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Hybrid prediction of the aerodynamic noise
radiated by a rectangular cylinder at incidence

Florent Margnat1

Arts et Metiers ParisTech, DynFluid, 151 bd de l’Hopital, 75013 Paris, France

Abstract

The acoustic radiation by a laminar flow over a rectangular cylinder at incidence is predicted using a two-step ap-
proach. The acoustic pressure is evaluated from the compact source approximation of Curle’s analogy, where the
fluctuation of the aerodynamic force is the source quantity. The latter is provided by numerical simulation of the
incompressible flow, the presence of the bluff body being modelled via an immersed boundary method. The approach
is validated by comparison with a direct noise computation of the aeolian tone produced by the flow over a circular
cylinder at Re = 150 and M = 0.2. Ten values of incidence are considered, from 0o to 90o for the 2D flow, at Re = 200,
over the rectangular cylinder, whose aspect ratio is 4. The acoustic power is strongly enhanced in comparison with
the circular cylinder (by 6 to 15dB) and with the case without incidence (by 30 to 40dB). The contribution of the
drag dipole is also significantly increased. The relative fluctuations of lift and drag drive the directivity for each case.
Depending on the incidence, a block rotation of ±15o is observed on the directivity diagram. This is closely linked to
the wake organisation, in particular the position of the stagnation point, and the orientation of the fluctuation of the
aerodynamic force, all of these features undergoing a qualitative change at an incidence angle of 40o. One of the key
results is that the acoustic efficiency increases quadratically with respect to the Mach number and to (rms) fluctuations
of lift and drag coefficients, and depends linearly on the Strouhal number.

Keywords: Aeroacoustics, Hybrid Method, Immersed Boundary Method, Curle’s analogy, Airframe noise,
rectangular cylinder

1. Introduction

The problem addressed here is that of airframe noise
prediction, in order to investigate the effect of geomet-
rical changes on acoustic emission. For relatively com-
plex shapes, aeroacoustic design can be aided by para-
metric studies. Significant computational resources are
necessary to generate the source fields associated with
each shape; theoretical models may not account for all
geometrical details. Typical examples of such configu-
rations are landing gear, which is the dominant source
at landing, and car side mirrors, whose tones lead to an-
noyance in the passenger compartment.
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For the estimate of the noise radiated by an un-
steady flow over stationary, rigid bodies, Curle’s devel-
opment [1] of Lighthill’s analogy [2] is the most popular
and practical formula. It yields a scaling of the acoustic
intensity with the sixth power of the Mach number in the
case of a compact body. This is due to the dipolar na-
ture of the wall pressure term, which thus dominates the
Lighthill quadrupole contribution at low Mach number.
However, in the presence of the dipole, the quadrupole
yields a component of the acoustic intensity that scales
with the seventh power of the Mach number, as recalled
by Spalart [3]. The Mach number up to which this hier-
archy is maintained has not yet been clearly identified.

With the development of computational resources
and architectures, the direct computation of aerody-
namic noise (DNC) by solving the compressible Navier-
Stokes equations becomes feasible at higher and higher
Reynolds numbers, for a limited number of relatively
simple shapes: circular and square cylinders, air-
foils, sets of these (rod-airfoil configurations, cylin-
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der tandems, side-by-side arrangement). Inoue &
Hatakeyama [4] performed DNC for the 2D circular
cylinder at Re = 150 at three subsonic Mach numbers,
providing a reference solution for the validation of hy-
brid methods. They also illustrated the dipolar charac-
teristic of the acoustic field, predicted by Curle’s theory
and generated by lift fluctuations that dominate the drag
fluctuations at half their frequency. Increasing the Mach
number allowed the role of the Doppler effect in the ori-
entation of the wave-fronts [5] to be established.

Though parametric studies of shape and regime may
be more easily addressed experimentally [6, 7], numer-
ical simulations provide full flow information that is
useful for the analysis and modelling of source mech-
anisms in flows over bluff bodies, as exemplified by the
three following contributions. Firstly, using a tailored
Green function, Gloerfelt et al. [8] illustrated, numeri-
cally, the theoretical result according to which the sur-
face term (dipole) in Curle’s formulation is equivalent to
the diffracted part of the pressure field associated with
the volume term (quadrupole). Secondly, Curle’s power
law is based on a reference length, whose most natu-
ral choice in the case of the aeolian tone is the cylinder
diameter, while the relevant choice in other cases has
yet to be established. The blockage length (projected
length in the transverse direction) may not be relevant,
as shown for instance by Inasawa et al. [9], who ob-
tained by DNC different noise levels while varying the
streamwise length of rectangles without incidence and
keeping the blockage ratio constant. They also show
that a short streamwise length reinforces the drag dipole
via a closer vortex generation, and exhibits a monopole
source, weaker than, but with a stronger Mach number
scaling than, and out of phase with, the drag dipole. Fi-
nally, Wolf et al. [10] carried out a parametric study of
the wake interaction between an airfoil and a relatively
small circular cylinder in its vicinity. For two positions
of the cylinder and three subsonic Mach numbers, their
numerical results emphasize an intense dipolar interfer-
ence at the frequency of the cylinder vortex shedding.

In that context, the availability of noise prediction
methods, flexible with respect to the body shape, is a
crucial issue in view of the analysis and modelling of
airframe noise, where the effects of geometry are of in-
terest. The goal of the present effort is to prefigure a nu-
merical aeroacoustic facility for relatively complex ge-
ometries, so that a set of shapes can be tested, allowing
us to search for relevant quantities (e. g. characteristic
lengths) to use in scaling laws. A hybrid method is thus
proposed, based on the coupling of Curle’s analogy with
an immersed boundary method (IBM), which ensures
flexibility with respect to the body shape. As an appli-

cation of the method, the noise radiated by the flow over
a rectangular cylinder at Re= 200 is computed, the in-
cidence being varied while the blockage length is main-
tained constant. The latter turns out to be irrelevant in
the scaling law, consistent with the results of Inasawa
et al. [9]. The correlation of the acoustic field with the
flow statistics amounts to a scaling of the acoustic power
with the fluctuating aerodynamic force, which comes
as a generalisation of Phillips’ formula[11] for aeolian
tones.

The paper is organized as follows. In section 2, the
hybrid tool is presented and validated. The approxima-
tion of Curle’s formula for compact bodies is recalled
before estimate of the aerodynamic force using IBM is
detailed. The application to the flow over a rectangular
cylinder in ten cases of incidence is discussed in sec-
tion 3, where the unsteady aerodynamics are analysed
and correlated to the acoustic directivity and power. The
scaling law is derived in section 4 while the results and
the limitations of the hybrid method are further dis-
cussed in section 5.

2. Coupling Curle’s analogy with Immersed Bound-
ary Method

As explained in the introduction, flexibility with re-
spect to the body shape is targeted along the predic-
tion process of both the acoustic field and the unsteady
flow. In the present study, such numerical aeroacoustic
facility consists of Curle’s integral solution, fed by the
unsteady aerodynamic force that is provided by a prior
flow simulation using an Immersed Boundary Method
(IBM) to model the no-slip condition at the body wall.
Those two elements and their coupling are described
in the two following subsections for a two-dimensional
model, then the prediction of the aeolian tone is con-
ducted for validation concern.

