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Acoustics of turbulent eddies impinging on a semi-infinite rigid
wedge

Marios I. Spiropoulos∗, Florent Margnat †, Vincent Valeau ‡, and Peter Jordan §

Institut PPRIME UPR 3346, CNRS - Université de Poitiers - ISAE ENSMA, Poitiers 86022, France

In the present work the far field sound generated by the interaction of isotropic, homogeneous
turbulence with a semi-infinite rigid wedge is studied using the theory of vortex sound. The
scattering properties of the wedge are modelled with the asymptotic Green’s function for the
diffraction around a semi-infinite rigid wedge, under the assumption that the source distance
from the wedge is acoustically compact. The source term is modelled as a homogeneous, isotropic
turbulent quantity and results are shown for different wedge angles and turbulent length scales.
Larger eddies dominate the far field sound radiation in the low frequency regime, while smaller
ones contribute for higher frequencies and larger wedge angles. The results show that the larger
the wedge angle the less noise is generated. A scaling law is obtained that is in agreement with
other studies in literature.

I. Introduction
Airfoil noise has been extensively studied numerically, experimentally and theoretical models based on acoustic

analogies have been established [1], [2], [3]. The acoustic analogy was introduced by Lighthill (1952), who showed
that the sound induced by a turbulent flow is equivalent to a distribution of quadrupole sources [4]. Assuming that the
rigid body is acoustically compact, Curle (1955) showed that the aerodynamic fluctuations on a semi-infinite object
correspond to a distribution of dipoles which are the dominant sound sources in the absence of moving surfaces and
change of mass flow rate [5]. These dipole sources have an acoustic intensity that scales with the sixth power of the fluid
velocity (𝑈6). Ffowcs Williams and Hall (1970) used Lighthill’s acoustic analogy and the half-plane Green’s function to
argue that turbulent quadrupole sources very close to a semi-infinite half plane with a sharp edge result in an acoustic
intensity that scales to the fifth power of the turbulent velocity [6]. Crighton and Leppington (1971) illustrated that the
far field acoustic intensity of a turbulent flow interacting with the edge of a semi-infinite wedge scales with a law that
depends on the wedge angle, when the sound wavelength is much larger than the principle dimension of the obstacle [7].
Other researchers used a different approach by relating the hydrodynamic pressure spectrum on the airfoil to the acoustic
power spectral density [8]. Amiet [9], [10] based on Curle’s analogy, derived an analytical model for estimation of
the far-field generated noise when a turbulent gust interacts with the trailing edge of an airfoil. Amiet’s model was
later extended to lower frequencies and non-uniform flows [11], [12], [13]. Trafny et al [14] proposed a semi-analytical
model for the prediction of airfoil noise, using Lighthill’s acoustic analogy and an approximate Green function for half
planes, proposed by Howe (2001) [15].

The theory of vortex sound, introduced by Howe (1975) [16], can be considered a special case of Lighthill’s analogy
for low Mach number flows [17]. Howe derived a general solution for the aerodynamic sound generated by the flow
around a rigid semi-infinite plane using the theory of vortex sound [18] in an attempt to unify different trailing-edge
noise theories.

Most of the analytical airfoil-noise models in literature replace the leading and trailing edges with semi-infinite half
planes. The shape of the airfoil is supposed to influence only the flow around it, or it is taken into consideration by
introducing correcting factors as shown by Gershfeld (2004) [19]. In practice, the bluntness of the leading edge and the
sharpness of the trailing edge impose different flow and scattering conditions. In the present work, the aerodynamic
noise generated by turbulent, low-Mach-number flows at the airfoil edges is examined. The scattering properties of the
airfoil edges are approximated by semi-infinite acoustically rigid wedges with half angle Ω. The distance of the source
term to the edges is assumed to be acoustically compact 𝑘0𝑟0 << 1 and the turbulence homogeneous and isotropic. The
derivation of this simple model is based on the reasoning of Amiet’s work [9] in the sense that the source is modelled
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as a statistical quantity. In Section II the mathematical problem is formulated based on the works of Amiet [9] and
Howe [20]. Furthermore, the source term of Howe’s theory of vortex sound is analysed and written as a function of the
turbulent kinetic energy spectrum (Section III). In Section IV the turbulence close to the wedge is assumed to consist of
one region with small turbulent eddies very close to the edge (inner region) and an outer region with larger turbulent
structures that are convected downstream. For purposes of illustration, the von Karman turbulent spectrum is used and
the two different turbulent length scales of the inner and outer region are compared in Section V. Finally, an analytical
expression for the far-field power spectral density is obtained and the results are discussed.

II. Problem formulation
Let a body immersed in a turbulent flow convected with a velocity U across the 𝑦1-axis as shown in Figure

1. The coordinate system of the source and the observer are given by the position vectors in cartesian coordinates
®𝑦 = (𝑦1, 𝑦2, 𝑦3), ®𝑥 = (𝑥1, 𝑥2, 𝑥3) respectively. For future reference, the polar coordinates will be denoted as (𝑟0, 𝜃0) for
the source and (𝑟, 𝜃) for the observer. In applications of low-Mach-number flows (𝑀 < 0.3) [21], the theory of vortex
sound can be used in the following form [22]

𝑝 (®𝑥, 𝑡) = −𝜌
∫
𝑡

∫
𝑉

𝑠𝑚
𝜕𝐺

𝑦𝑚
(®𝑥; ®𝑦, 𝑡 − 𝜏) 𝑑𝑦1𝑑𝑦2𝑑𝑦3𝑑𝑡 (1)

where 𝑝 (®𝑥, 𝑡) the acoustic pressure measured by an observer in the far-field, 𝑠𝑚 = ( ®𝜔 × ®𝑣)𝑚 the source, expressed as the
cross product of the vorticity with the velocity field and 𝜏 the propagation time of the acoustic waves. The tailored
Green’s function (𝐺) describes the scattering of the source by the surface of the obstacle immersed in the flow. A
summation over m=1,2,3 is implied. The source term can be written in frequency space by assuming that

�

�2

�3

�

�

Fig. 1 Turbulent flow impinging on a rigid body. Vectors ®𝒚, ®𝒙 correspond to the coordinates of the source and
the far-field observer. The turbulent eddies are convected with velocity 𝑼 across the 𝒚1-axis.

