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Abstract – New data and review of the spanwise coherence length is provided for flows over cylinders of dif-
ferent cross-sections: circular of diameter d, and rectangular of sectional aspect ratios (breadth (b) to height (d)
ratio AR = b/d) of 1, 2 and 3. In the present measurements, the body has both d and spanwise length of 70d
fixed, and the Reynolds number (based on d) range 6000–27,000 is covered. Two-point data are obtained from
two hot-wire probes, one fixed in the symmetry plane and the other moving on the corresponding spanwise axis.
Their position in a cross plane are deduced from preliminary measurement of the mean flow with a single probe,
allowing fair comparisons between the different geometries and the introduction of uncertainty bars on
coherence length values. At all tested regimes, a very good agreement is noticed between velocity-based and
pressure-based coherence experimental data. Coherence length definitions are revisited, and the aeroacousti-
cally consistent, integral length definition is selected, allowing fair synthesis of literature data into a single chart
and empirical functions. Definitions for coherence decay models (e.g. Gaussian or Laplacian) are also adapted so
that coherence length and coherence integral shall be equivalent. This preliminary work on coherence data and
its spanwise integration enables transparent regressions and model selection. Generally, the Gaussian model is
relevant for the lift peak, while the coherence exhibits a Laplacian decay at harmonics. On average, at peak
Strouhal number, the coherence length for the circular and square cylinders is of 5d while it is of the
order of 15d for the rectangular sections. It is concluded that the flow over those latter geometries is still a
two-dimensional dynamics at the tone frequency. These values are almost preserved over the tested Reynolds
number range. Coherence length value at harmonics is extensively documented. Spanwise coherence length is
also discussed as an ingredient of acoustic efficiency.

Keywords: Cylinder aeroacoustics, Aeolian tone, Spanwise coherence, Circular cylinder, Square cylinder,
Rectangular cylinder, Coherence length

Nomenclature

AR Sectional aspect ratio (b/d)
a Linear regression coefficient for Gaussian

model
b Sectional breadth
d Cylinder diameter, sectional height
f Frequency
f0 Lift peak frequency
f1 Drag peak frequency
L [K] Spanwise coherence length, [normalized by d]
LG, [KG] Coherence length for Gaussian decay
LL, [KL] Coherence length for Laplacian decay
‘ Cylinder wetted span
P1–P4 Probe locations in (x, y) plane

*Corresponding author: florent.margnat@univ-poitiers.fr

R Residual of coherence integral due to
truncation

R2
a Adjusted determination coefficient

Re Reynolds number, based on U1 and d
St Strouhal number, based on U1 and d
Stp Peak Strouhal number in KI spectrum
Stm Strouhal number of modelled coherence decay
U1 Upstream velocity
ui Fluid velocity component in the ith direction
x, y, z Streamwise, transverse, spanwise coordinate
a Gaussian decay coefficient (a = a2)
b Regression coefficient for Laplacian model
Dz, [g] Spanwise lag [normalized by d]
glim Upper limit of coherence spanwise integral
gmax Maximum lag included in the regression
C Coherence function (normalized cross

spectrum)
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C0 Threshold for definition of glim
Cp, [Cu] Pressure, [velocity] based coherence data
CG, [CL] Gaussian, [Laplacian] coherence decay
KI Normalized, integral coherence length
h Peripheral angle at the circular cylinder wall

1 Introduction
1.1 Relevancy and sparsity of coherence length data

The overall goal of the present investigation [1] is the
influence of shape on bluff body aeroacoustics. This mostly
concerns sources of acoustical discomfort that salient parts
of vehicles can be, for instance car antenna and rear mirrors,
high-speed train pantographs and landing gears. Such engi-
neering cases still faces a lack of models which could be used
for low-cost diagnostics [2] at the design step. Indeed, to
date, there is no aeroacoustic equivalent of head loss tables
or Nusselt’s number formulas to apply to typical configura-
tions. The present paper can be viewed as a first attempt of
this, through Figure 11 in particular. It focuses on experi-
mental estimation of the spanwise coherence length in the
flow over cylinders of different cross sections and at different
Reynolds (Re) and Strouhal (St) numbers. This is critical to
the efficient design of noise and vibration control strategies
since the spanwise coherence length is one of the two major
ingredients of the acoustic intensity of aeolian tones [3–6],
the other one being the sectional aerodynamic force. Thus,
the discrimination between shapes of rods from the aeroa-
coustic point of view requires the understanding of how
the cross section shape influences the spanwise dynamics
of the flow, which can be described in terms of coherent
length.

Many of previous experimental works on spanwise
topology of bluff-body flows [4, 7–12] focused on the two-
point correlation. This provides an overall quantification
of the spanwise organisation. The coherence function gives
a better description of the dynamics through the spectral
information, in particular when the flow contains peaked
frequency, as it is the case for wakes in the subcritical
regime. Experimental studies that reported coherence data
for aeroacoustics are listed in Table 1. There have been no
measurements addressing both circular and rectangular
cylinders in the same campaign.

Moreover, to the best of the authors’ knowledge, an
experimental value for the spanwise coherent length is only
mentioned in the literature for the peak frequency [5, 6, 13]
and harmonics [14] and for a single configuration (the flow
over a circular cylinder), yet some inconsistencies between
data and reported values, as well as different definitions
of the coherence length, prevent easy comparison and sub-
sequent applications. The other aeroacoustic studies [15–17]
listed in Table 1 did not report coherence length estimation.
In the field of wind engineering, Matsumoto et al. [18] and
Le et al. [19] reported wall pressure coherence data mea-
sured in rectangular (AR = 1 and 5, where AR is the
breadth (b) to height (d) ratio) but only the (very wide)

velocity range of the wind-tunnel was given, without more
precision of the tested regime. Ito et al. [20] reported
coherence data for AR = 3.5, 5 and 8 for Re = 38,000 with
grid turbulence inflow, but not for the smooth flow.

In the present study, the spanwise coherent length is
estimated for a range of Strouhal number up to 0.5, for a
circular cylinder, a square cylinder, and two rectangular
cylinders (AR = 2, 3), for Reynolds numbers between
6,700 and 27,000. Thus, the present results provides an
insight in how the Reynolds number and the shape of the
body influences the spanwise coherence: they show that if
the velocity does not change its value much in the tested
range, the known value for the circular cylinder is not
universal to other shapes. Furthermore, providing coherence
length spectra allows prediction and modeling of the noise
spectrum.

1.2 Coherence measurement

Another originality of the present work is to consider
very large spanwise extents relatively to the height d (block-
ing dimension) of the cylinders: the open jet length is of 70d
while the distance between the cylinder supports is of 86d.
Thus, finite length effect is minimized. Moreover, the actual
coherence decay can be observed, contrary to studies listed
in Table 1, which do not include measurements at spanwise
lags beyond 8d (except Nakato’s), thus reducing the observ-
able coherence length to the same extent. In the framework
of the benchmark study on the aerodynamics of a station-
ary rectangular cylinder with chord-to-depth ratio equal
to 5 (BARC) [21], simulations has been performed up to
20 diameter long [22], however no coherence data is
reported.

The spanwise distribution is here investigated by
hotwire anemometer (HWA). Surface pressure measure-
ments would be cumbersome indeed when working with dif-
ferent geometries because pressure taps should be installed
on each test body and at fixed positions. Also, the cylinder
section should be wide enough to enclose the taps, and the
vortex shedding frequency could then become lower than
the anechoic chamber limit if the velocity is low. On the
contrary, velocity probes can be moved freely to any span-
wise station and there is no limitation regarding the size
and number of the obstacles, which need not to be instru-
mented. Geyer’s investigation [17] about porous covers
around the cylinder also used HWA.

The intrusive character of HWA and its incorrectness in
reverse flow regions notwithstanding, one may wonder how
representative of wall flow topology the HWA result is. The
reviews done by Ribeiro [9] and Norberg [12] present several
methods for quantifying the flow spanwise signature, and
they affirm that the analysis of velocity data returns the
same values as the ones obtained from surface pressure.
Using both velocity and wall pressure measurements,
Kacker et al. [8] also obtain close results, though not exactly
the same, and explain the difference by turbulence induced
wall pressure fluctuations that may not be seen by the
velocity probes, thus generating bigger velocity correlation
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lengths. This behavior is observed by El Baroudi [7] too.
The effect of flow turbulence on pressure, drag and lift
spanwise correlations is studied by West and Apelt [11].

1.3 Coherence length documentation

It is striking in the literature review of both experimen-
tal and numerical [24–26] works about spanwise coherence
length that a new value is rarely compared to previously
documented ones. Moreover, if communicated, several
definitions were used, based, on one hand, on either the
squared coherence or the root coherence, on the other hand,
on either the lag for which a given decay is obtained (for
instance, a coherence value of .5) or on the regression coef-
ficient in a model of the decay (e.g. Gaussian decay).
Finally, the regression process is never described. All of
these flaws prevent a reliable use of the reported values in
further applications.