2.1. Noise estimate method

The acoustic part of the hybrid method computes the
convected form of Curle’s integral solution [1] to Light-
ill’s equation, in the frequency domain. According to
this, the acoustic pressure for an observer located in
x = (x1, x2) is given by:

p̃a(x, ω) = −
∮
Σ

[
p̃δi j − τ̃i j

]
n j
∂G̃c(x|y, ω)
∂yi

dσ(y) (1)

where, as also sketched in figure 1a, Σ is the body sur-
face and n its outward normal, dσ(y) is the elementary
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surface, f̃ is the Fourier transform of f , p is the pres-

sure, τi j =
1

Re
∂ui

∂y j
are the viscous stress tensor compo-

nents, δi j is Kronecker’s symbol, and ω is the angular
frequency under consideration.

The 2D free-field convected Green function G̃c is
given in the frequency domain by [12, 13, 14]

G̃c(x|y, ω) =
i

4β
exp

(
iMkr1

β2

)
H(2)

0

(
krβ
β2

)
(2)

where y = (y1, y2) is the source position, ri = xi − yi,
i2 = −1, H(m)

ν is the Hankel function of order ν and
kind m, k = ω/c0 and c0 is the sound speed in the
uniform medium at rest. Moreover, β2 = 1 − M2,
where M is the Mach number of the flow in the ob-
server domain, is the Prandtl-Glauert factor, and rβ =√

(x1 − y1)2 + β2(x2 − y2)2. The first space derivatives
of that Green function are [13]:

∂G̃c

∂y1
= K

−ik
4β3

[
iM H(2)

0

(
krβ
β2

)
− r1

rβ
H(2)

1

(
krβ
β2

)]
∂G̃c

∂y2
= K

i
4β

kr2

rβ
H(2)

1

(
krβ
β2

)
(3)

with K = exp
(

iMkr1

β2

)
. In the present application

of Curle’s analogy, which is devoted to low speed
flows, the volume source terms have been neglected to
get (1). Their quadrupolar character may a priori make
them insignificant with respect to the surface terms for
low Mach number subsonic aeroacoustics. However,
such hierarchy between multipole sources relies on the
source compactness that assumes there is no delay be-
tween emission times from different source points [3].

Assuming a compact source and a far field estimate,
||x − y|| can be approximated by ||x||, that is ri ≈
xi and rβ ≈

√
x2

1 + β
2x2

2 . Consequently, the Green
function and its derivatives do not depend on y anymore,
and Curle’s solution reduces to:

p̃a(x, ω) = ∂Ǧc,i(x, ω) F̃i(ω) (4)

where ∂Ǧc,i stands for the approximation of ∂G̃c/∂yi

when ||y|| << ||x|| , and

F̃i(ω) = −
∮
Σ

[
p̃ δi j − τ̃i j

]
n j dσ(y) (5)

is the ith component of the unsteady aerodynamic force
on the bluff body, here including its viscous part. In Ap-
pendix A, the approximation of the derivatives of G̃c by

dǦ(i)
c is tested, the error being characterised as a func-

tion of the acoustic wavenumber and the observer dis-
tance, for different Mach numbers. The results show
that when the acoustic wavelength is greater than fifty
source lengths and the observer distance is greater than
four source lengths, the error stays under one percent up
to M = 0.5. It thus appears that the geometric far-field
is a less restricting assumption than the acoustic com-
pactness, which limits the validity for high frequencies.

Equation (4) is of great practical interest, for it yields
the acoustics directly from the aerodynamic force,
which is thus the only source quantity to be stored.
However, its full time series (or frequency content) is
needed. Regarding this, section 4 investigates whether
acoustic information can be deduced directly from low-
order flow statistics, namely the rms value of the fluctu-
ating lift and drag coefficients.

2.2. Evaluation of the source quantity
2.2.1. Flow solver with IBM

The evaluation of the unsteady load F, which is the
source quantity in the present application of Curle’s
analogy, takes advantage of the modelling of the no-slip
condition with an IBM. This method introduces an ex-
ternal force field in the following nondimensional mo-
mentum equation:

∂u
∂t
+ u j
∂ui

∂y j
= − ∂
∂y j

[
pδi j − τi j

]
+ f (6)

The feedback forcing method [15] defines f as:

f(y, t) = − ϵ (y)
[
ω2

n

∫
u(y, t) dt + 2ζωn u(y, t)

]
(7)

where ωn and ζ are the natural frequency and the damp-
ing coefficient of the second order controller thus in-
troduced, which forces the velocity field u to be zero
everywhere ϵ is non zero. In the present case, this mask
function is set to ϵ = 1 for each grid point located inside
the bluff body, and to ϵ = 0 outside. Those regions are
denoted as solid domain and fluid domain, respectively,
in figure 1b and are separated by the body contour. The
main advantage of the IBM in the present context is
to avoid mesh regeneration for each new investigated
shape.

This immersed boundary technique is implemented in
a numerical code that solves the incompressible Navier-
Stokes equations, using a 6th order, compact centred
finite difference scheme for the evaluation of space
derivatives, and a 3rd order Runge-Kutta time-marching
scheme. That solver is described in details in [16].
The Cartesian grid is uniform streamwise, while, in the
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Figure 1: a) Notations for Curle’s formalism; b) principle of the Immersed Boundary Method (IBM): the circles represent unforced grid points and
describe the fluid domain, while the grey triangles represent forced grid points in the solid domain. The full, pecked line is the body contour.

transverse direction, it is stretched from the body cen-
ter, the latter being taken as the origin of the reference
frame. Free-slip conditions are set at the lateral bound-
aries of the computational domain, while a convection
condition is set outflow.

Such an association of Curle’s analogy with IBM in
a incompressible solver was introduced in [17]. An hy-
brid aeroacoustic method associating an IBM with the
linearised perturbed compressible equations is designed
by Seo & Mittal [18]. Recently, the feedback forcing (7)
have been used by Schlanderer & Sandberg [19] for the
DNC of a compliant trailing edge at M = 0.3.

2.2.2. Computation of the aerodynamic force
The flow field being provided by the numerical

solver, the missing element in the hybrid method is the
computation of the instantaneous aerodynamic force,
which feeds Curle’s solution (4). That quantity is not
directly available from the integration of the wall stress
because the wall does not necessarily lay on grid points.
However, it can be accessed by integrating (6) over the
solid domain (ϵ = 1). After application of the flux-
divergence theorem, this yields:

F = − ∂
∂t

∫
ϵ=1

u dV(y)+
∮
Σ

u(u · n) dσ(y)+
∫
ϵ=1

fdV(y)

(8)
Thanks to the action of the force field, the flow is frozen
over the solid domain and at the wall. Consequently, the
two first terms on the right-hand side of (8) are insignifi-
cant, and the aerodynamic force on the body is obtained
by integration of the forcing term over those grid points

that belong to the solid domain:

F ≈
∫
ϵ=1

fdV(y) (9)

Standard Fast Fourier Transform routines are applied
to the time series of each force component. The lat-
ter are recorded about 250 times a period from the flow
simulation. The Hankel functions are computed using
Amos library [20]. The full hybrid procedure is vali-
dated in the next subsection.