𝑠𝑚 (®𝑦, 𝑡) = 𝑆𝑚 (®𝑦, 𝜔) 𝑒−𝑖𝜔 (𝑡−𝜏 ) .

It yields:

𝑃 (®𝑥, 𝜔) = −𝜌
∫
𝑉

𝑆𝑚 (®𝑦, 𝜔) 𝜕𝐺

𝜕𝑦𝑚
(®𝑥; ®𝑦, 𝜔) 𝑑𝑦1𝑑𝑦2𝑑𝑦3 (2)
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In order to facilitate the analysis the inverse wave-number transform is applied and the source is represented as:

𝑆𝑚 (®𝑦, 𝜔) =
∞∬

−∞

ˆ̂
𝑆𝑚 (𝑘1, 𝑘2) 𝑒𝑖 (𝑘1𝑦1+𝑘2𝑦2 )𝑑𝑘1𝑑𝑘2, (3)

where ˆ̂
𝑆𝑚 is the source as a function of the wave-numbers 𝑘1, 𝑘2. Furthermore, we assume that the turbulent fluctuations

are convected by a velocity 𝑈. Hence we may write:

ˆ̂
𝑆𝑚 (𝜔, 𝑘1, 𝑘2, 𝑦3) = 𝑆𝑚 (𝜔, 𝑘2, 𝑦3) 𝛿 (𝑘1 − 𝜔/𝑈)

where 𝛿 is the Dirac 𝛿−function. Equation (2) becomes:

𝑃 (®𝑥, 𝜔) = −𝜌
∞∫

−∞

𝑑𝑘2

∞∭
−∞

𝑆𝑚 (𝜔/𝑈, 𝑘2, 𝑦3)
𝜕𝐺

𝜕𝑦𝑚
(®𝑥; ®𝑦, 𝜔) 𝑒𝑖( 𝜔

𝑈
𝑦1+𝑘2𝑦2)𝑑𝑦1𝑑𝑦2𝑑𝑦3 (4)

It is convenient to model the source term as statistical quantity since it consists of the turbulent velocity and vorticity
fluctuations. To calculate the far field acoustic power spectral density the correlation of two points in the turbulent flow
(𝑦1, 𝑦2, 𝑦3),

(
𝑦′1, 𝑦

′
2, 𝑦3

)
needs to be computed. Following the same steps as in [9]:

⟨𝑃𝑃′∗⟩ (®𝑥, 𝜔) = −𝜌2
∞∫

−∞

𝑑𝑦3

∞∬
−∞

〈
𝑆𝑚 (𝜔/𝑈, 𝑘2, 𝑦3) 𝑆′𝑚

(
𝜔/𝑈, 𝑘 ′2, 𝑦3

)〉
𝑒𝑖𝑘2 (𝑦2−𝑦′2)𝑑𝑘2𝑑𝑘

′
2×

×
∞⨌

−∞

𝜕𝐺

𝜕𝑦𝑚

𝜕𝐺∗

𝜕𝑦′𝑚
𝑒𝑖

𝜔
𝑈 (𝑦1−𝑦′1)𝑑𝑦1𝑑𝑦2𝑑𝑦

′
1𝑑𝑦

′
2,

(5)

where the asterisk (∗) denotes the complex conjugate. Due to the statistical orthogonality of the wave-vectors [9], it
yields 〈

𝑆𝑚 (𝜔/𝑈, 𝑘2, 𝑦3) 𝑆′𝑚
(
𝜔/𝑈, 𝑘 ′2, 𝑦3

)〉
= 𝜙𝑚

𝑖 𝑗 (𝜔/𝑈, 𝑘2, 𝑦3) 𝛿
(
𝑘2 − 𝑘 ′2

)
(6)

where 𝜙𝑚
𝑖 𝑗
(𝜔/𝑈, 𝑘2, 𝑦3) the power spectrum of the source. Supposing that the source is a statistically stationary quantity

in space, we calculate the auto-correlation length scale

𝑙𝑦3 (𝜔) = 2

∫ 𝐿/2
0 𝜙𝑚

𝑖 𝑗
(𝜔/𝑈, 𝑘2, 𝑦3) 𝑑𝑦3

𝜙𝑚
𝑖 𝑗
(𝜔/𝑈, 𝑘2, 0)

(7)

where 𝜙𝑚
𝑖 𝑗
(𝜔/𝑈, 𝑘2, 0) denotes the source power spectrum at the mid-span and L the span.

From Eqs. (5), (6), (7) the far field acoustic power spectral density is written as follows:

⟨𝑃𝑃′∗⟩ (®𝑥, 𝜔) = −𝑙𝑦3 (𝜔) 𝜌2
∞⨌

−∞

(∫ ∞

0
𝜙𝑚
𝑖 𝑗 (𝜔/𝑈, 𝑘2, 0) 𝑒𝑖𝑘2 (𝑦2−𝑦′2)𝑑𝑘2

)
𝜕𝐺

𝜕𝑦𝑚

𝜕𝐺∗

𝜕𝑦′𝑚
𝑒𝑖

𝜔
𝑈 (𝑦1−𝑦′1)𝑑𝑦1𝑑𝑦2𝑑𝑦

′
1𝑑𝑦

′
2 (8)

At this step we assumed that the Green function has no dependence on the span-wise coordinate 𝐺 = 𝐺 (𝑦1, 𝑦2). This
hypothesis is based on the fact that we are studying the problem as two-dimensional and will be justified later in
sub-section IV.C.

III. Source modelling
As shown in Equation (8), the phenomenon is described by a statistical term (source’s turbulent spectrum) and a

deterministic one that depends on the scattering properties of the object immersed in the flow (Green’s function).The
problem will be treated as two dimensional, therefore the source will be modelled at the midspan. Any variation in the
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span-wise direction is contained in the span-wise correlation length 𝑙𝑦3 (𝜔). As a result, the velocity and vorticity fields
are given as follows

®𝑣 = (𝑈 + 𝑢1, 𝑢2, 0)
®𝜔 = (0, 0,Ω3) .