In this contribution, a universal definition is attempted,
based on the actual quantity that appears in the spanwise
integral from Curle’s formulation. That is, a definition
based on coherence integral, rather than on the modelling
of the decay, whom one main advantage is that it can apply
to any frequency, thus providing a spectrum for coherence
length, which can be directly used to predict acoustic spec-
tra. The analytical link between the present and previous
definitions is detailed. The regression is only used to refine
a first estimate for the peak frequencies, and a rational pro-
cess is proposed for conducting the fitting, in particular
selection of the spanwise displacements which should be
included in the fitting or not when the measurements
include large lags.

Based on this, literature data is revisited. First, the
reported values for the coherence length are converted using
the present definition. Second, for studies that do not report
coherence lengths, coherence data is re-analyzed in order to
estimate it for the peak frequencies. Third, all of the values
are compared for different geometries and regimes, so that
subsequent applications can deal with uncertainties, and
empirical laws are proposed. This ismade visual in Figure 11,
which is one of the most important in the paper.

Presented results may serve as insight for numerical
simulation of such type of geometry, specially in what
concerns the necessary spanwise extent for having an accu-
rate flow. They are also of direct interest regarding acoustic
prediction, where the obtained coherence lengths are parts
of models of noise emission of elongated bodies [24, 27],
regarding general bluff body aerodynamics for its investiga-
tion on the effect of the cross section shape [28–30], and
regarding noise reduction strategies based on the destruc-
tion of flow’s spanwise coherence [31].

1.4 Paper organization

The body of the paper has been divided into two main
sections. First, Section 2 describes the wind tunnel facility
and the experimental setup (2.1), presents the processing
techniques (2.2) and the additional care taken for rectangu-
lar cylinders (2.3), in order to provide fair and reliable
coherence data. Second, Section 3 deals with the coherence
length definition (3.1), estimation (3.2) and results at peak
frequencies and in terms of influence of shape and velocity
(3.3). A link with aeroacoustic efficiency of the tested
shapes is proposed in Section 3.3.4. The review of literature
coherence data and coherence length estimations is pushed
in Appendix B in order to lighten the main text.

2 Coherence measurement for several shapes

The measurement methodology was presented in details
with first results at the Forum Acusticum (Lyon, France,
2020) [32]. Only the essentials are recalled here in order
to enable understanding of the present contribution.

2.1 Experimental setup

This work was performed in the anechoic wind tunnel
BETI of Institut PPRIME, at Poitiers, France. It is of
closed circuit, open test section, with an exit nozzle of
section 70 cm � 70 cm. Hot-wire anemometry is performed
using Dantec P11 one-dimensional probes. The facility
and the setup with the hot-wire probe and support are

Table 1. Experimental studies reporting spanwise coherence data of cylinder flows in the framework of aeroacoustics. For rectangular
cross-sections (rect), the parenthesized numbers are the breadth (b) to height (d) ratio, hereafter denoted as AR = b/d.

Reference Reynolds number Cross-section d, mm Total span ‘=d Max Dz/d

Kato et al. (1993) [15] 10,000 Circular 10 – 3.8
Fujita et al. (1998) [23] 13,000 Rect (1.0)y 20 10 6
Nakato et al. (2001) [16] 9,600 Rect (1.0,3.0) 10 180 23
Casalino & Jacob (2003) [5] 22,000 Circular 16 18.8 5.0
Jacob et al. (2005) [13] 13,000–77,000 Circular 10, 16 30, 19 6.2, 5.2
Fujita (2010) [6] 250,000–2,000,000 Circular 297 11.2 3
Maryami et al. (2019) [14] 30,000 Circular 22 20.9 6
Geyer (2020) [17] 77,000 Circular 30 9.3 7.2

Present study 6,700–27,000 Circular 10 70 30
Rect (1.0, 2.0, 3.0)

y At non-zero incidence, see discussion in Appendix B.2.
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illustrated in Figure 1. As the coordinate system, x follows
the flow direction, y is in the transverse axis and z is in the
cylinders axis direction.

Tested geometries are cylinders with different cross
sections (with fixed height of d = 10 mm): circular cylinder;
square cylinder; rectangular cylinder of dimension d � b =
10 � 20 mm2; and rectangular section of dimension
d � b = 10 � 30 mm2. The aspect ratios AR = b/d (see
Fig. 2, left) are thus of 1, 2 and 3, respectively. No end plates
are used, for that technique of flow confinement modifies the
acoustic radiation [33]. The cylinders extend beyond the
shear layers, so that the actual wetted length is about that
of the jet, ‘ � 70d, with uncertainties due to the mixing
layers. This very large span reduces end-effects.

At a given flow velocity U1, the Reynolds number Re
based on it and d is the same for all geometries. Similarly,
d is used as reference for the Strouhal number St = fd/U1,
where f is the frequency. Tested velocities, indicated in
Table 2 for each shape, range from 10 m/s to 40 m/s, lead-
ing to 6,700 � Re � 27,000 for airflows at about 20 �C.

For performing coherence and correlation calculations,
a fixed hot-wire probe is simultaneously recording the
velocity magnitude at the cross symmetry plane of the
cylinder (z = 0 mm), while the same quantity is measured
by the moving probe in the spanwise direction at fixed
XY coordinates (see Fig. 2, right). Due to the supports of
the hot-wires, the starting point of the moving probe is at
a spanwise distance of Dz = 0.7d = 7 mm from the fixed
probe. A total of 48 spanwise positions are used, up to
z = 300 mm. Sampling frequency and time of 6.4 kHz
and 30 s are selected, respectively.

2.2 Coherence spectrum estimation and validation

At each spanwise location, the power spectral density is
computed using Welch estimator. To harmonise the uncer-
tainty on peak Strouhal number for different velocities
while the recording time is the same, a constant Strouhal
number resolution is specified to DSt = 0.001 (instead of
constant segment size). Also, a Chebyshev window is used,

Fig. 1. Wind tunnel facility BETI at Institut PPRIME, at Poitiers, France (left), where the cylinder and hot-wire probes are
mounted (right).

Fig. 2. Experimental setups for obtaining the mean velocity fields (left, see Sect. 2.3.1) and the spanwise coherence (right).

Table 2. Tested shapes and velocities (flow from left to right).

Shape Circular Square Rectangle Rectangle
d = 10 mm 10 � 10 mm 10 � 20 mm 10 � 30 mm

U1 (m/s) 15, 20, 25, 30, 40 10, 20, 40 20, 40 20, 40
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with 50% overlap and the segment size is doubled by zero
padding. This post-processing leads to an a priori, absolute
uncertainty of ±0.0005 on the values of peak Strouhal
number reported herein.

Spanwise maps of the velocity fluctuation frequency
content are shown in Figure 3 for the circular and square
sections at U1 = 40 m/s. The spanwise homogeneity is
good up to 20 diameters away from the jet center for the
main peak, in terms of spectrum level at the peak. Its extent
is shorter for harmonics, however. The side effect leads to a
peak Strouhal number slightly higher than at the central
region for the circular section, while it is decreased for the
square section. Maps for other velocities, geometries and
measurement points are given in [1]. It is concluded that
the flow is statistically homogeneous in z for such set-up
and models, to a sufficient degree enabling spanwise coher-
ence analysis.

The velocity spanwise coherence Cu is defined as the
normalized, cross spectrum of two HWA fluctuation signals
~uiðtÞ and ~ujðtÞ recorded at two spanwise positions, noted zi
and zj respectively. It is a function of the frequency and of
the position (x, y) in the transverse plane, and, assuming
spanwise homogeneity, an even function of the spanwise
lag Dz = |zi � zj|. One then has:

Cu g; fð Þ ¼
uiu�j

��� ���
ffiffiffiffiffi
u2i

p ffiffiffiffiffi
u2j

q ; ð1Þ

where g = Dz/d, ui is the (auto)spectrum of ~uiðtÞ, and the
superscript * indicates the complex conjugate, while |�| is
the modulus. The coherence calculations are based on
averaged spectral density, using the same settings as for
the velocity spectra calculation. Should the term magni-
tude squared coherence be used, this corresponds to C2

u.
The coherence value for g = 0 (the test of the signal with
itself) is unitary by construction.

Whether velocity coherence is equivalent to wall-
pressure based coherence Cp is assessed in Figure 4.
Coherence data is plotted as a function of the spanwise
lag at the main peak frequency, namely, the lift fluctuation
at the shear-layer flapping frequency.

