An iterative algorithm for computing aeroacoustic integrals with application to the analysis of free shear flow noise
Résumé
An iterative algorithm is developed for the computation of aeroacoustic integrals in the time domain. It is specially designed for the generation of acoustic images, thus giving access to the wavefront pattern radiated by an unsteady flow when large size source fields are considered. It is based on an iterative selection of source-observer pairs involved in the radiation process at a given time-step. It is written as an advanced-time approach, allowing easy connection with flow simulation tools. Its efficiency is related to the fraction of an observer grid step that a sound-wave covers during one time step. Test computations were performed, showing the CPU-time to be 30 to 50 times smaller than with a classical non-iterative procedure. The algorithm is applied to compute the sound radiated by a spatially evolving mixing-layer flow: it is used to compute and visualize contributions to the acoustic field from the different terms obtained by a decomposition of the Lighthill source term.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
Licence |
Copyright (Tous droits réservés)
|