It is noted that in the present section, all quantities are written in the wave-number space, unless stated otherwise. The
wavenumber vector is the same as the one introduced in Section II. Expanding the cross product it yields:

®̂
𝑆

(
®𝑘
)
= ®𝜔

(
®𝑘
)
× ®𝑣

(
®𝑘
)
= −𝑢2

(
®𝑘
)
Ω3

(
®𝑘
)
𝑒1 +

(
𝑈Ω3

(
®𝑘
)
+ 𝑢1

(
®𝑘
)
Ω3

(
®𝑘
))

𝑒2 (9)

The convection velocity is assumed greater than the fluctuations of the velocity field in the stream-wise direction
𝑈 >> 𝑢1 and therefore:

𝑆

(
®𝑘
)
= −𝑢2

(
®𝑘
)
Ω3

(
®𝑘
)
𝑒1 +𝑈Ω3

(
®𝑘
)
𝑒2 (10)

The solenoidal component of the velocity field is the one that contributes mostly to the acoustic radiation as shown by
Goldstein’s rapid distortion theory [23]. Howe (1998) calculates the latter as [20] :

®𝑢
(
®𝑘
)
= 𝑖®𝑘 × ®𝜔

(
®𝑘
)
/𝑘2 (11)

where 𝑘 =

√︃
(𝜔/𝑈)2 + 𝑘2

2, the hydrodynamic wavenumber. Combining Eqs (10), (11) we get

𝑆 =

[
Ω2

3 (𝜔/𝑈, 𝑘2) 𝜔𝑈

𝜔2+𝑈2𝑘2
2

𝑈Ω3 (𝜔/𝑈, 𝑘2)

]
(12)

and the source power spectrum of Equation (6) becomes:

𝜙𝑖 𝑗 (𝜔/𝑈, 𝑘2, 0) = 𝑈2

[〈
Ω2

3Ω
′
3

2〉𝜔2 (𝜔2 +𝑈2𝑘2
2
)−2〈

Ω3Ω
′
3
〉 ]

(13)

Then substituting Equation (13) into Equation (8), the latter takes the following form:

⟨𝑃𝑃′∗⟩ (®𝑥, 𝜔) = −𝜌2𝑙𝑦3 (𝜔)
∞⨌

−∞

[∫ ∞

0
𝜙𝑚
𝑖 𝑗 (𝜔/𝑈, 𝑘2, 0) 𝑒𝑖(𝑘2 (𝑦2−𝑦′2))𝑑𝑘2

]
𝜕𝐺

𝜕𝑦𝑚

𝜕𝐺∗

𝜕𝑦′𝑚
𝑒𝑖( 𝜔

𝑈 (𝑦1−𝑦′1))𝑑𝑦1𝑑𝑦2𝑑𝑦
′
1𝑑𝑦

′
2

(14)

IV. Turbulent regions close to the edge
Equation (14) describes the acoustic power spectral density generated by the interaction of a turbulent flow close

to an obstacle. It can be seen that there exist two sources in the flow that can be considered as two dipoles oriented
perpendicularly. The first one, in the transverse direction, depends on the turbulent vorticity spectrum, while the second
one depends on the square of the vorticity fluctuations and is oriented in the stream-wise direction. In the present work,
we assume that the non-linear source is much weaker and the main contribution to the sound radiation comes from
𝑈2 ⟨Ω3⟩. However, these quantities can be obtained by experimental data or numerical simulations, for different kinds
of flow conditions around edges i.e. boundary layers, wakes etc. In the present section, results will be shown for two
simplified cases: i) small eddies that lie very close to the edges of the airfoils with a turbulent length scale equal to
their distance from the edge and ii) larger turbulent eddies that are convected by the wake or boundary layer velocity 𝑈.
Figure 2 shows a sketch of these turbulent regions close to an edge. From now on we will call the red region of Fig. 2
inner region and the one with the larger (black) eddies outer region. The boundaries of the inner and outer regions are
defined as follows. For sources that exist in the inner region

𝑟0 ∈ [𝜖, 𝜉] ,

where 𝜖 is chosen to be very close to the edge, and 𝜉 a length scale that is used to define the boundaries of the inner
region. 𝑟0 =

√︃
𝑦2

1 + 𝑦2
2 corresponds to the radial source distance from the edge of the wedge. For sources in the outer

region it holds
𝑟0 ∈ [𝜉, 𝑋] ,
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𝜉 𝑋

Fig. 2 The wake is split into two regions. One of small size eddies located very close to the edge and an outer
region with larger convected eddies.

where 𝑋 the total extent of the wake. In the present analysis these length scales will be chosen arbitrarily for purposes of
illustration of the model, however their values could be inferred by detailed experiments or numerical simulations.

A. Inner region
Inside this region the distance between two correlated turbulent eddies can be considered comparable to the turbulent

length scale 𝑙𝑖𝑛 (𝑟0), which has a dependence on their distance from the edge of the wedge. Hence, we may write

𝜔

𝑈

(
𝑦1 − 𝑦′1

)
=
𝜔𝑙𝑖𝑛 (𝑟0)

𝑈
.

The boundary layer or the wake thickness is much smaller than its extent in the stream-wise dimension and therefore the
correlation distance in the stream-wise direction is more important than the one in the transverse direction, and we may
assume that

𝑘2
(
𝑦2 − 𝑦′2

)
<<

𝜔𝑙𝑖𝑛 (𝑟0)
𝑈

.

As a result the far field power spectral density is obtained by:

⟨𝑃𝑃′∗⟩𝑖𝑛 (®𝑥, 𝜔) = −𝜌2Φ𝑚
��𝑅𝑖𝑛𝑚

��2 𝑙𝑦3 (𝜔)

𝑅𝑖𝑛𝑚 =

∞∬
−∞

𝑒𝑖
𝜔
𝑈
𝑙𝑖𝑛 (𝑟0 ) 𝜕𝐺

𝜕𝑦𝑚
𝑑𝑦1𝑑𝑦2

Φ𝑚 =

∫ ∞

0
𝜙𝑚
𝑖 𝑗𝑑𝑘2

(15)

where the components of 𝜙𝑚
𝑖 𝑗

are given by Eq.(13). Detailed steps of the derivation are shown in Appendix A.