For the circular cylinder flow, Figure 4 (left), present
data for U1 = 40 m/s is compared to four data-sets from

the literature, all obtained by wall-pressure measurements,
in the same Reynolds number range. The collapse of the
data for the short lags (namely g � 2) is noteworthy. For
larger distance between the sensors, there is more dispersion
among the data-sets, and the coherence decay for a given
data-set is less regular. In the range 2.5 � g � 5, velocity
coherence is slightly lower than wall pressure coherence.
This could be associated with probe intrusion or with higher
turbulence level in the shear-flow than at the wall.

For the square cylinder flow, Nakato et al. [16] reported
three points for C(g) at the peak frequency, from velocity
measurements one height downstream of the body. That
for g = 5, the shortest documented one, is in perfect agree-
ment with present data as visible in Figure 4 (right). The
two other points are for larger lags, where coherence level
becomes similar to measurement noise, which can be quan-
tified as up to � 0.2 in the present case (see coherence
maps in Fig. 6 for instance). Nevertheless, both data-sets
exhibit consistent decays. For the shortest lags, present
coherence does not exceed 0.85. This kind of saturation
could be due to probe interference, reinforced by a loss of
accuracy of the HWA here in the near wake, reverse flow
region.

Further comparisons are proposed in Appendix B and
Figure B.2, at other regimes for the circular cylinder, and
for rectangular cylinder of AR = 3 with data of Nakato
et al. [16] too and with numerical data reported by Rakugou
et al. [26]. Recall that, to the best of our knowledge, direct
comparisons of coherence data such those in Figures 4 and
B.2, have not been conducted before. For the sake of com-
pleteness, comparison with literature data for spanwise cor-
relation is extensively conducted in [1]. The conclusion of
this section is that the present measurements generates
spanwise coherence data in agreement with literature.

2.3 Rectangular cylinders specific issues

The present paper does not aim only to enrich the liter-
ature with spanwise coherence length values for a given, less
documented, shape, e.g. the square section cylinder, but
also to provide fair comparison between shapes, from an
aeroacoustic design point of view. Ribeiro [9] indicates that
spanwise correlation is relatively independent from the
measuring location in the XY plane provided it is above

Fig. 3. Spanwise distribution of the velocity power spectral density for the flow over the circular (left) and square (right) cylinders,
at Re = 27,000. Inset is the case. The black bullet (�) indicates the probe position and the lines are mean flow velocity contours (see
Sect. 2.3.1).
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the mixing layer and at a reasonable downstream location
to capture more than just the inlet flow. That is how the
position (0, 0.9d) has been selected for coherence measure-
ment in the flow over the circular cylinder. For the rectan-
gular cylinder, a two-step measurement method is set up, in
order to ensure that the hot-wire placement does not bias
the coherence length estimation.

2.3.1 Mean flow scan

Positions where the spanwise study shall be conducted
afterwards are based on a preliminary map of the mean,
homogeneous, velocity magnitude in the transverse (XY)
plane using the moving-probe, as depicted in Figure 2 (left)
and described in details in [32].

Mean flow topology for the rectangular cylinders at
20 and 40 m/s are shown in Figure 5 through isocontours
of the velocity norm, and by underlining the unitary con-
tour, where U = U1, hereafter referred to as the reference
line. For each case, the latter starts close to the upstream
edge, then deviates from the wall to a plateau, and then
deviates again upward. Due to use of HWA, the recircula-
tion region can not be visualised. However, the contours
allow to relativise its length between the geometries and
the velocities. Moreover, reattachment before the down-
stream edge can be guessed for AR = 3.

Given this universal evolution of that meanflow topol-
ogy, in particular the reference line, four typical points
are selected: P1 is located at (1.0d, 0) and serves for refer-
ence; P2 is the closest to the upstream edge, at the point

of maximum velocity norm; P3 is taken 2–3 mm above
the reference line plateau; and P4 2–3 mm above its
maximum curvature. Thus, the probe is not at the same
absolute position in the XY plane for all of the cases (except
for P1) but it is at topologically equivalent position from the
mean flow point of view. P1 is not used for AR > 1 because
at this location, unsteady reverse flow is expected, meaning
that HWA may not be reliable. Also, in order to lighten the
measurements, P3 is only included for the square cylinder
due to its intermediary location between P2 and P4. The
probe location for each case is given in Appendix A (Tab.
A.1) and its influence on the spanwise coherence map is
described in the next section.

2.3.2 Influence of probe position

Maps of Cu (St, g) are drawn in Figure 6 for the square
cylinder flow at 20 m/s, for the four probe locations. Note
that the four plots do not come from simultaneously
recorded data: the flow perturbation due to the probe is dif-
ferent for each position, and for each lag. At the main peak
frequency St = 0.125, the coherence decay is very similar
between the four probe positions: the coherence peak
emerges from the background up to g � 8, except for P4

where this ends around g � 6. This is also noticed for the
drag harmonic at St = 0.250, with emergence up to
g � 3.5, a little bit less for P1. The third and fourth peaks
(St = 0.375 and 0.500, respectively) emerge differently
depending on the probe location. Similar observations are
made for the two other velocities considered for the square

Fig. 4. Spanwise coherence data in the flow over the circular (left, probe at (x, y) = (0, 0.9d) for present data) and square (right,
probe at (x, y) = (1.0d, 0) for both data-sets) cylinders, at the main peak frequency (St = 0.193 and 0.125 for present data on left and
right, respectively).
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cylinder (10 and 40 m/s [32]) and between P2 and P4 for the
other rectangular cylinders [1].

The map for P1 exhibits a sharper lift peak, and almost
no emergence at its third multiple. This is consistent with
the probe location downstream the body, where the wake

global oscillation [34] imprint on the probe may be less
perturbed by inflow turbulence or shear-layer instabilities.
At the same time, that region is where the vortices are
generated and shed, associated with base pressure fluctua-
tion at twice the shear-layer flapping frequency. The maps

Fig. 5. Mean flow over a rectangular cylinder of AR = 1 (square cylinder, top), 2 (middle) and 3 (bottom) at Re = 13,000 (left) and
Re = 27,000 (right). Isocontours of velocity norm from 0.4 U1 to 1.6 U1 by step of 0.1 U1. The full, thick line is where U = U1. The
labelled bullets (�) are the position of the probes in the spanwise study. The case AR = 1, U1 = 10 m/s is shown in Figure A.1.

Fig. 6. Spanwise coherence of the velocity (Cu) in the flow over the square cylinder, at Re = 13,000. Inset, the black bullet (�)
indicates the probe position and the lines are mean flow velocity contours (with same legend as Fig. 5).
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for P2 and P3 shows similar regions of significant coherence
between the peaks. Rokugou et al. [26] also reported signif-
icant level of coherence (C � 0.5 for g � 1) for St = 0.06 in
the flow over a rectangular cylinder of AR = 0.6. Or this
may be due to the less distance of these positions to the
wall, leading to a likely influence of the hot-wire on the local
flow dynamics.

2.4 Conclusion on the methodology

The present protocol of spanwise coherence measure-
ment using HWA in wind tunnel has been assessed by
comparison to literature data and by the use of a couple of
probe positions based on the mean flow topology. Besides
the validation of the setup, this allows an estimate of uncer-
tainties on the coherence length, as presented in the next
section. For rectangular cylinders at the main flow fre-
quency, the spanwise coherence distribution appears almost
independent of the probe position. Its measurement using
HWA can thus be considered as representative of that of
the lift.

In the remaining part of this paper, the quantity Cu,
defined in equation (1) and obtained for a given case (shape,
velocity, probe position) from the processing of HWA
signals described in this section, refers to as the data.

3 Coherence modelling and coherence length
3.1 An aeroacoustically consistent definition

The spanwise coherence length emerges from the deriva-
tion of the expression of the acoustic intensity spectrum, in
the case of the noise generated aerodynamically by the flow
over a cylinder. At low Mach number, the cross section is
acoustically compact, and the integration of Curle’s surface
source must include phase lag in the spanwise direction
only. Given the close relationship between coherence length
and spanwise Curle’s integration, the spanwise coherence
length L shall be defined as an integral length:

Lðf Þ
d

¼ K fð Þ ¼ 1
2

Zð‘=dÞ=2

�ð‘=dÞ=2

C g; fð Þdg; ð2Þ

where K is the spanwise coherence length normalized by the
cylinder height. Such definition, which is mentioned in
[14, 16, 35], is the frequency domain equivalent of the span-
wise correlation length or scale defined in the time domain
[3, 36]. Besides its formal link with Curle’s approach, it is
also closer to the data than definitions based on a modeling
of the coherence decay as Gaussian or Laplacian, which
requires regression (see Sect. 3.3). Moreover, such theoreti-
cal decays do not fit the data for some cases at some frequen-
cies. Finally, (2) does not rely on any arbitrary setting of
coherence decay, which may also confuse the users, given
that the median value of 0.5 is specified for C by Kato
et al. [15] and Orselli et al. [25], while Maryami et al. [14]
set it for C2. Halving the two-sided integral is the only

addition of present definition to Curle’s integral. It is never-
theless introduced here as a concession in order not to go
too off usually known values for the circular cylinder flow.
The direct estimation of L from (2) is not free from practical
difficulties, however. A mix of three methods deduced from
the three types of definition (data quadrature over spanwise
lags, lag for a given coherence level, and regression with a
decay model) has been found useful to rationalize the esti-
mation of the coherence length.