2.3. Validation of the hybrid method
The aeroacoustic prediction method presented in the

previous subsections is here validated through the aeo-
lian tone problem. In Table 1, the aerodynamic quanti-
ties obtained using the incompressible solver combined
with the IBM are compared with those obtained by In-
oue & Hatakeyama [4] using a compressible solver for
the Direct Noise Computation, for the flow over a circu-
lar cylinder at Re = 150 and M = 0.2.

Table 1: Aerodynamic statistics for the circular cylinder flow at Re =
150.

Hybrid DNC [4]
Mean CD 1.35 1.32

CD amplitude 0.026 0.026
CL amplitude 0.52 0.52

St 0.189 0.183

The amplitude of the lift and drag coefficients, noted
CL and CD respectively, is perfectly evaluated using the
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Figure 2: (Color online) Acoustic pressure radiation from a circular cylinder in a flow at Re = 150 and M = 0.2. Left: present hybrid method; right:
Direct Noise Computation from Inoue & Hatakeyama [4]. The contour levels are from −0.1M2.5 to 0.1M2.5 with an increment of 0.0025M2.5.

forcing term as given by (9). The mean drag force is
also in good agreement, while slightly overestimated by
the immersed boundary method. The Strouhal num-
ber St is 4% higher than the value reported by Inoue
& Hatakeyama [4]. However, the latter also mention
a value of 0.185 obtained with incompressible simula-
tions, from which the present result is closer.

The comparison for the acoustic pressure field is pre-
sented in figure 2. The acoustic wave pattern predicted
by present application of Curle’s analogy, using a com-
pact convected spectral form, agrees qualitatively and
quantitatively very well with the pressure field directly
computed by Inoue & Hatakeyama [4]. The fluctuating
aerodynamic wake is naturally lost in the hybrid com-
putation since the Green’s function formalism filters the
convective modes. Besides, if the dipole term repre-
sents the diffraction [8] of the waves generated by the
Lighthill source quantity, it may be surprising that such
an acoustic phenomena is tracked by a simulation that
makes an incompressible assumption. However, this
is possible by virtue of the acoustic compactness: the
source region, and its distance from the body, are small
enough with respect to the wavelength, so the acoustic
pressure varies slowly in that very near field [21]. Fur-
thermore, even for free shear flows, the Lighthill source
term itself was found relatively insensitive to the incom-
pressible assumption, provided that the Green function
accounts for convection effects [22].

Through this correct computation of the aeolian tone,
it can be concluded that the approximated form (4) of

Curle’s solution, retaining only the dipole term in its
compact form, associated with the aerodynamic force
obtained from the IBM, is a validated two-step proce-
dure to predict the acoustic field in those low subsonic
regimes. The application to the rectangular cylinder
configuration is presented in the next section, where ad-
ditional comparison with literature data is provided.

3. Application to the rectangular cylinder

3.1. Flow configuration and numerical parameters

Unsteady 2D numerical simulations of viscous in-
compressible flows over a rectangular cylinder have
been carried out, for ten values of the incidence α from
0o to 90o. The configuration is sketched in figure 3. The
aspect ratio of the bluff body is kept constant, namely
B/A = 4. The Reynolds number is 200, based on the up-
stream velocity U∞ and on the main cross section, noted
d, which are taken as characteristic velocity and length
in this study. The size of the computational domain in
the transverse direction is also the same for every inci-
dence, so that the blockage ratio has a constant value
of 5%. Consequently, the actual size of the rectangu-
lar cylinder depends on the incidence. For example, for
α = 0o, one has A = d and B = 4d, while for α = 900,
A decreases to 0.25d while B becomes equal to d. Like-
wise, the projected length of the cylinder, noted L, is
given by L = B cosα + A sinα and varies from 4d to
0.25d.
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Table 2: Grid tests for the flow over the rectangular cylinder, and comparison of the Strouhal number with literature data.

α B/A Re d/Y2 Yu
1 /d Yd

1 /d d/∆y1 St
Grid 3 0o 4 200 5.00% 8 12 102 0.158

Sohankar et al. [23] 0o 4 200 5.00% − − − 0.147
Inasawa et al. [9] 0o 4 150 0.16% − − 40 0.127
Inasawa et al. [9] 0o 5 150 0.16% − − 40 0.120
Liow et al. [24] 0o 7 300 3.32% 15 45 40 0.152
Liow et al. [24] 0o 7 400 3.32% 15 45 40 0.157

Grid 2 6o 4 200 5.00% 12 28 77 0.185
Grid 3 6o 4 200 5.00% 8 12 102 0.188

Sohankar et al. [23] 6o 4 200 5.00% − − − 0.179
Grid 2 20o 4 200 5.00% 12 28 77 0.175
Grid 3 20o 4 200 5.00% 8 12 102 0.177

Sohankar et al. [23] 20o 4 200 5.00% − − − 0.168
Grid 1 90o 4 200 5.00% 12 28 102 0.180
Grid 3 90o 4 200 5.00% 8 12 102 0.175

Sohankar et al. [23] 90o 4 200 5.00% − − − 0.205
Inasawa et al. [9] 90o 5 150 0.16% − − 40 0.156

U
∞

A

B

L

d

α

F

y
1
, x

1

y
2
, x

2

Figure 3: Configuration and notations for the study of flows over a
rectangular cylinder at incidence.

Such parameters and conventions are followed in or-
der to be consistent with the results documented by So-
hankar et al [23]. Although this value of the Reynolds
number may be critical for those flows (see e. g.
Williamson [25] for the circular cylinder wake) and a
3D transition may have occurred (yet it may depend
on the incidence), 2D simulations are well suited to the
present aeroacoustic issue of exhibiting and study tonal
configurations. Moreover, this is a relatively low value
of the Reynolds number, which yields a limited number
of fundamental frequencies in the flow, thus reducing
the complexity of the acoustic problem.

The behaviour of the feedback forcing method in
the case of unsteady flows over sharp-edged bodies has
been studied in [26]. In particular, where the flow is
locally unsteady, the accuracy of the no-slip condition

depends on how large the natural frequency ωn is with
respect to the flow frequency, but that accuracy is static
along the simulation after the flow is established. Where
the flow is locally steady, the velocity keeps tending to-
ward zero along the simulation, which may result in is-
sues in reaching a converged state, for example in the
case of shear layer developments. For the geometry ad-
dressed in the present study, there are no such issues be-
cause the flow is unsteady all around the body, including
at the leading edge, since the streamwise length of the
cylinder is relatively short. After the periodic state of
vortex shedding is reached, the mean and rms aerody-
namic quantities are evaluated, while the instantaneous
aerodynamic force is sampled during one period, using
about 250 samples, in view of the acoustic prediction.