B. Outer region
The outer region is occupied by larger eddies, convected far from the edge. Therefore, we assume that the convection

effect alters the stream-wise position of the source (𝑦1). The thickness of the boundary layer (or the wake) (𝛿) is much
smaller than the extend of the boundary layer (or wake) in the stream-wise direction and we introduce a length scale that
describes the eddies of the outer region

𝑦2 − 𝑦′2 = Δ𝑦 ≈ 𝑙𝑜𝑢𝑡 (16)
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where 𝑙𝑜𝑢𝑡 < 𝛿. Then, Eq.(14) yields

⟨𝑃𝑃′∗⟩𝑜𝑢𝑡 (®𝑥, 𝜔) = −𝜌2Ξ𝑚
��𝑅𝑜𝑢𝑡𝑚

��2 𝑙𝑦3 (𝜔)

𝑅𝑜𝑢𝑡𝑚 =

∞∬
−∞

𝜕𝐺

𝜕𝑦𝑚
𝑒𝑖𝜔𝑦1/𝑈𝑑𝑦1𝑑𝑦2

Ξ𝑚 =

∫ ∞

0
𝑒𝑖𝑘2𝑙𝑜𝑢𝑡 𝜙𝑚

𝑖 𝑗𝑑𝑘2

(17)

The responses 𝑅𝑖𝑛, 𝑅𝑜𝑢𝑡 of Eqs. (15), (17) can be calculated analytically for simple shapes or numerically for more
complicated ones. Keeping only the linear component of the source term the far field power spectral density can be
given by the following expression:

⟨𝑃𝑃′∗⟩ (®𝑥, 𝜔) = −𝜌2

[
Ξ(2) ��𝑅𝑜𝑢𝑡2

��2
Φ(2) ��𝑅𝑖𝑛2

��2
]
𝑙𝑦3 (𝜔)

[
𝑅𝑜𝑢𝑡2

𝑅𝑖𝑛2

]
=

∞∬
−∞

𝜕𝐺

𝜕𝑦2

[
𝑒𝑖𝜔𝑦1/𝑈

𝑒𝑖𝜔𝑙𝑖𝑛 (𝑟0 )/𝑈

]
𝑑𝑦1𝑑𝑦2

(18)

It has thus been established, that the acoustic field is the product of a turbulent spectrum, a response function and a
span-wise correlation length. This lies in agreement with Amiet’s model and its extentions [9], [11], [12]. Amiet
assumed a pressure jump across the airfoil, which depends on a dipole force exerted on the fluid and an unsteady upwash
velocity which is modelled as the statistical quantity. So far, the main difference between the latter and the proposed
approach is that the source term is modelled with the theory of vortex sound [20]. Furthermore, the turbulence around
the edge is described by two regions, that each one corresponds to smaller (inner) and larger (outer) structures and it
will be shown that each region has a different contribution to the acoustic field.

C. Application to Edge Noise
By choosing appropriately the flow conditions and the Green function that describe the scattering of sound by an

obstacle immersed in the flow, Eqs. (18) can estimate the far field generated sound by turbulent flows impinging on
arbitrary shapes. Depending on the choise of the Green’s function, the integration can be performed in other coordinate
systems thus for

®𝑦 = ®𝑦 (𝑝, 𝑞)

the following formulation can be used[
𝑅𝑜𝑢𝑡2

𝑅𝑖𝑛2

]
=

∫ 𝑝2

𝑝1

∫ 𝑞2

𝑞1

|𝐽 |
(
𝜕𝐺

𝜕𝑝

𝜕𝑝

𝜕𝑦2
+ 𝜕𝐺

𝜕𝑞

𝜕𝑞

𝜕𝑦2

) [
𝑒𝑖𝜔𝑦1 (𝑝,𝑞)/𝑈

𝑒𝑖𝜔𝑙𝑖𝑛 (𝑟0 )/𝑈

]
𝑑𝑝𝑑𝑞 (19)

where |𝐽 | the Jacobian determinant. Thus, it is noted that Eq. (19) can be applied generally to any type of scattering
surface, as long as its Green’s function is known.

In most analytical or semi-analytical models, the effect of thickness at the leading or trailing edge is considered to
influence only the flow field and its diffraction properties are not taken into account [3], [10], [11], [14], [15], [24], [25].
In the experimental study of Celik et al [26] it was shown that the greater the angle of a beveled trailing edge the less
sound is generated in the far field. In order to investigate the effect of the angle of the trailing or leading edge, the Green
function for the wedge scattering will be used in Eq. (19). The airfoil edges will be considered to be far enough apart
such that each contribution to the far field noise can be considered separately. For an observer in the far field the 3D
Green function can be approximated by an equivalent 2D Green function via the method of stationary phase [27].The
equivalent 2D Green function for the sound scattering around a rigid semi-infinite wedge and an observer in the far field
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is given by the following expression in polar coordinates [20].

𝐺 (𝑟, 𝜃; 𝑟0, 𝜃0, 𝜔) = − 1
2𝑟

∞∑︁
𝑛=0

𝜎𝑛𝐽𝑛/𝛾 (𝑘𝑟0 sin𝜓) cos
(
𝑛
𝜃 − 𝜋

𝛾

)
cos

(
𝑛
𝜃0 − 𝜋

𝛾

)
𝑒𝑖𝑘𝑟−𝑖𝑛𝜋/(2𝛾) (20)

where 𝜓 denotes the angle between the observer and the edge of the wedge, 𝑟 = | ®𝑥− 𝑦3 ®𝑒3 |, 𝜎0 = 1/(𝛾𝜋), 𝜎𝑛 = 2𝜎0, 𝑛 ≥ 1
and 𝛾 = 2 (𝜋 −Ω) /𝜋 will be called the wedge parameter. Turbulent eddies that lie closer to the edge tend to contribute
more to the far field noise. Therefore, we will work under the assumption that the distance of the source to the edge is
small enough compared to the wave-length so that it can be considered acoustically compact 𝑘0𝑟0 << 1. the asymptotic
form of the Bessel function for small arguments can be applied [28] and Eq.(20) becomes ([29], [20], [27]):