3.2 Frequency dependent coherence length

3.2.1 Two methods of estimation

Assuming that the coherence is an even function of the
lag, (2) can be evaluated using a trapezoidal rule over the
spanwise range of the moving probe. However, in order that
the quadrature to be not biased by measurement noise for
large lags, the upper bound is adjusted for each frequency.
Namely:

KI fð Þ ¼
Z glim fð Þ

0
C g; fð Þdg; ð3Þ

where KI stands for the quadrature estimation of K, and
glim is the smallest element of the first set of three straight
lags returning C < C0 = 0.2, at a given frequency. This
truncation is mainly useful between the peak frequencies,
where significant level of coherence is noticed for a small
portion of the span only (see Fig. 6): the signal to noise
ratio is then very weak when including all of the measured
lags. By truncating this, it is likely that KI systematically
underestimates K. Nevertheless, this error can be quanti-
fied, by modeling the coherence decay. A Gaussian decay
corresponds to:

CG gð Þ ¼ e�ag2 ; ð4Þ
where CG is the Gaussian model of the coherence C and
the frequency dependence of a has been omitted for con-
ciseness. Assuming that the coherence is vanishing at
the cylinder ends, that is L 	 ‘, leads to the Gaussian
coherence length

KG ¼
Z ‘

2d

0
CGðgÞdg �

Z þ1

0
e�ag2dg ¼ 1

2

ffiffiffi
p
a

r
ð5Þ

meaning that

CGðgÞ ¼ e
�p

g
2KG

� �2
: ð6Þ

The integral length is thus commonly referred to as the
Gaussian half-length. The lag for which the coherence falls
to C0 is thus given by

glim ¼ 2KG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� logC0

p

r
� 1:43KG; ð7Þ

where log is the natural logarithm. The residual of the
truncated integral is then [37]:
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R ¼ K� KI ¼
Z þ1

glim

e
�p g

2KG

� �2

dg;

¼ KG erf
ffiffiffi
p

p
4

‘

L

� �
� erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� logC0

p� �� 	
: ð8Þ

The first term in the brackets is greater than 0.9999 as soon
as ‘ 
 6:1L. Since the second is 0.9272, the conclusion is
that R � 0:1KG. Modeling the coherence decay with a
Laplacian function, namely:

CLðgÞ ¼ e
� jgj
KL ð9Þ

leads similarly to glim = �KL logC0 � 1.61KL and a resid-
ual about 0.2KL.

A coherence decay model can also be exploited to esti-
mate the coherence length from the lag at which the coher-
ence falls on a given value. Indeed, at g = KG, one has
CG = exp(�p/4) � 0.46. Similarly, CL (g = KL) =
e�1 � 0.37. Consequently, plotting the corresponding
isocontours of the data in the (g, St) field yields two other
evaluations of the coherence length spectrum.

The three results are plotted in Figure 7 for the four
geometries at U1 = 40 m/s and for probe at P4. Before
the trends are described in the next section, the spectra
are discussed here from the point of view of methodology.
The agreement between the two methods (quadrature
and isocontours) is noteworthy. Particularly at the peaks,
KI can hardly be distinguished from the isocontour that
assumes a Gaussian decay. The one that assumes a Lapla-
cian decay returns slightly higher coherence estimation.
This is expected since it is a lower value of C within
the same data. Note also that the contour plot resolution

corresponds to that of the measured lags, which is of 1d
for Dz
 5d. The results for U1 = 20 m/s and for the probes
at P2 are shown in the Supplementary file.

Recall that the evaluation of KI does not require any
decay model, thus it can be considered as a good way to
compress the data. However, it requires a good lag resolu-
tion and that large lags are included in the measurement
span such that the coherence is small enough at the end
of the integration domain. If it is not, then K can still be
evaluated from KI by integrating C2 instead of C. This
reduces the lag where the coherence vanishes and the back-
ground noise in the coherence map at the same time. How-
ever, the conversion of the resulting integral into KI requires
a decay model, noting that:Z þ1

0
C2

Gdg ¼
Z þ1

0
e�2ag2dg ¼ 1

2

ffiffiffiffiffi
p
2a

r
¼ 1ffiffiffi

2
p

Z þ1

0
CGdg;

while
Z þ1

0
C2

Ldg ¼ 1
2

Z þ1

0
CLdg:

From the fact that the contour based on the Laplacian
decay is generally higher than KI, it could be concluded that
the Gaussian decay models the data better, however this is
investigated further in Section 3.3.2.

3.2.2 Influence of shape and velocity

The above described approximations notwithstanding,
Figure 7 provides direct visualizations of the influence of
cross-section shape on the spanwise coherence length
spectrum in cylinder flows, that is, in Curle’s formulation
framework, of their aeroacoustic efficiency. To estimate
the far-field noise spectrum, this should be multiplied by
the source amplitude, as given by the sectional force spec-
trum, whose estimation [12, 38] is outside the scope of the
present contribution. The geometry influences not only

Fig. 7. Frequency dependent, normalized spanwise coherence length in the flow over cylinders, at Re = 27,000. Measurements at P4

for rectangles (see Sect. 2.3.1). Full lines: estimation from spanwise integration of coherence data (3); dashed and dash-dotted lines
show isocontours of Cu = exp(�p/4) and Cu = exp(�1), respectively, in the (g, St) field, corresponding to a coherence decay assumed
as either Gaussian or Laplacian, respectively.
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the coherence length value at peak frequencies, but also the
shape of the full spectrum, in terms of peak width and har-
monics. With the present definition (2), one obtains L � 5d
for the circular cylinder at the main peak St = 0.19, and
�2d at the first harmonic. The value is slightly higher for
the square cylinder, with L � 6d for St = 0.125, � 3d at
0.25, and as significant at the third peak St = 0.375 as at
the drag peak for the circular section. One of the main
results of the paper is the very high coherence length values
measured for rectangular cylinders AR = 2 and AR = 3:
around 15 � 20d for the first peak, and 7 � 10d for the sec-
ond, depending on velocity and probe location. Note that
for AR = 2, the two first peaks (St = 0.08 and 0.14) are
not harmonic.

A continuous sharpening of the main peak is noticed
when moving from the circular to the square section
then increasing aspect ratio of rectangular section. At
Re = 27,000, the circular section also leads to a peak base,
that is an increasing significant coherence length for
0.15 � St � 0.18 and the equivalent hillside for
0.22 � St � 0.26. Such base is also visible, while sharper,
for the square and AR = 2 rectangle. For both its lift and
drag frequencies, the coherence length spectrum of the flow
over the AR = 3 rectangle remains highly tonal. Combined
with the coherence length value that reaches nearly the
whole (half-)span of the jet core, the peak sharpness for this
geometry leads to the conclusion that this bluff-body flow is
still mostly dominated by a two-dimensional dynamics at
this regime.

The influence of velocity is illustrated in Figure 8, which
includes all of the regimes tested in the present experiment
for the circular and square sections. For both sections, the
coherence length spectrum is singular at the lowest velocity,
however in an opposite sense: for the circular cylinder, the
coherence length at peaks is higher at Re = 10,000 than
for faster flows, while for the square cylinder, it is lower at

U1 = 10 m/s than at 20 or 40. This may be attributed to
different transition to turbulence scenario for different
shapes and flow modes. However, for the circular cylinder,
the spectra appear very similar for the four other tested
velocities, meaning that the flowmay have reached an estab-
lished (Reynolds number) regime, yet this is not so obvious
for the drag peak. Figure 8 also reveals significant coherence
length values at the harmonics, which received few treat-
ment in literature although they may generate loud tones.
This is critical for the square section in particular. That is
why the coherence length at the harmonics is included in
the tabulation of present data (see Supplementary file),
and its estimation accuracy is improved by feeding a regres-
sion procedure with the present section basic estimations, as
described in the following.

3.3 Coherence length at peak frequencies

This final section is devoted to a refined estimation and
a discussion of spanwise coherence length at peak frequen-
cies. The estimation uses a linear regression procedure with
either a Gaussian or a Laplacian coherence decay model.
Before presenting it, the peak frequency shall be defined.