Concerning the grid, the transverse extent, noted Y2,
is determined by the blockage ratio. In that direction,
the grid was slowly stretched from the middle of the do-
main, where the cylinder is located, the minimum grid
step being about 0.011d. In the streamwise direction,
the grid parameters were tested, varying the extent of
the computational domain and the grid step, the latter
being uniform along the domain. Three sets of these
two parameters were tested, referred to as Grid 1, Grid 2
and Grid 3, corresponding to (Yu

1/d , Yd
1 , /d , d/∆y1) =

(12, 28, 102) , (12, 28, 77) and (8, 12, 100) respectively,
where Yu

1 and Yd
1 are the extent upstream and down-

stream of the cylinder respectively, and ∆y1 is the grid
step in the streamwise direction. Those parameters are
recalled in Table 2, together with the flow configuration
and the resulting Strouhal number, which is also com-
pared to literature data.

Less than 3% of difference is noticed between the
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Figure 4: (Color online) Mean and rms aerodynamic coefficients for the flow over a rectangular cylinder at Re = 200 as a function of incidence.
Lines are spline interpolation of the results and are plotted for visual aid only. Red, dashed lines denote the results (total force) for the circular
cylinder case at the same Re.

grids, meaning that the influence of both the grid step
and the streamwise extent is almost insignificant in-
side the tested range of values. The present results are
in good agreement with the values documented by So-
hankar et al [23] for the same Reynolds number, aspect
ratio and blockage ratio. Indeed, the relative difference
between the two does not exceed 6% at 0o, 6o and 20o

of incidence. For α = 90o, the difference is about 14%.
Consistency is also obtained with respect to the data
provided by Liow et al. [24] and Inasawa et al. [9] for
different Reynolds numbers, aspect ratios and blockage
ratios: the Strouhal number decreases for smaller Re or
longer cylinders. Namely, the smallest St is obtained for
Re = 150 and B/A = 5 without incidence. All those ref-
erences are 2D numerical studies at laminar Reynolds
numbers. In the range 280 ≤ Re ≤ 10000, Okajima
[27] measured 0.13 ≤ St ≤ 0.14 in a wind tunnel fa-
cility for B/A = 4 and d/Y2 < 4%, exhibiting a weak
dependence on the Re in comparison with shorter cylin-
ders. In the following, the results obtained with Grid 3
are discussed.

3.2. Aerodynamic results
The influence of the incidence on the flow is depicted

in this section, through the evolution of the aerodynamic

coefficients, trends of the instantaneous vorticity field,
and the orientation and amplitude of the fluctuation of
aerodynamic force.

3.2.1. Global parameters
The mean value and fluctuation level of drag and lift

coefficients are plotted in figure 4. Those coefficients
are defined per unit length as, respectively:

CD =
F1

1
2
ρ0U2

∞d
, CL =

F2

1
2
ρ0U2

∞d
(10)

where ρ0 is the density of the fluid and is taken as the
reference mass.

Each coefficient is computed from the forcing term
of the IBM by (9), which includes the viscous part. In
order to quantify the latter, the stress vector is evaluated
at the wall by extrapolating the near wall flow from un-
forced grid points. Thus the pressure stress and viscous
stress can be integrated separately, and the procedure
also provides another estimate of the total force.

The good behavior of the IBM is checked in figure 4
where the coefficients reported by Sohankar et al. [23]
are also plotted, except for the fluctuating drag at in-
cidence and the viscous part, which are not available
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Figure 5: Instantaneous vorticity contours in the laminar flow over a rectangular cylinder at incidence. The levels are from −5.5U∞/d to 5.5U∞/d
with an increment of 1.0U∞/d (the notations are explicited in figure 3). Black lines: positive levels; grey lines: negative levels.

in [23]. Taken as a whole, the two sources of results
agree both quantitatively and qualitatively. In particular,
the drag growth (figure 4a), the mean and rms lift peaks
at 10o (figure 4b and 4d), and the secondary peaks of
the rms lift at higher incidences (figure 4d), correspond
well. However, the present values are slightly higher.
Besides, the comparison between both present methods
of evaluation of the total coefficients provides an esti-
mate of incertitude bars.These are below than 10% for
mean drag, below than 5% for mean lift, while they stay
below than 20% for the second-order statistic moment.
Such a good evaluation of the fluctuating force and its
variation with incidence gives access to a reliable pre-
diction of the acoustic features of the flow.

Compared with the circular cylinder, the mean drag is
weaker at low incidence. It seems to be closely related

to the projected length L, because α < 45o implies L <
d, which corresponds to a more elongated body than the
circular cylinder. The drag fluctuation is higher than
that of the circular cylinder, excepted without incidence.
This still holds for the lift fluctuation excepted for α =
15o, although the difference between the two geometries
is smaller.

Concerning the viscous part, it is found dominated
by the pressure part of the wall stress. As visible in
figure 4a, the mean viscous drag is about eight times
smaller than the mean pressure drag at low incidence,
while it is about twenty times smaller for incidence an-
gles above α = 45o. For the drag fluctuation (figure 4c),
the viscous part is maximum at α = 75o, where it is
still six times smaller than the pressure part. However,
at α = 30o it is only four times smaller than the pres-
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sure part. On the other hand, the mean viscous lift is
insignificant in any case of incidence, as plotted in fig-
ure 4b. For the lift fluctuation (figure 4b), the viscous
part is increasing from forty times smaller than the pres-
sure part at low incidence, to about ten times smaller
than the pressure part for α ≥ 60o, with a jump be-
tween 30o and 45o of incidence. The acoustic predic-
tions, whose results are documented hereafter, include
the viscous part, because they use the evaluation of F
based on the forcing term of the IBM (9). Neverthe-
less, note that the specific contribution of viscosity to
the noise emission may be relatively limited, according
to the levels of fluctuations reported in figure 4c and 4d.

3.2.2. Flow organisation
The evolution of the aerodynamic coefficients with

incidence, as discussed from figure 4, exhibits plateaus,
peaks and the associated changes of slope sign. The
mean drag and its fluctuations increase with αwith vari-
able slope, while the lift has not such a monotonous evo-
lution. This is further investigated here through the anal-
ysis of instantaneous vorticity fields, which are plotted
in figure 5 for each case of incidence. It can be visu-
alised that the size of the rectangle is changed by the
incidence because the main cross section d (unit length)
is the same for all cases. For α = 10o, the incidence pro-
vides the lift, the separation at the suction side remain-
ing weak, which can explain the maximum of mean lift
at this angle. The main result from figure 5 is a notewor-
thy change in the vortex shedding regime, which occurs
between α = 30o and α = 45o: for lower incidences, all
vortices are aligned downstream of the body, while for
higher incidences, positive and negative vortices form
two alternate lines. Moreover, in the first regime, one
vortex is generated in the shear layer from the lead-
ing suction edge and the other at the trailing pressure
edge, while in the two-street regime, the vortices are
shed from the flapping of the recirculation bubble like
for the wake of a circular cylinder.