𝐺 (𝑟, 𝜃; 𝑟0, 𝜃0, 𝜔) = −
𝑒𝑖 (𝑘 | ®𝑟 |−𝜋/(2𝛾) ) (𝑘 sin𝜓/2)1/𝛾 𝑟1/𝛾

0
𝛾𝜋 |®𝑟 |Γ (1/𝛾 + 1) cos

(
𝜃 − 𝜋

𝛾

)
cos

(
𝜃0 − 𝜋

𝛾

)
(21)

where Γ(. . . ) the gamma-function. Taking the derivatives of Equation (21) yields

𝜕𝐺

𝜕𝑟0
= −

𝑒𝑖 (𝑘 | ®𝑟 |−𝜋/(2𝛾) ) (𝑘 sin𝜓/2)1/𝛾 𝑟1/𝛾−1
0

𝛾2𝜋 |®𝑟 |Γ (1/𝛾 + 1)
cos

(
𝜃 − 𝜋

𝛾

)
cos

(
𝜃0 − 𝜋

𝛾

)

𝜕𝐺

𝜕𝜃0
=

𝑒𝑖 (𝑘 | ®𝑟 |−𝜋/(2𝛾) ) (𝑘 sin𝜓/2)1/𝛾 𝑟1/𝛾
0

𝛾𝜋 |®𝑟 |Γ (1/𝛾 + 1) cos
(
𝜃 − 𝜋

𝛾

)
sin

(
𝜃0 − 𝜋

𝛾

) (22)

Changing into polar coordinates Eq.(19) reduces to[
𝑅𝑜𝑢𝑡2

𝑅𝑖𝑛2

]
=

∫ 𝑟0,𝑚𝑎𝑥

𝜖

∫ 𝜃0,2

𝜃0,1

(
𝜕𝐺

𝜕𝑟0
𝑟0 sin (𝜃0) −

𝜕𝐺

𝜕𝜃0
cos (𝜃0)

) [
𝑒𝑖𝜔𝑟0 cos(𝜃0 )/𝑈

𝑒𝑖𝜔𝑙𝑖𝑛 (𝑟0 )/𝑈

]
𝑑𝑟0𝑑𝜃0 (23)

Where 𝑟0,𝑚𝑎𝑥 , 𝜃0,1, 𝜃0,2, correspond to the volume in which the source region is integrated and 𝜖 → 0 is the closest
distance of the source to the edge. For brevity we refer to 𝑅𝑜𝑢𝑡2 , 𝑅𝑖𝑛2 as 𝑅𝑜𝑢𝑡 , 𝑅𝑖𝑛.

D. Wake at a trailing edge
An illustration will be shown for the trailing edge of an airfoil, however similar arguments can be made for the

leading edge as well. The wake is extended to a distance 𝑋 in the streamwise direction. The thickness of the wake 𝛿 is
considered to be small enough such that the maximum source distance depends mainly on the position of the source in
the stream-wise direction.

𝑟0,𝑚𝑎𝑥 =
√︁
𝛿2/4 + 𝑋2 ≈ 𝑋

Figure 3 shows the geometry of the problem in more detail.

𝜃0,1

𝜃0,2

Ω 𝑟0
δ𝑈

Fig. 3 The wake close to the trailing edge of the airfoil. The integration region is considered to be the wake
extended in the stream-wise axis, with thickness 𝜹. The turbulent fluctuations of vorticity are convected with the
wake velocity 𝑼.
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The response function of Eq. (23) reads:

[
𝑅𝑜𝑢𝑡

𝑅𝑖𝑛

]
= − 𝑒𝑖 (𝑘 | ®𝑟 |−𝜋/(2𝛾) ) (𝑘 sin𝜓/2)1/𝛾

𝛾2𝜋 |®𝑟 |Γ (1/𝛾 + 1)
cos

(
𝜃 − 𝜋

𝛾

)
∫ 𝑋

𝜖

𝑟
1/𝛾
0

∫ 𝜃0,2

𝜃0,1

(
cos

(
𝜃0 − 𝜋

𝛾

)
sin (𝜃0) − sin

(
𝜃0 − 𝜋

𝛾

)
cos (𝜃0)

)
×

×
[
𝑒𝑖𝜔𝑟0 cos(𝜃0 )/𝑈

𝑒𝑖𝜔𝑙𝑖𝑛/𝑈

]
𝑑𝑟0𝑑𝜃0

(24)

Equation (24) can be simplified further, by using the following trigonometric identity

cos (𝑥) sin (𝑦) − sin (𝑥) cos (𝑦) = − sin (𝑥 − 𝑦)

[
𝑅𝑜𝑢𝑡

𝑅𝑖𝑛

]
= − 𝑒𝑖 (𝑘0 | ®𝑟 |−𝜋/(2𝛾) ) (𝑘0 sin𝜓/2)1/𝛾

𝛾2𝜋 |®𝑟 |Γ (1/𝛾 + 1)
cos

(
𝜃 − 𝜋

𝛾

)
×

×
∫ 𝑋

𝜖

𝑟
1/𝛾
0

∫ 𝜃0,2

𝜃0,1

sin
(
𝜋 + (𝛾 − 1) 𝜃0

𝛾

) [
𝑒𝑖𝜔𝑟0 cos(𝜃0 )/𝑈

𝑒𝑖𝜔𝑙𝑖𝑛/𝑈

]
𝑑𝑟0𝑑𝜃0

(25)

1. Application to inner region
The inner region consists of smaller eddies that lie very close to the edge.

𝑅𝑖𝑛 = −𝑀1/𝛾
(
𝑈

𝜔

)
𝑒𝑖 (𝑘0 | ®𝑟 |−𝜋/(2𝛾) ) (𝑘0 sin𝜓/2)1/𝛾

𝛾2𝜋 |®𝑟 |Γ (1/𝛾 + 1)
cos

(
𝜃 − 𝜋

𝛾

)
×

×
∫ 𝜔𝜉

𝑈

𝜔𝜖
𝑈

∫ 𝜋

Ω

𝑒𝑖𝜔𝑙𝑖𝑛 (𝑟0 )/𝑈
(𝜔𝑟0
𝑈

)1/𝛾
sin

(
𝜋 + (𝛾 − 1) 𝜃0

𝛾

)
𝑑

(𝜔𝑟0
𝑈

)
𝑑𝜃0

(26)

where 𝑀 = 𝑈/𝑐0 the Mach number. Very close to the edge we assume that the length scale is equivalent to the edge
distance

𝑙𝑖𝑛 (𝑟0) = 𝑟0.