3.3.1 Peak Strouhal number characterisation

A first guess of the Strouhal number that leads to a
coherence length peak is obtained from local maxima in
KI spectra (e.g. Fig. 7). The maximum seeking procedure
is automated, but for harmonics, whether it is an effective
peak (emerging from noise), or a bias from spectrum vari-
ance, is manually checked for each case. This yields 2, 3
or 4 peaks for a given case, and a total of 75 peaks including
all of the 25 cases (shape, velocity, probe location). These
are documented in a Supplementary file, in terms of peak
location noted Stp and value, that is KI (Stp).

Fig. 8. Frequency dependent, normalized spanwise coherence length in the flow over circular and square cylinders, estimated from
integration of coherence data (3). Measurements at P4 for the square section. Results at other probe locations are available in the
Supplementary file.
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However, for a given case and peak, the Strouhal number
bin corresponding to a local maximum in the coherence
spectrum is not necessarily the same for all lags, as illus-
trated in Figure 9, because of measurements and processing
bias. The integral coherence length KI (St) (horizontal, grey
area) is close to the isocontour C = exp(�p/4) � 0.46, see
Section 3.2.1 and Figure 7. The local maxima of coherence
at a given lag ( ) are collected for g � KI (Stp) (thick grey
lines at g = constant) to build the Strouhal number uncer-
tainty range around Stp that is tabulated for each peak in
the Supplementary file (thick grey lines at St = constant).
Within this range, a Gaussian decay fits the data correctly
below gmax = KI (�) and the maximum coherence length is
obtained at Stm, while the data for g > gmax (�) undergoes
excess of coherence that leads to excess of KI and a biased
Stp 6¼ Stm for that case, see Section 3.3.2 and Figure 10. That

Strouhal number interval is provided in addition to Stp
to handle such uncertainty and enable fair comparisons
with other authors. Note that to ensure the local maximum
in the coherence spectrum at a given lag are avatars of the
same peak indeed, the peak seeking is restricted to
Stp ± 0.03, that is ±30 bins around the Stp (recall that the
non-dimensionalized frequency resolution has been set as
0.001 for all velocities, see Sect. 2.2), and to lags less than
or equal to KI (Stp) to ensure emergence from coherence
residuals.

In more than 90% of the peaks, Stp belongs to that inter-
val. For the 7 exceptions (out of the 75 peaks), this means
that no local maximum was found in the coherence spec-
trum at this frequency at any lag, and that a significant
contribution to the integral is brought by larger lags than
KI. This could be a side-effect through the denominator

Fig. 9. Surface plot of coherence data Cu(g, St) illustrating the nomenclature and methodology for the estimation of Stp and its
bounding. Dashed line: integral coherence length KI at a given Strouhal number; blue line and panels: glim, limit of quadrature
evaluation indicated by the vertical grayed areas; filled triangle (N): peak of coherence length at Stp; open triangles ( ): maxima of
coherence at a given lag; thick grey lines: Strouhal number uncertainty range around Stp; filled circles (�): lags below gmax = KI used
for model fit at Stm; open circles (s): g > gmax. Data for the circular cylinder flow at Re = 20,000.

F. Margnat et al.: Acta Acustica 2023, 7, 4 11

https://acta-acustica.edpsciences.org/10.1051/aacus/2022061/olm


in (1): on one hand, for large z, a peak in the velocity spec-
tra can shift and/or spread (see Fig. 3), resulting in signif-
icant energy at frequencies wide of the peak identified at
smaller z; on the other hand, depending on geometry, veloc-
ity, measurement point and peak, the level of

ffiffiffiffiffi
u2i

p
does not

sustain up to the same z. For low velocity and/or large
coherence length, its decay may start before the coherence
has decayed to C0. Relatively to shorter lags, the autospec-
trum of the moving probe becomes smaller, resulting in an
excess of coherence for KI � g � glim. To the best of our
knowledge, such phenomenon has not been reported in lit-
erature, because it concerns coherence estimation at large
lags (see Tab. 1).

However, the interval in general, and the gap between
Stp and the interval for those exceptions, is a couple of bins
only, while the worst exception is for the circular cylinder
drag peak at U1 = 15 m/s: Stp = 0.412(0.392 � 0.405),
which corresponds to a 5% relative uncertainty in the peak
Strouhal number estimation.

3.3.2 Peak coherence length estimation

Like for Stp, a first guess of K at tone frequencies is
obtained from the value of the integral length at this peak

Strouhal number, that is KI (Stp). Although this is the most
faithful to the data, the numerical estimation of KI can be
biased for the aforementioned reasons (spanwise inhomo-
geneity, lag resolution and trapezoidal method, truncation
at glim). But if the data were correctly described by a model,
then the coherence length yielded by the model would be
free from some of the experimental and computational bias.
Moreover, modeling the coherence field C(g, St) could be
very useful for subsequent applications, for instance flow
as a source of sound radiated to a wall-bounded environ-
ment, such as installation effects [39].

That is why the data Cu(g, St) is fitted with a Gaussian
model (6), by performing linear regression between experi-
mental values of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� logðCuðgÞÞ
p

and g in the range of St
around each peak, as illustrated in Figure 10b. Since the
point Cu (g = 0) = 1 is known by construction, this reduces
to evaluate one single regression coefficient a such that:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� logðCuðgÞÞ

p
¼ ag: ð10Þ

The Gaussian coherence length is obtained afterwards by,
see (6):

KG ¼
ffiffiffi
p

p
2a

: ð11Þ

Fig. 10. Estimation of coherence length at peak frequencies for the square cylinder flow at Re = 27,000 with probe at P4: coherence
data (symbols) fitted with decay model (lines). Single parameter, linear regressions are applied to a data excerpt (full symbols) for a
Gaussian (b) and a Laplacian (c) decay. In (b) and (c), the numbered label next to each line is the adjusted determination coefficient
R2

a of the corresponding regression. The line is full or dashed whether the model is selected or not, respectively. Data for g > gmax,
excluded from the regression, is plotted in (a) for illustrative purpose (open symbols). The refined coherence length values can be read
on the lag axis where C reaches the appropriate value for the selected model (�).
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In the same way, the data is fitted to a Laplacian distribu-
tion (9) through linear regression between �log(Cu (g)) and
g, see Figure 10c, with a single regression coefficient b such
that:

� log Cu gð Þð Þ ¼ bg: ð12Þ
This yields the Laplacian coherence length as:

KL ¼ 1
b
: ð13Þ

Note that such definitions of KG and KL are used in order to
recover the integral length K when the coherence decay
follows one or the other model, see (5). As straightforward
as it sounds, this consistency between the aeroacoustically
relevant definition of the coherence length and its value
yielded by the Gaussian modeling of the coherence decay
or by the lag for a given coherence drop off is a definite con-
tribution of the present paper. However, the regression of a
given data-set will generally return KG 6¼ KL because one
model just does not work and leads to a bad fit.

For all of the 75 detected peaks, the regression is con-
ducted for both models for each Strouhal number bin in
the uncertainty interval defined in Section 3.3.1. The appro-
priate model if any is decided visually using plots of the
linear regression and decay models compared to the data
as illustrated in Figure 10. The adjusted determination coef-
ficient R2

a objectivizes the model quality, but it is not an
absolute quantificator of it. It is thus not used to select
the peak Strouhal number of the model, noted Stm, which
can be different from Stp, because the decay model can fit
the data better at other frequencies without leading to a
peak of coherence length. However, the raw maximum
value of KG or KL over the Strouhal number range may also
results from a biased regression: the most common example
is when the Gaussian model would be good for short lags,
typically up to KI, while the aforementioned excess of
coherence for larger lags is bending the modeled coherence
length to overestimated values. Again, this is decided visu-
ally by comparing regression results for three data subsets,
defined as g � gmax, where gmax = glim (default), KI or KI/2.
Grossly, the default is generally good for the Laplacian
model, while the two others apply for the Gaussian model,
as exemplified in Figure 10 in the case of the two first peaks:
at St = 0.250 (drag peak), although the Laplacian model
leads to R2

a ¼ 0:92, it is not selected for tabulation because
of the poor fit for short lags obtained on chart (a). Neither is
the Gaussian, which needs to exclude data for
g > gmax = KI/2 � 1.6 to reach R2

a ¼ 0:85 only, resulting
likely from combination of model failure and experimental
bias. For the sake of completeness, all of this information
(R2

a, gmax and Stm) is reported in addition to either KG or
KL, in the Supplementary file. Moreover, the best regression
plot for each peak is given there too. When no model seems
appropriate, only KI is tabulated, for it is still valuable from
the aeroacoustic point of view. Model plots for other cases
are provided in Figure B.2 through literature review of
coherence data and in the Supplementary file. A hybrid
model [40], based on the convolution of a Gaussian and a

Laplacian, may be able to correctly account for a regular
behaviour at short lags and a slower decay at intermediate
lags, for instance Seo and Moon’s data [24] at the second
peak, see Fig. B.2f).

