[13]. A closed form analytical expression for the far-field acoustic pulse has been obtained, when a
point vortex is deflected by an edge with arbitrary angle 2Ω. Further analysis of the model resulted in scaling laws,
that illustrate the dependence of the acoustic pressure on the distance between the edge and the vortex. A comparison
was done with the theoretical and experimental work of Kambe et al. [14]. Furthermore, convection effects due to the
free-stream flow have been taken into account, and it was shown that there exists a non-dimensional parameter, called
the wedge-deflection effect, which drives the kinematics of the vortex close to the edge of the semi-infinite rigid wedge.
Further analysis has shown:

• the larger the wedge angle the weaker the far field pressure pulse
• Increase of the wedge angle leads to shorter radiation times
• Convection effects influence strongly the far-field pressure signature (Fig. 7)
• While the vortex lies close to the edge, sound is mainly produced due to the deflection of the vortex path by the

edge, while for vortices further away from the edge, convection effects take over and weaker acoustic pressure
pulse is obtained.

The presented work has been compared with similar studies in the literature and the following conclusions can be drawn:
i) the description of the kinematics of the vortex close to the wedge combines the assumptions used by Howe (2002)
(self induction of the vortex by its image point at the edge) and by Kambe et al. (1985) (pure convection of the vortex
with the mean flow), ii) the current model can be used to describe general edge noise problems, such as leading/trailing
edge noise, or the noise generated by vortices at the side edges of the flaps [18], [22]. Furthermore, an application to
airfoil noise was shown, where the airfoil edges where modelled by semi-infinite wedges. Finally, the point vortex was
replaced by a vorticity region with Gaussian distribution of vorticity around its center. A vortex radius was used to
account for more realistic problems and it was shown that larger regions of vorticity distribution tend to smooth and
weaken the far field pressure pulse.
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A. Vortex around a semi-infinite wedge (convection effects neglected)
In this appendix the derivation of the vortex path and the far field pressure signature of Eqs.(9), (10) is presented.

The velocity, obtained by the complex velocity potential is written as

𝑑𝑧0
𝑑𝜏

= −𝑖 Γ𝜁
′′ (𝑧0)

4𝜋𝜁 ′ (𝑧0)
+ 𝑑

𝑑𝑧0

[
𝑖Γ

2𝜋
𝑙𝑛

(
𝜁 (𝑧) − ¯𝜁 (𝑧0)

) ]
(A.1)

Substituting
𝜁 (𝑧0) = 𝑖𝑧

1/𝛾
0 = 𝑖𝑟

1/𝛾
0 𝑒𝑖 𝜃0/𝛾

it yields:

𝑑

𝑑𝜏
{𝑟0 cos 𝜃0 − 𝑖𝑟0 sin 𝜃0} =

Γ

4𝜋𝛾𝑟0

(𝛾 − 1) sin 𝜃 +
sin

(
𝜃0

𝛾−1
𝛾

)
cos

(
𝜃0
𝛾

) 
+ 𝑖Γ

4𝜋𝛾𝑟0

(𝛾 − 1) cos 𝜃 +
cos

(
𝜃0

𝛾−1
𝛾

)
cos

(
𝜃0
𝛾

) 
(A.2)

By taking the derivative in time and separating the real and imaginary parts of the complex number, the following
system of Equations is obtained:(

cos 𝜃0 −𝑟0 sin 𝜃0

sin 𝜃0 𝑟0 cos 𝜃0

)
𝑑

𝑑𝜏

(
𝑟0

𝜃0

)
=

©«
Γ (𝛾−1)
4𝜋𝛾𝑟0

sin 𝜃0 + Γ
4𝜋𝛾𝑟0

sin
(
𝜃0

𝛾−1
𝛾

)
cos(𝜃0/𝛾)

−Γ (𝛾−1)
4𝜋𝛾𝑟0

cos 𝜃0 − Γ
4𝜋𝛾𝑟0

cos
(
𝜃0

𝛾−1
𝛾

)
cos(𝜃0/𝛾)

ª®®¬ (A.3)

The solution of Eq.(A.3) is obtained by the method of determinants and the following trigonometric relations are used

cos 𝑥 sin 𝑦 − sin 𝑥 cos 𝑦 = − sin (𝑥 − 𝑦)

cos 𝑥 cos 𝑦 + sin 𝑥 sin 𝑦 = − cos (𝑥 − 𝑦)
It follows

𝑑𝑟0
𝑑𝜏

= − Γ

4𝜋𝛾𝑟0
tan (𝜃/𝛾) (A.4)

𝑑𝜃0
𝑑𝜏

= − Γ

4𝜋𝑟2
0

(A.5)

From (A.5),(A.4) it follows

𝑟0
𝑑𝜃0
𝑑𝑟0

= 𝛾 cot
(
𝜃0
𝛾

)
(A.6)

which leads to ∫
𝛾−1 tan (𝜃0/𝛾) 𝑑𝜃0 =

∫
𝑟−1

0 𝑑𝑟0 ⇒ 𝑟0 = 𝑙 sec (𝜃0/𝛾) (A.7)

Then, substituting Eq. (A.7) into (A.5) and following Howe’s notation it yields

𝑟0 (𝜏) = 𝑙

√︃
1 + (2𝜏/𝛾)2

𝜃0 (𝜏) = 𝛾 tan−1 (−2𝜏/𝛾) ,

(A.8)

where 𝜏 = (𝜏Γ) /
(
8𝜋𝑙2

)
. Furthermore by combining Eqs. (A.8) and Eq.(7) and using the identities

cos
[
tan−1 𝑥

]
=

(
𝑥2 + 1

)−1/2

sin
[
tan−1 (−𝑥)

]
= − 𝑥

√
𝑥2 + 1

we result in Eq. (10).
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