Then it follows

𝑅𝑖𝑛 = −
2𝑀1/𝛾 (

𝑈
𝜔

)
cos

(
𝜃−𝜋
𝛾

)
𝑒𝑖 (𝑘0 | ®𝑟 |−𝜋/(2𝛾) ) (sin𝜓/2)1/𝛾

𝛾2𝜋 |®𝑟 |Γ (1/𝛾 + 1)

(
2(𝜋 −Ω) (sin(Ω) − 1)

𝜋 − 2Ω

) ∫ 𝜔𝜉

𝑈

𝜔𝜖
𝑈

𝑒𝑖𝛼𝛼1/𝛾𝑑𝛼, (27)

2. Application to outer region
In the outer region, the turbulent eddies generated at the trailing edge are convected downstream. They contribute

to the far field sound as in Eq. (17). Equation (25) is modified and the integration is performed in 𝑟0 ∈ [𝜉, 𝑋] and
𝜃0 ∈ [Ω, 𝜋]. We choose the limits of integration as such, in order to take into account larger structures that are shed
closer to the wedge and will contribute the most to the sound field according to the theory presented by Ffowcks Williams
and Hall [24]. At large distances from the edge the source term becomes weaker and hence the contribution to the
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sound field from sources located at (𝑟0, 𝜃0) = (𝑋,Ω) is negligible with respect to those located at (𝑟0, 𝜃0) = (𝜉,Ω).
The exponential can be written as a sum of Bessel functions using the Jacobi-Anger expansion formula [30] :

𝑒𝑖𝑧 cos(𝜃0 ) = 𝐽0 (𝑧) + 2
∑︁
𝑗≥1

𝑖 𝑗𝐽 𝑗 (𝑧) cos ( 𝑗𝜃0) (28)

where 𝑧 =
𝜔𝑟0
𝑈

. Since 𝑘0𝑟0 << 1, the source distance with respect to the hydrodynamic wave-number 𝜔𝑟0
𝑈

is of order
𝑂 (1) when the Mach number is 𝑀 ≈ 0.1 − 0.2. As a result, the Jacobi-Anger expansion formula can be truncated at
different values of n depending on the argument 𝜔𝑟0

𝑈
. A more thorough comparison is shown in Fig. 4. The relative

error of truncation is calculated for different values of 𝑛 = 𝑗𝑚𝑎𝑥 and argument 𝑧. The angle 𝜃 is set to 0 in order to
calculate the error for the strictest case. It can be seen that for low Mach numbers, if 𝑛 > 50 the maximum relative error
is less than 5%. Thus, the response of a convected turbulent fluctuation close to the edge of the wedge is given by

Fig. 4 Maximum relative error of the truncation of the infinite series in Eq. (28). The function 𝒇𝒆𝒙𝒂𝒄𝒕 corresponds
to left hand side of Eq. (28), while 𝒇𝒂𝒑𝒑𝒓𝒐𝒙 to the right hand side for different values of 𝒏. The errors are depicted
for the strictest case when 𝜽0 = 0.

𝑅𝑜𝑢𝑡 = − 𝑒𝑖 (𝑘0 | ®𝑟 |−𝜋/(2𝛾) ) (𝑘0 sin𝜓/2)1/𝛾

𝛾2𝜋 |®𝑟 |Γ (1/𝛾 + 1)
cos

(
𝜃 − 𝜋

𝛾

)
×

×
∫ 𝑋

𝜉

∫ 𝜃0,2

𝜃0,1

𝑟
1/𝛾
0 sin

(
𝜋 + (𝛾 − 1) 𝜃0

𝛾

) ©­«𝐽0

(𝜔𝑟0
𝑈

)
+ 2

𝑛∑︁
𝑗≥1

𝑖 𝑗𝐽 𝑗

(𝜔𝑟0
𝑈

)
cos ( 𝑗𝜃0)ª®¬ 𝑑𝑟0𝑑𝜃0

(29)

For the current analysis, we take 𝑛 = 150. By exploiting the symmetry of the problem (see Fig. 3) we perform the
integration over 𝜃0 ∈ [Ω, 𝜋]. Since the infinite series of Eq.(28) is replaced by a finite sum, it is permitted to interchange
the integral and summation signs. Hence it follows:

𝑅𝑜𝑢𝑡 = 𝑀1/𝛾
(
𝑈

𝜔

) 2 cos
(
𝜃−𝜋
𝛾

)
𝑒𝑖 (𝑘0 | ®𝑟 |−𝜋/(2𝛾) ) (sin𝜓/2)1/𝛾

𝛾2𝜋 |®𝑟 |Γ (1/𝛾 + 1)
×

× ©­«2(𝜋 −Ω) (sin(Ω) − 1)
𝜋 − 2Ω

𝐼0

(
𝜔𝑋

𝑈

)
−

𝑛∑︁
𝑗≥1

𝐴 𝑗 𝐼 𝑗

(
𝜔𝑋

𝑈

)ª®¬
(30)
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where
𝐴 𝑗 = −2𝑖 𝑗 (𝜋 −Ω) ((𝜋 − 2Ω) (cos (𝜋 𝑗) − sin (Ω) cos ( 𝑗Ω)) + 2 𝑗 (𝜋 −Ω) cos (Ω) sin ( 𝑗Ω))

(𝜋 (2 𝑗 − 1) − 2 ( 𝑗 − 1)Ω) (−2 (𝑛 + 1)Ω + 2𝜋 𝑗 + 𝜋)
(31)

The integrals of Eq. (30) can be written in the following form.

𝐼0

(
𝜔𝑋

𝑈

)
=

∫ 𝜔𝑋
𝑈

𝜔𝜉

𝑈

(𝜔𝑟0
𝑈

)1/𝛾
𝐽0

(𝜔𝑟0
𝑈

)
𝑑

(𝜔𝑟0
𝑈

)

𝐼 𝑗

(
𝜔𝑋

𝑈

)
=

∫ 𝜔𝑋
𝑈

𝜔𝜉

𝑈

(𝜔𝑟0
𝑈

)1/𝛾
𝐽 𝑗

(𝜔𝑟0
𝑈

)
𝑑

(𝜔𝑟0
𝑈

) (32)

It can be seen that larger convected eddies contribute more to the lower frequency regime, while those that lie in the
inner region become more and more important noise sources with respect to the latter at higher frequencies and larger
wedge angles. This becomes more apparent by considering the fraction of the response functions.