In summary, the refined, modelled (regression induced)
coherence length corresponds to a maximum over the
Strouhal number range around the peak, under the strong
constraint that the regression be faithful to the data after
considering the latter’s bias.

3.3.3 Influence of case and measurement method

The coherence length values at peaks, estimated as
described in the previous section, are gathered in Figure 11,
making more visible the influence of Reynolds number,
shape and methodology: along with present data includ-
ing different probe positions and velocities, literature data
from experimental and numerical work is included. As
discussed in Appendix B, digitization of published coherence
data has allowed fair extraction of coherence length
value according to present definitions of KI, KG and KL,
given in Tables B.1–B.5. If KG or KL is tabulated (in the
Supplementary file or in Appendix B), then it is plotted,
or else KI is used. Recall that their definitions are such that
same coherence length value means same acoustic contribu-
tion even if the coherence distribution for increasing lag is
different.

For the circular cylinder at the (lift) peak, all of the
experimental data agree around KG = 4.7 for
10,000 � Re � 90,000, with a very little decrease from
5.0 to 4.4 when the Reynolds number is increased. Present
values are slightly below those from other works, but this
can partly be associated with the regression procedure, since
the agreement of the data is perfect, in particular at short
lags, as shown in Figures 4a and B.2a–B.2c. This is also
likely associated with end-condition in the present setup
(no end-plates). Jacob et al. [13] actually investigated a
rod-airfoil configuration, however it is noteworthy that
the coherence length measured at the rod wall is not signif-
icantly modified by the airfoil in the wake: the value is
almost the same as reported by Casalino & Jacob [5] for
the isolated cylinder configuration. As already mentioned
in Section 2.2, the measurement technique (wall pressure
vs. anemometry) seems to have only a very minor influence
on the coherence length value. So does the peripheral angle
of the wall pressure sensor between 40� and 140�, which
leads to the very narrow bounding of Maryami et al.’s value
(however, the coherence length drops down when the sensor
is at the rear or front stagnation points). Numerical simula-
tions [24, 25, 41] have been conducted for 40,000 � Re �
90,000 leading to dispersion from the available experimental
data [13, 17], as presented in Appendix B.3. Further
increasing the Reynolds number, the data reported by
Fujita [6] exhibit a strong increase of the coherence length
at the drag crisis, followed by K � 1.8 in the critical regime.
The empirical function proposed by Norberg [12] for the
one-sided spanwise correlation length models fairly well
the evolution of the coherence length at the main peaks.
Beyond that further consistency between the various source
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of data, this means that most of the energy of the coherence
spectrum is brought by the lift peak. Fitting the experimen-
tal values reported in Figure 11 with a power law leads to
the following empirical model:

104 � Re � 2:5� 105; K f0ð Þ � 5:31
Re
104

� ��0:11

; ð14Þ

where f0 stands for the lift peak frequency. This is a
slightly weaker decay with increasing Reynolds number
than Norberg’s.

At the second (drag) peak, a very good agreement is
noticed with the only available, experimental, literature
value around 1.9 given by Maryami et al. [14]. In present
results, this value is also noticed at the slower regimes,

except at Re = 10,000 where KL = 2.8. The present coher-
ence decays at this peak are well modeled by a Laplacian
(adjusted determination coefficient R2

a 
 0:91), and this is
not contradicted by Maryami et al.’s data, as plotted in
Fig. 14f). The following two-step model is found consistent
with both experimental and numerical works:

104 � Re � 3� 104; K f1ð Þ � 2:35
Re
104

� ��0:25

; ð15Þ

3� 104 � Re � 9� 104; K f1ð Þ � 1:81
Re

3� 104

� ��1:13

;

where f1 stands for the drag peak frequency.

Fig. 11. Spanwise coherence length according to definition (2) in flows around circular and rectangular cylinders, at first (lift) peak
unless otherwise stated. Uncertainty bars cover several probe locations. If so, the symbol is at the mean. Dashed lines for visual aid
only.
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A third peak emerges for some velocities, then leading to
KL � 0.8. This is below the value reported by Maryami
et al., but at another regime. A power law can still be
educed up to the regime tested by Geyer [17]:

13; 000 � Re � 77; 000; K 3f 0ð Þ � 1:01
Re

13; 000

� ��0:48

: ð16Þ

For the square cylinder, the coherence length value at the
lift peak is slightly above 5 and that of the circular cylinder
for Re around 20,000, increasing from 3.5 at Re = 6,700.
The Gaussian model fits well the data (R2

a 
 0:94) except
when the hotwire probe is in the wake (P1). The four mea-
surement positions in the transverse plane allows to include
error bars of 20–30% in Figure 11, enabling fair comparisons
with available or subsequent estimations for the same cases,
for instance Fujita et al [23] at Re = 33,000 and Nakato
et al. [16] at Re = 9,600 (see Appendix B.2 for a discussion
of these literature values). These three data-sets can be
grossly modeled as:

6; 700 � Re � 33; 000; K f0ð Þ � 3:8
Re

6; 700

� �0:22

: ð17Þ

As mentioned in previous sections, the flow over the square
cylinder exhibit more harmonics in the coherence spectrum.
Up to four peaks are noted in the three tested regimes. The
third peak is always visible, except for P1 at U1 = 10 m/s.
At that probe location and that velocity, the coherence
length of that peak is systematically smaller than at the
others (see Fig. 2 and Tab. 4 in the Supplementary file).
This is likely due to the probe position in the wake, where
the imprint of the shear layer flapping is weaker than that
of the vortex shedding, which generates drag fluctuation,
whose third peak is not an harmonic. The fourth peak
is indeed well visible again there (see Tab. 5 in the
Supplementary file), except at the highest velocity.
However, it does not emerge from KI spectrum for P2 at
Re = 6,700 and Re = 13,000 nor for P4 at the lowest regime.
This may be explained by the low value of the coherence
length for that peak, approaching the shortest measured
lag. It is striking indeed that for all of the harmonics, the
coherence length increases with the Reynolds number.
The coherence decays follows a Laplacianmodel for 13 peaks
out of the 31 detected ones, while a Gaussian model fits the
data fairly for 3 peaks, always at the slowest regime
(Re = 6,700).

For rectangular cylinders, the spanwise coherence
length at the main peak is very high, as commented along
with Figure 7. When normalized by the cylinder span ‘, a
good agreement is obtained with Nakato et al.’s coherence
data [16] for the case AR = 3, as plotted in Fig. B.2h). This
leads to a range of L from ‘=5 to ‘=4. Since the coherence
length scales better with the span than with the diameter,
the flow is mostly driven by end effects, meaning that the
transition to the 3D regime is not complete, or that the
peak is still due to a 2D dynamics. This is also suggested
by the relative sharpness of the peaks for those configura-
tions, visible in Figure 7. This is consistent with a higher
Reynolds number at the onset of unsteadiness when the

aspect ratio of a given shape is increased [42]. As for the har-
monics, still larger coherence lengths are noticed than that
at the lift peak for circular or square shape, though with
more dispersion between P2 and P4 at U1 = 20 m/s. The
evolution with the Reynolds number is similar to that of
the main peak for both geometries.

Recall that for AR = 2, the second peak is at St = 0.14,
which is not twice the first peak frequency (0.08). Moreover,
even if the Gaussian model would be fair at short lags
(namely, up to LI/2) and the Laplacian model for long lags,
none of them is satisfying for the whole decay. For that rea-
son, only KI is reported in Figure 11. Nevertheless, for
higher harmonics, the Laplacian decay fit the data fairly.
Finally, for AR = 3, models work similarly as for the square
shape, that is a Gaussian decay for the first (lift) peak, and
a Laplacian for 4 out of 5 other tabulated peaks, see the
Supplementary file.

3.3.4 Coherence length as an ingredient of acoustic
efficiency

In the present work [1], the acoustic radiation of bluff
body flows was also measured with microphones [38] while
the 2D, laminar case was deeply investigated for numerous
geometries [43]. The results show that, among the four
geometries considered in the spanwise coherence study,
the rectangular section of AR = 3 is the most silent in
the 2D configuration and the loudest in the wind tunnel.
Such difference in the shape aeroacoustic ranking is associ-
ated with the very high spanwise coherence length exhib-
ited herein for this geometry. Should that be necessary,
this confirm that the spanwise coherence length is a key
ingredient of aeolian tone intensity.