In addition to the organisation of the vortex street,
that regime change is also printed in the near-wall flow
topology through the stagnation point. In the present
velocity fields, its position is defined at any time as the
wall point where the vorticity vanishes, obtained from a
procedure that is similar to that used for the wall stress.
In figure 6, its time evolution is plotted reproducing
eight lift periods for visual aid. A clear distinction is
emphasized between the two regimes: for α < 30o, the
stagnation point is located on the small upstream pres-
sure side [AD] of the rectangle. For α > 45o, the stag-
nation point is located on the large upstream pressure
side [AB] of the rectangle. The flow with 30o of inci-
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Figure 6: (Color online) Fluctuating position of the stagnation point
in the laminar flow over rectangular cylinders at incidence. NB: the
amplitude of fluctuations do not scale with the main cross section d.
Inset: zoom in the blue box of the main plot.

dence is intermediate, with a stagnation point located at
the leading edge at any time.

Except at α = 30o, an oscillation of the stagnation
point is noticed for all other cases, including without
incidence, even though the amplitude is very small in
the latter case. However, for longer cylinders without
incidence, e. g. B/A = 7, the flow may reattach before
the trailing edge, remaining steady at the leading edge
and yielding a still stagnation point, as obtained by Liow
et al. [24].

For the sake of completeness, the pressure coefficient
at the wall is plotted in figures 7 and 8. It is given at any
time by:

Cp(wall, t) =
p(wall, t) − p∞

1
2ρ0U2

∞
(11)

The mean value of Cp is plotted in figure 7, while
the RMS value of the fluctuation of Cp is plotted
in figure 8, for each side of the rectangle and α =
[ 0o, 10o, 30o, 60o, 90o ]. The wall pressure profiles
for other incidence are documented in [28].

Most of the wall undergoes mean suction, except the
front face. For high incidence (α ≥ 30o), a strong,
favourable pressure gradient is observed on the front
faces, with a significant mean suction in the vicin-
ity of their downstream edge. For aligned cases α =
[ 0o, 90o ], the light cyan, algebraic area under the pro-
file of the faces normal or tangent to the flow corre-
sponds to the mean (pressure) drag or lift, respectively.
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a)  α = 0o b)  α = 10o

c)  α = 30o

0 1 2 3C
p
 =

d)  α = 60o

e)  α = 90o

Figure 7: (Color online) Mean profile of the pressure coefficient at the wall (black lines). Outward pointing arrows denote suction while inward
pointing arrows denote pressure. For α ≥ 30o, the profiles on the front, large face have been offset in order to avoid conflict with other faces; the
origin (Cp = 0) is then the dashed, green line. Otherwise, the origin is at the wall. The scale placed at the bottom is the same for all plots and
directions.

The strong increase of the mean drag is thus visible be-
tween 0o and 90o of incidence, while, no mean lift is
generated without incidence as expected from steady
symmetrical bodies.

As for the fluctuations (figure 8), they globally in-
crease with incidence, as expected from the evolution of
the aerodynamic coefficients. They are also hardly visi-
ble at 0o of incidence. Their intensity is very weak in the
vicinity of the front stagnation point and is locally min-
imum in the vicinity of the rear stagnation point. Be-
tween both stagnation points, the mean and RMS pro-
files exhibit similarity, which is the print of a strong link
between the mean pressure field and its fluctuations due
to the vortex shedding process.

The change in the topology of the flow may have a
signature in the acoustic emission, by virtue of the vor-
tex noise theory. Modifying the wake can be an efficient

way to reduce the noise, as shown for instance by Ali et
al. [29, 30] who introduce either a splitter or detached
plate downstream of a square cylinder at low Reynolds
number without incidence. In the latter work like in the
present hybrid method, the equivalent source quantity
is the fluctuation of the aerodynamic force. It is anal-
ysed in the following subsection, in order to provide an
a priori idea of the acoustic field, also completing the
presentation of the aerodynamic results.

3.2.3. Aerodynamic force fluctuation
According to Curle’s formula for a compact source

region (4), lift and drag fluctuations, which are the com-
ponents of the fluctuation of F, yield a dipolar organisa-
tion of the acoustic field, in the transverse and stream-
wise directions respectively. Consequently, their rela-
tive amplitude and phase are of major importance as far
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a)  α = 0o b)  α = 10o

0 0.5 1 1.5 2C
p
’ =

c)  α = 30o d)  α = 60o

e)  α = 90o

Figure 8: (Color online) RMS profile of the fluctuating pressure coefficient at the wall (black lines). The origin (C′p = 0) is at the wall. The scale
placed at the bottom is the same for all plots and directions.

as directivity is concerned. Those properties can be vi-
sualised in figure 9, where the lift fluctuation is plotted
as a function of the drag fluctuation over one cycle of
vortex-shedding, thus representing the trajectory of the
head of the force vector fluctuation. Figure 9a contains
the results at low incidence, while figure 9b contains
the results for α ≥ 30o. For comparison purposes, each
graph also contains one case from the other graph, and
the result for the flow over a circular cylinder. The latter,
associated with the case without incidence and the case
α = 90o, constitutes three cases for which the config-
uration is symmetric with respect to the axes. In those
cases, the force diagram is also symmetric with respect
to positive and negative lift. The qualitative behaviour
exhibited in figures 4c and 4d can be seen again, through
the increase of the drag amplitude as α increases. With-
out incidence, the drag fluctuation is so small that the
diagram reduces to a vertical segment in figure 9a. With

respect to the circular cylinder, the fluctuation ampli-
tude is always higher for both lift and drag, except for
the case without incidence.

Figure 9 illustrates well how the transition of vortex
shedding around α = 30o affects the flow signature at
the wall through the aerodynamic force. The most strik-
ing fact is the shift in the orientation of the diagram be-
tween the two regimes: in figure 9a, except for α = 0o,
the loop has a little North-West / South-East orientation,
while it shifts to a strong South-West / North-East ori-
entation in figure 9b, except for α = 90o. A strong in-
crease of drag amplitude between 15o and 45o is also no-
ticed. The singularity for α = 30o, exhibited through the
evolution of the stagnation point, appears here too: for
this incidence, the force diagram has a singular pattern
that is intermediate between that of the two regimes.
The corresponding loop does not cross itself.

From those observations about the fluctuation of the
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Figure 9: (Color online) Diagram of the fluctuating aerodynamic force: lift fluctuation as a function of drag fluctuation. Left: low incidence (with
the case α = 90o and the case of a circular cylinder plotted for visual aid); right: high incidence (with the case α = 6o and the case of a circular
cylinder plotted for visual aid). NB: the axes have not the same scale.

aerodynamic force, the flow over a rectangular cylinder
at incidence is expected to be more noisy than that over
a circular cylinder. Moreover, a qualitative change of
the directivity is expected around α = 30o, due to the
phase properties of the force diagram. Those two points
will be confirmed by the acoustic results in the next sec-
tion.

3.3. Acoustic results
The second step of the hybrid method is now applied

to the fluctuating aerodynamic force in order to pre-
dict the acoustic field. Since the source quantities come
from an incompressible simulation, the sound speed can
be arbitrarily defined. In order to respect the compact-
ness assumption included in the acoustic formulation,
we take c0 = 10U∞, that is M = 0.1. As a conse-
quence, the wave pattern is less modified by convection
effects than in the circular cylinder case at M = 0.2 pre-
sented in figure 2. In particular, the acoustic wavelength
is nearly the same between the radiation upstream and
downstream of the rectangle, and the deviation of the lift
dipole wavefronts from the transverse direction is weak.