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡

=

�������
(

2(𝜋−Ω) (sin(Ω)−1)
𝜋−2Ω

) ∫ 𝜔𝜉

𝑈
𝜔𝜖
𝑈

𝑒𝑖𝛼𝛼1/𝛾𝑑𝛼(
2(𝜋−Ω) (sin(Ω)−1)

𝜋−2Ω 𝐼0
(
𝜔𝑋
𝑈

)
−∑𝑛

𝑗≥1 𝐴 𝑗 𝐼 𝑗
(
𝜔𝑋
𝑈

) )
������� (33)

Figure 5 shows a comparison of the response functions presented in the previous subsections. It is noted that some local
maxima are observed at higher non-dimensional frequencies and wedge angles. These correspond to local minima of
𝑅𝑜𝑢𝑡 .

Fig. 5 Comparison of the response functions that correspond to the inner region (Eq. (30)) and the outer region
close to the wedge (Eq. (27)).

V. Turbulence modelling
Equations (27), (30) describe the scattering of a sound source (smaller and larger eddies) very close to the edge of

the wedge. The radiation properties of the source (directivity, spectra, mamximum amplitude etc.) are included in the
turbulent spectra, which can be obtained by experiments numerical simulations or empirical/ analytical models. In the
present case and for purposes of illustration, the vorticity spectrum tensor 𝜙𝑖 𝑗 is described as shown by Howe in [20].

𝜙𝑖 𝑗 =
𝐸 (𝑘)
4𝜋𝑘2

(
𝑘2𝛿𝑖 𝑗 − 𝑘𝑖𝑘 𝑗

)
(34)

where

𝐸 (𝑘) =
55Γ (5/6)

〈
𝑢2〉 𝑙5𝑘4

27
√
𝜋Γ(1/3)

(
1 + (𝑘𝑙)2

)17/6
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is the von Karman turbulence spectrum, 𝑙 the turbulence correlation scale and 𝑘 =

√︃
𝜔2

𝑈2 + 𝑘2
2. Hence the turbulent

spectra are given by

Φ(2) =
55Γ (5/6)

〈
𝑢2〉𝜔2𝑈2𝑙5

𝑖𝑛

27
√
𝜋Γ(1/3)

∫ ∞

0

(
𝜔2

𝑈2 + 𝑘2
2

)2

(
1 + 𝑙2

𝑖𝑛

(
𝜔2

𝑈2 + 𝑘2
2

)2
)17/6 𝑑𝑘2

Ξ(2) =
55Γ (5/6)

〈
𝑢2〉𝜔2𝑈2 (𝑙𝑜𝑢𝑡 )5

27
√
𝜋Γ(1/3)

∫ ∞

0
𝑒𝑖𝑘2𝑙𝑜𝑢𝑡

(
𝜔2

𝑈2 + 𝑘2
2

)2

(
1 + (𝑙𝑜𝑢𝑡 )2

(
𝜔2

𝑈2 + 𝑘2
2

)2
)17/6 𝑑𝑘2

(35)

where 1
2
〈
𝑢2〉 ≈ 1

2𝑈
2 the mean turbulent kinetic energy. The two length scales of Equation (35) correspond to the

correlation length scales inside the two different regions of Fig. 2. The power spectra of the turbulent kinetic energy of
each region are shown in Figure 6. As expected, larger scales dominate at lower frequencies, while at higher frequencies
the turbulent kinetic spectrum is greater for smaller eddies.

Fig. 6 Vorticity correlation spectra for the inner (𝚽(2) ) and outer (𝚵(2) ) region. The correlation length is
considered to be 𝒍𝒐𝒖𝒕 = 𝒅/5 for the outter region and 𝒍𝒊𝒏 = 𝒍𝒐𝒖𝒕/5 for the inner region.

The far field power spectral density

𝑃𝑆𝐷𝑖𝑛/𝑜𝑢𝑡 = 10 log10
⟨𝑃𝑃′∗⟩𝑖𝑛/𝑜𝑢𝑡

𝑝2
𝑟𝑒 𝑓

is depicted for each region and different wedge angles in Figure 7. The results are shown for an airfoil with chord
𝑑 = 0.15𝑚 and span 𝐿 = 1𝑚. Assuming that the results do not vary across the span, we set 𝑙𝑦3 (𝜔) = 𝐿. For purposes of
illustration, the wake extent is taken equal to one chord of the airfoil 𝑋 = 𝑑. For the inner region we choose 𝜖 = 10−6𝑚
and 𝜉 = 𝑑/5. The far field power spectral density is estimated for a mean velocity of 𝑈 = 30𝑚/𝑠 and an observer in
the far field at 𝑟 = 10𝑑 and 𝜃 = 𝛾𝜋/2, so that the radiation peak can be recorded for every wedge angle. The results
are shown for wedge angles starting from Ω = 0 (half plane) up to Ω = 45◦ (right angled wedge). The influence of
each turbulent region can be seen clearly on the third plot of Fig.7. For low frequencies the larger eddies seem to be
the dominant sound source, while the smaller inner region contributes more to the far field acoustic power spectral
density at higher frequencies. The increase of the wedge angle leads to a reduction of the generated noise, which lies in
agreement with the results presented in the literature [6], [7]. However, it should be noted that the effect of the wedge
angle is not taken into account for the modelling of the flow field. In some cases, the wedge angle favours the separation
of the flow at the trailing edge which may lead to shedding of periodic structures that result in tonal noise, which cannot
be predicted by the current turbulent model [26]. From Eqs (27), (30),(35) it can be observed that the acoustic power
spectral density scales to:

⟨𝑃𝑃′∗⟩ ∼ 𝑈2 〈𝑢2〉𝑈2/𝛾 ≈ 𝑈2/𝛾+4 (36)

When the wedge problem reduces to the one of the half plane (𝛾 = 2), the present model scales with the same law as
the one proposed by Ffowcs Williams and Hall (1969). Moreover, Eq. (36) is exactly the same as the one derived
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Fig. 7 Far field power spectra density for the inner and outer region, obtained by Eq.(18). The results are
shown for a mean velocity is𝑼 = 30𝒎/𝒔, an observer in the far field at 𝒓 = 10𝒅 and 𝜽 = 𝜸𝝅/2 and different wedge
angles.

by Crighton and Leppington [7]. Their work, however, was restricted in physical analysis and derivation of scaling
laws, when quadruple sources are scattered by acoustically compact, hard and soft wedge like objects, using Lighthill’s
acoustic analogy. The difference with the present study is that our analysis is extended in deriving an analytical solution
for estimation of the acoustic far field power spectral density by using a formulation similar to Amiet’s model, while
employing Howe’s aeroacoustic analogy.