Nevertheless, it is not the only one, as shown by the
three following examples. Firstly, for the rectangular shape
of AR = 2, the peak at St � 0.145 has a coherence length
twice that of circular or square cylinder flow at lift peak
while it is not visible in the acoustic spectrum. This may
be considered as an exception, however, because for the
three other geometries, all of the coherent peaks emerge
from the noise radiated in the transverse direction [38].
Next, some porous covers of a circular cylinder have been
able to reduce the tone intensity while (drastically) increase
the spanwise coherence of the flow with respect to the hard-
wall cylinder of same outer diameter [17]. Finally, for the
square cylinder at incidence [23], there seems to be no asso-
ciation of the Sound Pressure Level with the coherence
length when the angle of attack is varied, as shown in
Figure B.1. However, the drop of noise level around 13� of
incidence may be an artifact due to the fixed microphone
while the directivity pattern may tilt as noticed in numeri-
cal predictions [28].

A flow dynamics may be spanwise coherent but of low
amplitude, and/or inefficient as a lift fluctuation generator
by being far from the lifting surface, so that, in Curle’s
formalism, the overall acoustic generation shall be weak.
Further modeling effort is necessary to improve the under-
standing of the influence of shape of aeolian tone level.
Regarding the amplitude, the distance to the onset of

F. Margnat et al.: Acta Acustica 2023, 7, 4 15

https://acta-acustica.edpsciences.org/10.1051/aacus/2022061/olm
https://acta-acustica.edpsciences.org/10.1051/aacus/2022061/olm
https://acta-acustica.edpsciences.org/10.1051/aacus/2022061/olm


unsteadiness may be relevant [42]. As for the lift generation,
investigating tailored Green’s functions [44, 45] could be
beneficial for shape comparison as well as effect of porous
covering.

4 Conclusions

In the present paper, a measurement methodology is
proposed that enables fair comparison of bluff body shapes
from the spanwise dynamics point of view. The HWA
removed bias coming from a priori positioning of the sensor,
and allowed free exploration of the flow topology regardless
the model. The possible influence of body shape on the two-
point spanwise statistics was accounted for by a preliminary
mean flow scan in the transverse plane.

Present coherence length values enrich the available
corpus with new cases, in particular for rectangular shapes
and harmonics. An important point is that the fixed detach-
ment point at sharp edges does not necessarily go with a
coherent flow all along the span at the tested regime, as
evidenced by the square cylinder case. An all-data-in-one
Figure 11 eases future applications for aeroacoustics, show-
ing K(Re) analogously to head loss tables or Nusselt num-
ber versus Re for different geometries. Such production
needed to select one, aeroacoustically consistent definition
of the spanwise coherence length, free from any determina-
tion by a decay model, and to provide a rational way for
identifying peak Strouhal numbers and for model fitting.
The key was to include large lags in order to cover the whole
coherence decay in the present experiments, what allowed a
first estimate through a frequency dependent, integral
coherence length KI. Moreover, the present harmonisation
of the definitions of coherence length for Gaussian, Lapla-
cian or arbitrary decays is such that, in the framework of
Curle’s analogy, they have equal integral, that is acoustic
contribution, for a given value of K.

Except for AR = 2, the first (lift) peak exhibits a
Gaussian coherence decay. The issue of which model is the
more reliable for a given harmonic of a given case is open.
Laplacian decays are obtained in the present measurements,
but suchmodel misses physical relevancy, becoming singular
at short lags. Also, the model may not be the same every-
where in the flow, as exemplified in Figure B.2 by velocity
data comparison with wall pressure data at the same regime.
For harmonics, in most of the investigations, the resolution
is not fine enough at short lags to evidence a smooth early
decay, and/or the spanwise extent of numerical simulations
is too short to include the full decay.

Finally, a noteworthy finding is the almost 2D character
of the flow dynamics at the peak frequency for the rectan-
gular sections of AR = 2 and 3, in which cases the coherence
length scales with the body span for Re = 13,300 and
26,700. Testing other regimes could complete the knowl-
edge of the transition process. More generally, numerical
simulations of bluff body flows could help to understand
the spanwise dynamics. However, present measurements
and literature review draw the conclusion that this would
need to simulate a span twice as long as the expected

coherence length, in order not to be biased by the end-con-
dition. Recall indeed that values gathered in Figure 11 cor-
respond to half-lengths of the physical phenomenon.
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Appendix A
HWA probe positions for the spanwise study

The coordinate system starts at the center of the down-
stream face of the cylinder’s cross-section (see Fig. 2). Span-
wise measurements at P1, fixed at (x, y) = (1.0d, 0) for all
velocities, and P3 are used with the square section only. For
the circular cylinder, all measurements are performed at
(x, y) = (0,0.9d). The other positions follow the topology
of the mean flow, as presented in Section 2.3.1, and are
given in Table A.1.

Appendix B
B Review of literature data

In this section, the literature material used in Figure 11
is reviewed, starting by measurements before considering
numerical simulations. Charts showing coherence data
and model curves were digitized online using
WebPlotDigitizer [46] in order to estimate coherence
length values for present definition. This allowed direct
data comparison for given shape, regime and peak, as
plotted in Figures 4 and B.2. In the following discussion,
Figure N, equation M and sec. L refer to figure, equation
and section numbers in the cited work, respectively. Litera-
ture excerpts are in italic.

B.1 Experimental data for the circular cylinder

B.1.1 Measurements in Japan
The Japanese study by Kato et al. [15] has been pioneer-

ing in addressing the spanwise problem for cylinder compu-
tational aeroacoustics, laying the foundations of correction
methods, which use spanwise coherence length to adapt
numerical simulation of a short cylinder in view of compar-
ison with experiments over a longer one. A 10 mm diameter
circular cylinder was placed in an air flow at 15 m/s. The
details of the experiment was to “be published elsewhere”,
but to the best of our search we could not find that dedi-
cated paper. Therefore, it is not clear to us whether the
experimental values for the coherence function shown in
Figure 10 for comparison purpose are from surface pressure
or velocity field. Indeed, in a footnote page 4, the coherence
function is clearly related to surface pressures, while the
only measurement method mentioned in the paper is the
hot-wire anemometer (see comment above Fig. 8). Anyway,
after digitizing Figure 10 data, a very good agreement is
noticed with present’s in Fig. B.2a). Regressing it with a
Gaussian model, we obtained KG � 4.8, with an adjusted
determination coefficient of 0.99, for that Re = 10,000 flow.
This is reported in Table B.1.

These Authors introduced the coherence length “as the
spanwise spacing where coherence function of the surface
pressure drops to a critical value of one half [which] was

determined rather ad hoc.” (last paragraphs before the
Results section in [15]). The agreement is noteworthy
between that pioneering coherence decay value of 0.5 with
that obtained here using a Gaussian model and a defini-
tion based on acoustic efficiency (exp(�p/4) � 0.46, see
Sect. 3.2.1).

Wall pressure measurements at higher Reynolds num-
bers were reported by Fujita [6] (Fig. 23) and “the estima-
tion of [coherence] length was attempted by calculating the
integral scale using the Gaussian distribution curve fitting.”
Reference to Phillips [3], who provided an integral definition
in equation (2.6), is made by Fujita [6] when defining the
correlation length before equation (7), thus it is likely that
the Author used the same definition as us. As a matter of
fact, after digitizing some of Figure 23 data, for those that
are well fitted by a Gaussian decay, we obtain exactly the
same values as those plotted in Figure 24 for pressure trans-
ducers located at 90� and reported here in Table B.1. At
other Reynolds numbers, the Gaussian model seems less
accurate, while additional values of KI could be extracted
from Figure 23. A maximum of coherence length is noticed
just before the critical regime.

B.1.2 Wall pressure measurements at Lyon, France
Coherence between spanwise distributed wall pressure

sensors was measured about 20 years ago in the anechoic

Table A.1. Measurement coordinates in the XY plane.

AR P2 P3 P4

Re = 6,667 (U1 = 10 m/s)
1.0 (�0.6d, 0.8d) (0.1d, 0.9d) (0.4d, 0.9d)

Re = 13,333 (U1 = 20 m/s)
1.0 (�0.8d, 0.8d) (�0.1d, 1.0d) (0.5d, 1.1d)
2.0 (�0.8d, 1.2d) (1.1d, 1.4d) (2.6d, 1.6d)
3.0 (�2.2d, 1.1d) (�0.3d, 1.2d) (0.6d, 1.4d)

Re = 26,667 (U1 = 40 m/s)
1.0 (�1.0d, 0.7d) (�1.0d, 1.1d) (0.5d, 1.2d)
2.0 (�1.2d, 1.2d) (0.6d, 1.4d) (2.1d, 1.7d)
3.0 (�2.2d, 1.2d) (�1.3d, 1.3d) (�1.0d, 1.4d)

Fig. A.1. Mean flow over a rectangular cylinder of AR = 1
(square cylinder) Re = 6,700. Isocontours of velocity norm from
0.4 U1 to 1.6 U1 by step of 0.1 U1. The full, thick line is where
U = U1. The labeled bullets (�) are the position of the probes in
the spanwise study.
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wind tunnel of the Ecole Centrale de Lyon in the framework
of a project funded by the European Union. Both coherence
data and values of coherence length were documented [5,
13]. For the flow at U1 = 20 m/s over a 16 mm diameter
circular cylinder, at the peak frequency, “data are fitted by
a Gaussian expð�g2=2L2

gÞ function, with Lg = 4.7 for the
coherence function”, as Casalino and Jacob reported (see
Sect. 3.2 in [5]). However, such definition yields
LogC = �0.5 for g = Lg. Now, considering Figure 4a in
[5], where logC is plotted vs. g, the Gaussian model reaches
the value �0.5 when g � 3.9. Moreover, for the same cylin-
der flow (though with an airfoil placed 6 diameters down-
stream), Jacob et al. reported Lg = 5.8d in the inner
legend of Figure 7 (bottom) in [13], with no explicit defini-
tion for Lg except a reference to [5].