The main trends of the acoustic field are first pre-
sented in the case of 60o of incidence, before the influ-
ence of α is studied on the directivity and the acoustic
power. Drag contribution and lift contribution refer to
that of F1 and F2 in (4) respectively. The pressure unit
is ρ0U2

∞.

3.3.1. Main trends of the acoustic field
A first insight into the noise radiated by the flow over

a rectangular cylinder at incidence is given in figure 10
through acoustic pressure isocontours and directivity di-
agram in the case α = 60o. Similarly to the aeolian
tone, the drag main frequency is twice that of the lift
fluctuation, as visible in figure 10a and 10b. Also, at
that incidence, the lift contribution still dominates the
drag contribution, though the latter becomes significant.
The phase between both of them, as discussed in sec-
tion 3.2.3, affects the organisation of the total radiation,
which is plotted in figure 10c, exhibiting a helix shape.
In figure 10d, the directivity diagram reveals that the
acoustic intensity in the transverse direction (lift dipole)
is about 3 times higher (5dB) for the rectangular cylin-
der at 60o of incidence than for the circular cylinder. It is
also emphasized that the dipolar nature of the total noise
is strongly altered by the drag contribution streamwise.
Finally, the whole directivity pattern undergoes a global
rotation of about 12 degrees clockwise in the polar dia-
gram. How the incidence quantitatively modifies these
two latter trends is presented hereafter.

3.3.2. Influence of the incidence
In figure 11a, the two polar angles of maximum

acoustic intensity, noted θmax, are plotted as a function
of the incidence. The deviation from that value corre-
sponds to the global rotation clockwise of the polar dia-
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Figure 10: (Color online) Acoustic field for α = 60o and M = 0.1. Drag (a), lift (b) and total (c) contributions to the pressure field; levels from
±0.0004 to ±0.02 by step of ±0.0006, blue line: pa > 0, green line: pa < 0, cyan line: pa = 0. Directivity diagram at r/d = 250 (d), triangles: drag
contribution, circles: lift contribution, full black line: total noise, red line: total aeolian tone.

gram, as illustrated in figure 10. For the aeolian tone at
M = 0.1, one has θmax ≈ ±90o.

For low incidence, the rotation of the diagram is the
same for both the +x2 and −x2 direction of emission,
while for α ≥ 60o, there is a small difference, less than 2
degrees. The striking fact visible in figure 11a is the in-
version of the rotation around α = 30o. This is well cor-
related with the behaviour of the stagnation point (see
section 3.2.2) and with the orientation of the fluctuating
force (see section 3.2.3). The rotation of the directivity
is also more pronounced for high incidence, while for
α = 0o and α = 90o, it does not occur, following the
symmetry of the configuration.

How those directions of maximum emission stand out
from the other directions is measured through sound
pressure level (SPL) difference between the maximum
and minimum directions. This is plotted in figure 11b,
also indicating whether the acoustic field still looks like
that of a dipole in the transverse direction or the drag

contribution should be taken into account. Without in-
cidence, the SPL generated by the drag dipole is more
than 40dB below that of the lift dipole. The former is
thus even more negligible than in the case of the aeolian
tone, for which the difference is about 25dB. However,
for any case at incidence, the dipolar nature of the global
acoustic field radiated by the rectangular cylinder is less
effective. The continuous drag increase generates more
and more noise in the streamwise direction, up to less
than 10dB below the lift contribution. The latter value
is in very good agreement with the DNC results by Ina-
sawa et al. [9] for a slightly longer rectangle (B/A = 5)
at 90o of incidence in a flow at Re= 150 and M= 0.3:
they reported that the lift dipole amplitude is about three
times the drag dipole amplitude, which corresponds to
9.5dB.

Moreover, that evolution of the directivity is closely
linked with the ratio of the lift fluctuations to the
drag fluctuations. The associated level, defined as
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Figure 11: (Color online) Influence of the incidence on the directivity at M = 0.1. Left: angles of maximum acoustic intensity. Right: SPL
difference between the noisy directions and the quiet directions (left axis - filled and open circles), and acoustic power level difference from the
aeolian tone(right axis - triangles - line from spline interpolation for visual aid only); the full, grey line plots the level difference between the (rms)
fluctuations of lift and drag coefficient. The two sets of data (filled and open circles) correspond to both lobes of the directivity polar diagram (lines
from spline interpolation for visual aid only). Red, dashed lines denote the results for the circular cylinder case.

10 log(C′2L /C
′2
D ) is also plotted in figure 11b, and it fits

the SPL difference within an error of 2dB over the 30dB
dynamic range. As a conclusion, the directivity of the
sound radiated by the flow over a rectangular cylinder
at incidence can be predicted from the (rms) aerody-
namic coefficients, with an incertitude of ±15o around
90o regarding the direction of maximum emission, re-
lated to the near-wall flow organisation with two vortex-
shedding regimes.

The final point regarding the influence of the inci-
dence is the evolution of the total acoustic power output,
defined as the acoustic intensity flux through a closed
surface surrounding the source. In the present configu-
ration, it is given by:

Wa =

∫
R=250d

Ia(R, θ)R dθ (12)

where Ia is the mean acoustic intensity, which can be
approximated by p2

a/(ρ0c0) for radial waves in the far
field, and R = ||⃗x||. The acoustic power level is plotted
in figure 11b, using the aeolian tone as reference, that
is:

LW (dB) = 10 log
Wa

W ref
a

(13)

where W ref
a is the acoustic power generated by the flow

over a circular cylinder of same blockage length at the

same Reynolds and Mach numbers. The striking fact is
the quietness of the case without incidence, whose level
is more than 30dB below that of any case of incidence.
The second noticeable result is that any case of inci-
dence radiates between 6dB and 15dB more power than
the aeolian tone, the loudest case being α = 45o.

One could expect the 0o rectangle to be louder than
the circular cylinder, behaving like a thick plate with
two sharp trailing edges that impose the separation po-
sition and amplify the acoustic sources by diffraction.
However, the shear in the flapping layer and unsteady
vorticity in the near wake are the least intense for the 0o

rectangle, as visible in figure 5. The vortex noise the-
ory would then tell that the 0o rectangle embed a source
which generates less noise than the circular cylinder.
The diffraction process is surely more efficient for the
rectangle, but this seems to be insufficient to compen-
sate the source weakness. Indeed, in Curle’s theory, the
diffracted field is given by the surface term radiation,
whose strength (for compact source formulation) can be
estimated from the amplitude of the aerodynamic force
fluctuation. Again, this quantity is very weak for the 0o

rectangle (weaker than for the circular cylinder and any
other incidence), as visible (though hardly) in figure 9a.

As pointed out by a Reviewer, regarding the role
of the oscillation of the separation points, it has been
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shown by Casalino & Jacob [31] on circular cylinders
at higher Reynolds numbers, and very clearly exhibited
by Jacob et al. [32] for a rod-airfoil configuration where
the airfoil mainly acts as an amplifier, that the oscilla-
tions lead to a loss of spanwise coherence and result in
a significant spectral broadening of the peak around the
shedding frequency. The energy of the tone spreads over
a range of frequencies around the shedding frequency.
Therefore, the tone as such is less intense and the broad-
band noise increases. The results shown in the present
paper have to be carefully considered keeping in mind
the limits of 2D simulations at low Reynolds number
in reproducing this aspect of aerodynamic noise gener-
ation.