VI. Conclusions
We have studied a simple analytical model for the estimation of the far-field acoustic power spectral density associated

with a turbulent flow impinging on a wedge with an arbitrary angle. Overall, the proposed model was based on the
framework of Amiet’s work [9]. However, we used Howe’s theory of vortex sound to model the source, and took
into account a turbulent vorticity spectrum [20] to the proximity of the edge of an arbitrary wedge. The asymptotic
expressions of the Green function for the acoustic scattering around a rigid wedge was employed, which allows a
better description of the scattering at low frequencies as the solution of the Laplace’s equation shown in [7], since the
dependence on the main parameters is explicit and there are no arbitrary amplitude factors. The turbulent region around
the edge was split into: i) smaller eddies that lie close to the edge, with a turbulent length scale comparable to their
distance from the edge and ii) larger eddies where the convection effect is considered. The amplitude of the far-field
acoustic power spectral density is found to increase for sharper wedges and lower frequencies. This result is in agreement
with other studies in the literature. It has been shown experimentally [26] and theoretically [31] that the larger the angle
of a bevelled trailing edge the less far field noise is generated. The advantage of the presented model is that the problem
of aerodynamic sound generation on a rigid wedge allows a broader description of the edge noise and encompasses the
case of the half-plane. The wedge angle can be used to approximate the thickness of leading and trailing edges, while
it is possible to model other types of air-frame noise, as long as the turbulent spectrum is known. For instance, the
side-edge-flap noise is studied by considering a right angled wedge with Ω = 𝜋/4 [27]. However, our analysis does not
consider the influence of the wedge angle on the flow field. This work can be extended to higher frequencies by taking
into account the exact Green’s function (Eq. (20)) and using more realistic turbulent spectra educed from experiments
or numerical simulations. Furthermore, it is observed that there is also another mechanism of sound generation that
depends on non-linear terms (< Ω2

𝑖 𝑗
>), as shown in (Eq. (12)) and should be examined in more detail.
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A. Derivation steps of far-field acoustic power spectral density
In this appendix we show the steps of derivation Eq. 15. The procedure is the same as the one described in Amiet’s

paper [10]. However, due to different assumptions regarding the source term, we show the analysis in more detail. From
Equation 14 we have

⟨𝑃𝑃′∗⟩ (®𝑥, 𝜔) = −𝜌2𝑙𝑦3 (𝜔)
∫ ∞

−∞

[∫ ∞

0
𝜙𝑚
𝑖 𝑗 (𝜔/𝑈, 𝑘2, 0) 𝑒𝑖(𝑘2 (𝑦2−𝑦′2))𝑑𝑘2

]
𝜕𝐺

𝜕𝑦𝑚

𝜕𝐺∗

𝜕𝑦′𝑚
𝑒𝑖( 𝜔

𝑈 (𝑦1−𝑦′1))𝑑𝑦1𝑑𝑦2𝑑𝑦
′
1𝑑𝑦

′
2

(A.1)
For the inner region We setM

Φ𝑚 =

∫ ∞

0
𝜙𝑚
𝑖 𝑗𝑑𝑘2

where 𝑚 = 1, 2 denotes the component in the stream-wise or transverse axis (𝑦1, 𝑦2). Furthermore, based on the
assumptions of sub-section IV.A:

𝜔

𝑈

(
𝑦1 − 𝑦′1

)
=
𝜔𝑙𝑖𝑛

𝑈
>> 𝑘2

(
𝑦2 − 𝑦′2

)
we may express Eq. (A.1) as

⟨𝑃𝑃′∗⟩𝑖𝑛 (®𝑥, 𝜔) = −𝜌2𝑙𝑦3 (𝜔)
∞⨌

−∞

Φ𝑚 𝜕𝐺

𝜕𝑦𝑚

𝜕𝐺∗

𝜕𝑦′𝑚
𝑒𝑖

𝜔𝑙𝑖𝑛
𝑈 𝑑𝑦1𝑑𝑦2𝑑𝑦

′
1𝑑𝑦

′
2 (A.2)

Furthermore, we define the response function,for the inner region, of an eddy interacting with the edge as:

𝑅𝑖𝑛𝑚 =

∞∬
−∞

𝜕𝐺

𝜕𝑦𝑚
𝑒𝑖

𝜔𝑙𝑖𝑛
𝑈 𝑑𝑦1𝑑𝑦2 (A.3)
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similarly for the source at
(
𝑦′1, 𝑦

′
2, 𝑦3

)
𝑅∗
𝑖𝑛𝑚

=

∞∬
−∞

𝜕𝐺∗

𝜕𝑦′𝑚
𝑒𝑖

𝜔𝑙𝑖𝑛
𝑈 𝑑𝑦′1𝑑𝑦

′
2 (A.4)

where 𝑅∗
𝑖𝑛

, the complex conjugate of 𝑅𝑖𝑛, hence

𝑅∗
𝑖𝑛𝑅𝑖𝑛 = |𝑅𝑖𝑛 |2

As a result the far-field acoustic power spectra density for the inner region becomes:

⟨𝑃𝑃′∗⟩𝑖𝑛 (®𝑥, 𝜔) = −𝜌2Φ𝑚
��𝑅𝑖𝑛𝑚

��2 𝑙𝑦3 (𝜔) (A.5)

The same procedure is used for the outer region (Eq. (17)).
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