The detailed influence of the incidence on the acous-
tic power seems to follow qualitatively that of the lift
fluctuations (see figure 4). This is investigated more
closely in the next section.

4. Acoustic power scaling law

Applying dimensional analysis to his formulation for
3D problems in the time domain, Curle [1] estimated
that the total acoustic power output should be roughly
proportional to ρ0U6

∞δ
2/c3

0 times a function of the
Reynolds number, where δ is a typical dimension of the
solid body. A few months later, Phillips [11] correlated
an analytical expression of the lift force fluctuation on
the circular cylinder with experimental data. He then
stated that the total radiated intensity should be about
κ sin2 θ ρ0U6

∞ St2 ld/(c3
0R2) , where d is the diame-

ter and l is the length of the cylinder. The numerical
constant κ depends on the Reynolds number through the
length scale Λ of the fluctuations of lift along the cylin-
der axis. For 100 < Re < 160, he reported κ ≈ 0.27,
while at higher Re when the cylinder wake becomes tur-
bulent, the value is reduced to κ ≈ 0.037 for the range
360 < Re < 30000. Similarly, Howe [33] derived an ex-
pression for the acoustic intensity that does not depend
explicitly on the diameter but on the product lΛ, arguing
that Λ itself may be about 3d for Re > 300. A sound
pressure coefficient was also defined by Keefe [34] as
C′2L St

√
Λ/d.

Thus, a general conclusion is that acoustic radiation
is quantified by the energy supplied in the force fluc-
tuation, weighted by the axial length over which that
energy behaves as an efficient radiator, both parame-
ters being dependant on the Reynolds number. Those
above contributions notwithstanding, a theoretical evo-
lution of the acoustic power is derived in the following

from Curle’s formula for a compact body (4) consider-
ing the 2D case in the frequency domain and a signifi-
cant drag fluctuation.

Using the asymptotic behaviour of the Hankel func-
tion for large arguments, and neglecting the influence of
the motion in the observer domain, the Green function
space derivatives are approximated as:

∂Ǧc,n ≈ exp
(
−i
ωR
c0
+

3iπ
4

) √
ω

8πc0R
cos

(
θ + (n − 1)

π

2

)
(14)

for n = 1, 2. Introducing that approximation into (4),
and using Parseval’s identity, the mean acoustic inten-
sity can be written as:

Ia(R, θ) ≈ 1
8πρ0c2

0R

∞∑
m=−∞

(
ωm

[
|F̃1(ωm)|2 cos2 θ

+|F̃2(ωm)|2 sin2 θ

+2|F̃1(ωm)F̃2(ωm)| cos θ sin θ
])

(15)

whereωm denotes discrete Fourier modes. We shall now
introduce the aerodynamic coefficients, defined by (10),
and the Strouhal number through ωm = 2π m St U∞/d.
It yields:

Ia(R, θ) ≈ ρ0 U5
∞ d

16 c2
0 R

St
∞∑

m=−∞

(
m

[
|C̃D(ωm)|2 cos2 θ

+|C̃L(ωm)|2 sin2 θ

+2|C̃D(ωm)C̃L(ωm)| cos θ sin θ
])

(16)

The time derivative of the aerodynamic force that is con-
tained in Curle’s compact formula has been transformed
into a space derivative of the Green function. Thus,
for the 2D case in the frequency domain,

√
ω appears

in (14) - instead of ω in the 3D case - yielding only the
first power of the St and the fifth power of U∞ in the
acoustic intensity scaling for the 2D case.

At low Reynolds number, the first non vanishing
Fourier mode is strongly dominant in the spectrum of
the (fluctuating) aerodynamic coefficients, namely m =
±2 for the drag, and m = ±1 for the lift. Consequently,
the acoustic intensity in the streamwise and transverse
directions can be approximated by, respectively:

Ia(R, 0o) ≈ ρ0U3
∞d

16 R
St M2 2 C′2D

Ia(R, 90o) ≈ ρ0U3
∞d

16 R
St M2 C′2L (17)

Such scalings enclose the Reynolds number depen-
dence in St and in the fluctuations of the aerodynamic
coefficients. Finally, the term with cos θ sin θ vanishes
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Figure 12: Dependence of acoustic power on fluctuating (rms) aerodynamic coefficient (left) and Mach number (right). On the left, each symbol
corresponds to one case of incidence, and each line is the best linear function (crossing the origin). On the right, each symbol corresponds to the
slope extracted from the left-plot, while the line is the second power slope.

after integration over the observer circle, so the acoustic
power is:

Wa

ρ0U3
∞d
≈ π

16
St M2 C2

N (18)

where C2
N = 2C′2D + C′2L . Note that in the present study,

ρ0, U∞ and d are the reference quantities, so that ρ0U3
∞d

is the unit of power per unit length. It also quantifies the
power supply from the aerodynamic flow. Thus, (18)
indeed gives the acoustic efficiency of the flow over a
rectangular cylinder at incidence as a source of noise.
It includes both lift and drag levels of fluctuations, and
no arbitrary choice of typical length. Its Mach num-
ber dependence is quadratic and comes from the Green
function and the definition of the acoustic intensity. It
also suggests that the influence of the flow speed would
rather be investigated through the aerodynamic coeffi-
cient and the Strouhal number, at least at Mach numbers
far from the compressible regime.

That scaling law is tested by computing (4) for the
rectangular cylinder in the ten cases of incidence and for
different Mach numbers in the low subsonic range. For
each case, the corresponding acoustic power is plotted
in figure 12a as a function of the quantity St C2

N , ex-
hibiting a noteworthy linear dependence for each tested

Mach number. The best fitting slopes are then col-
lected and reported in figure 12b as a function of the
Mach number, emphasizing well the second power de-
pendence through the logarithmic scale. Finally, the re-
gression curve leads to a value of about 0.204 for the
constant, which is very close to π/16 ≈ 0.196.

The relevance of CN is furthermore illustrated in Ta-
ble 3 which sums up the influence of the incidence on
the acoustic power level (approximated from a com-
pact source formulation) and the respective contribu-
tions of lift and drag. The lift domination in acous-
tic power decreases from 100% without incidence to
85% for α ≥ 75o. The drag represents only 8% of
the aerodynamic force fluctuation at the highest inci-
dences, but, working at twice the shedding frequency,
its contribution as an acoustic source is twice as high
because Curle’s source term relies on the time deriva-
tives of F. This leads to almost the same relative contri-
butions (≈ 15%) to Wa and C2

N for α ≥ 60o.
Still recall that lift and drag dipoles radiate orthogo-

nally, meaning for instance that for an observer located
at θ = 0o or 180o, the lift contribution is not perceived
and the total SPL in those directions is due to the drag
dipole, as weak as the latter may be of the same order as
the lift dipole.
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Table 3: Lift and drag contributions to noise and force fluctuation, M = 0.1. The acoustic power level are evaluated from the numerical acoustic
fields using that of the circular cylinder as reference. C2

N = 2C′2D +C′2L . The percentages are computed in linear scale.

α 0o 6o 10o 15o 20o 30o 45o 60o 45o 90o

Wa (dB) -23.1 7.4 9.0 6.5 8.1 12.9 15.6 13.5 12.2 12.7
Lift / Wa (%) 100 99 99 98 98 97 94 88 85 85
Lift / F′2 (%) 100 99 99 99 98 98 96 93 92 92
Lift / C2

N (%) 100 99 99 97 96 96 92 87 85 86
Drag / Wa (%) 0 1 1 2 2 3 6 12 15 15
Drag / F′2 (%) 0 1 1 1 2 2 4 7 8 8
Drag / C2

N (%) 0 1 1 3 4 4 8 13 15 14

5. Concluding remarks

The present hybrid method, combining an incom-
pressible simulation using the Immersed Boundary
Method (IBM) with Curle’s formulation for a compact
source, constitutes a first step in the development of
a numerical aeroacoustic wind tunnel for low speed
flows. It can be used for any complex geometry with-
out much additional effort devoted to mesh design. It
has been validated both aerodynamically and acousti-
cally through the computation of the aeolian tone. Low
speed means here that both Reynolds and Mach num-
ber are small. These two assumptions yield a simpler
study with respect to frequencies and to consistency be-
tween the incompressible simulation and the compact
source assumption. Although they put a limitation to
the generalisation of the present conclusions regarding
bluff body aeroacoustics, there is no obstacle to apply
the hybrid method to higher Reynolds numbers, and, to
a smaller extent, to higher Mach numbers. A higher
Reynolds number would require a finer grid, in particu-
lar near the body wall, to account for the boundary lay-
ers. It would also yield higher frequencies in the spec-
tra. Then the compact source formulation would lose
validity for high frequencies, unless the surface inte-
gration is made including retarded times. Such inclu-
sion, and that of the volume term (quadrupoles), would
also be the requirement to solve higher, subsonic Mach
numbers, at least while the incompressible assumption
remains valid. Regarding the wake or shear layers in-
trinsic properties, compressible effects may become sig-
nificant only close to the transonic regime. Moreover,
acoustic feedbacks may cause whistling situations, even
at low Mach number, like typically encountered in cav-
ity flows. They are also frequent in landing-gear con-
figurations, which involve tandems or side by side bod-
ies. For the car side-mirror, the acoustic emission from
vortex interaction in the shear-layer downstream of the

ribs may drive boundary-layer separation at the front,
streamlined face. Such couplings via acoustical compo-
nents of the pressure field would a priori not be tracked
by an incompressible tool, yet this should be evaluated
carefully.

Flexibility with respect to geometry changes allowed
to study the influence of incidence on the noise gener-
ated by the flow over a rectangular cylinder at Re= 200.
Both aerodynamic and acoustic analysis emphasized
two flow regimes: at low incidence, vortices are shed
on the streamwise axis, the stagnation point oscillates
at the small front side, the fluctuation of force and the
directivity are slightly deviated counter-clockwise with
respect to the transverse direction. At high incidence,
vortices form two lines in the wake, the stagnation point
oscillates at the large front side, the force fluctuation
and the directivity are deviated clockwise. In the case
of rotary oscillation of the body, the shift from one
regime to the other, if observed then too, would print
in the acoustic field, which may cause disturbance. Fi-
nally, the main result is a great enhancement of the
acoustic power with respect to the circular cylinder (by
6 to 15dB) and to the case without incidence (by 30
to 40dB), with a significant contribution of the drag
dipole, which strongly modifies the directivity by radi-
ating mainly in the streamwise direction.

The present technique could be used to gain knowl-
edge about more complex geometries such as landing
gear or car-side mirror. In an industrial context, mod-
els are missing which would be able to discriminate
configurations from the aeroacoustic efficiency point of
view, once the Mach Number and one reference length
are given. Scaling the acoustic radiation on the fluctua-
tion of aerodynamic coefficients provide such criterion.
Moreover, those statistic quantities, though of second
order, can be obtained experimentally or numerically at
reasonable costs.
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Appendix A. Far-field approximation of the con-
vected Green function

The aim of the following tests is to quantify the
range of validity of the approximation (4) of Curle’s
formula (1) through the far-field and compact source
assumptions. The distinction between both is straight-
forward for a computation in the time domain, where
the far field is reached when r can be approximated by
||⃗x||, while compactness means that all the source points
emit at the same time, so that such approximation is ex-
tended to the computation of the retarded time. In the
frequency domain, the compact source assumption re-
lies on the wavenumber. That is why both the latter and
the propagation distance are investigated as parameters
in the quantification of the error made in (4).

We shall consider a circular source of radius ||⃗y|| = a
with a unitary mode amplitude, and a circular observer
of radius ||⃗x|| = R. We then compare the exact radiation:

Φi(R, θ, k) = a
∫ 2π

0

∂G̃c(x|y, ω)
∂yi

dφ (A.1)

with the approximated radiation:

Φ̌i(R, θ, k) = 2π a ∂Ǧc,i(x, ω) (A.2)

through an error function defined as:

E2(R, k) =

∫ 2π

0

∣∣∣Φ̌i − Φi

∣∣∣2 dθ∫ 2π

0
|Φi|2dθ

(A.3)

Taking ||x − y|| ≈ ||x||, which yields ri ≈ xi and

rβ ≈ xβ =
√

x2
1 + β

2x2
2, the first spatial derivatives of the

2D convected Green function in the frequency domain
become:

∂Ǧc,1 = Ǩ
−ik
4β3

[
iM H(2)

0

(
kxβ
β2

)
− x1

xβ
H(2)

1

(
kxβ
β2

)]
∂Ǧc,2 = Ǩ

i
4β

kx2

xβ
H(2)

1

(
kxβ
β2

)
(A.4)

with Ǩ = exp
(

iMkx1

β2

)
.

Isocontours of the error E are plotted in figure A.13
as a function of the propagation distance and the
wavenumber, both being normalized by the source size,
that is R/a and ka respectively, for four Mach number
values of the observer motion.

The error follows a behaviour like the weakest link:
for a given propagation distance, the error is reduced as
the wavenumber decreases until it reaches a minimum
level driven by the propagation distance. It works con-
versely for a given wavenumber. Moreover, the error is
increased at higher Mach number. It is noteworthy that
the wavenumber is more demanding than the propaga-
tion distance. Indeed, at M = 0.5 for instance, the er-
ror becomes less than one percent as soon as R is larger
than 4a while the wavenumber must be lower than 0.1/a
to ensure the same level, which corresponds to a wave-
length greater than 20πa. Such criterion is severe re-
garding the aeolian tone, since the lowest k scales as
2πMSt/d with St ≈ 0.18.

Finally, no significant difference of error is noticed
between ∂Gc/∂y1 and ∂Gc/∂y2, while this does nei-
ther depend on the propagation distance nor on the
wavenumber but on the Mach number.
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