In that second paper [13], the charts give C2 vs. g, mean-
ing that where the Gaussian model reaches C2 = e�1 � 0.37
one could graphically read Lg � 4.0 on the g axis, consis-
tently with the value obtained from the first paper [5].
Recall finally that present coherence data agree well with
both reported measurements, as shown in Figures 4 (left)
and B.2b–B.2c. Thus, a typo seems likely at the link
between the definition of Lg and the regression coefficient.
In order to enable comparison with present values, coher-
ence length for both these studies is obtained graphically
from the Gaussian lines in Figure 4a [5] and Figure 7 [13],
as the lag where the plotted quantity reaches the value
issued from present definition (6), that is �p/4 � �0.785
for logCG and exp(�p/2) � 0.208 for C2

G, respectively.
The extracted values are listed in Table B.2, plotted in
Figure 11 and discussed in Section 3.3.3.

When both datasets are fitted in the present way (10),
similar values of KG with the Authors’ are obtained at
the 3 lowest flow velocities for the d = 10 mm cylinder,
see Table B.2. The discrepancies can fairly be attributed
to round-offs or digitization. However, for the highest veloc-
ity or for the d = 16 mm cylinder, little excess of coherence
is noticed at the two largest lags in Figures B.2c–B.2e,
possibly associated with the smaller span to diameter ratio.
Removing those lags from the fitting procedure yields 10%
lower values ofK�

G reported in Table B.2 for the correspond-
ing cases, in still better agreement with present measure-
ments. However, considering it is safer to document
higher K, original KG values are left in Figure 11, more
faithfully to the Authors’ analysis.

B.1.3 Other studies
The study by Maryami et al. [14] has been the only

experimental work reporting wall pressure coherence data
for several angular positions (h) around the cylinder and
for harmonics. In Figure 11, C2

p is plotted vs. the spanwise
lag for the first three peaks, namely St � 0.2, 0.4 and 0.6,
and fitted with Gaussian models. Very low coherence level
is noted at the stagnation points, except for the drag peak
at the rear one (h = 180�). For h = 45�, 90� and 135�, the
data is similar. At the fundamental frequency, a coherence
length value following the present definition can be
obtained graphically from the Gaussian lines in Figure 11a
[14] as the lag where C2

p reaches exp(�p/2) � 0.208. The
extracted values are listed in Table B.3. This experimental
setup being very similar to that in Lyon, fitting the data
with more weight on the short lags leads to lower Gaussian
coherence length K�

G here also. At the harmonics, the
Gaussian model hardly fits the data. A frequency depen-
dent coherence length is also provided in Figure 12, defined
in equation (2) as the infinite integral of the root-coherence
over positive lags, showing a value of e.g. � 8 at the main
peak. This is inconsistent with the data plotted in Figure 11,
whose KG � 5.3 is indeed the quadrature value, given
present definitions. The same appear for the other peaks,
by comparing Figure 12 with trapezoidal rule of the
Authors’ data (after rooting it to get C) reported in
Table B.3.

Coherence data was also reported by Geyer [17], who
conducted aeroacoustic tests for circular cylinders with
porous covers. Thanks to courtesy share by this Author,
the methodology described in Section 3 could be applied
to his data, which was obtained by HWA, the probes being
placed one diameter downstream of the body, on the
symmetry axis (this would correspond to P1 in the present
study). The obtained values for Stp and KI are listed in
Table B.4 for the three peaks that emerge from the coher-
ence spectra. For the harmonics, too few data points are
involved at such short lag, and no regression could be fairly
conducted. At the main peak, however, the data, in spite of
high variance, is better fitted by a Laplacian decay, as plot-
ted in Fig. B.2e), leading to KL = 3.3. This value is 25%

Table B.1. Coherence length at the main peak, from Japanese
studies [6, 15]. K is computed from integration or regression of
data from Figure 10 [15] and Figure 23 [6], partly reproduced in
Figures B.2a and B.2e.

Reference d (mm) Re KI KG KL

Kato et al. [15] 10 10,000 4.8

Fujita [6] 267 250,000 3.3
300,000 4.7
320,000 7.3
370,000 1.8
400,000 1.8

Table B.2. Coherence length values extracted from measure-
ments at Lyon, France [5, 13]. KG is read in Figure 4a [5] and
Figure 7 [13] on the lag axis where the Gaussian lines reach
�p/4 � �0.785 and exp(�p/2) � 0.208, respectively. K�

G is
obtained by present fitting (10) of the original coherence data.

Reference d
(mm)

U1 Re KG K�
G

Casalino & Jacob [5] 16 20.0 22,000 5.1 4.4

Jacob et al. [13] 10 20.0 13,300 5.0 5.1
30.5 20,300 4.9 5.0
41.0 27,300 4.9 4.8
72.0 48,000 5.8 5.4

16 20.0 21,300 4.9 4.5
30.5 32,500 4.7 4.3
41.0 43,700 4.4 4.0
72.0 76,800 4.4 4.0
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smaller than that reported by Jacob et al. [13] at the same
regime (Re = 77,000). The regression may have favored
large lags in that latter study, as visible in Fig. B.2e),
leading to overestimation of KG, but the difference may
rather be associated with the measurement techniques: in
Lyon, coherence data was obtained from wall pressure at
h = 90�. Now, as shown by Maryami et al. [14], the wall
pressure coherence level is smaller at the rear of the body.
Moreover, a Laplacian decay is evident at the drag peak
in present data plotted in Fig. B.2f), while no Gaussian
model was found fair at P1 in the case of the square cylinder
(see Table 2 and Figures 6, 10 and 14 in the Supplementary
file). This leads to the conclusion that placing the velocity
probe on the wake axis in the drag generation region could
explain both the lower coherence length value and the dif-
ferent decay type at the lift peak. Moreover, both effects
may be stronger as the Reynolds number increases.

B.2 Experimental data for rectangular cylinders

The spanwise coherence in the square cylinder flow at
25 m/s was measured by Fujita et al. [23] using 20
equally-spaced pressure transducers over the 200 mm span
of the 20 mm side body (Re = 33,000). The effect of the flow
angle of attack (AoA) on the aeolian tone properties was
investigated. Coherence data are reported in Figure 8 for
several AoA, but not for the flow-parallel case. However,
values of the normalized coherence length are plotted in
Figure 9 for 0 < AoA � 180�. These Authors used an inte-
gral scale of the coherence function as a definition. Namely,
Gaussian model coefficients given in Figure 8 lead to values
in Figure 9 by taking

ffiffiffiffiffiffiffiffi
p=a

p
, see (4) and (5). Thus, present

definition is recovered by halving these Authors’ values, as
plotted in Figure B.1, and the value for the flow without
incidence is obtained from that at AoA of 90� and 180�.
This is the same flow indeed, even if the monitored square
side is different. That is why those values are considered
here as two estimations of the same quantity, just like it
is done in the present study for the four probe locations.
Cases of AoA larger than 45� come down to the range
0–45�, yielding uncertainty ranges similarly.

Contemporaneously with the above cited Japanese
studies, Nakato et al. [16] reported coherence data at the
peak frequency for flows over a square cylinder and a rect-
angular cylinder with AR = 3, at Re � 9,600. The Authors
used HWA with the probes placed one cylinder breath

downstream of the cylinder back. For the square cylinder
flow, this corresponds to P1 in the present study, and the
data have been compared in Figure 4 (right). Trapezoidal
integration of the Authors’ data above C = 0.2 yields
KI � 5.0. This is slightly below the value 5.7 obtained here
at P1 for Re = 13,300 (see Tab. 2 in the Supplementary
file). The present overestimation can be associated with
excess coherence for g 
 7 in the present case (see Fig. 4,
right), while such end-effect may not appear in [16] where
a very long span (180 diameters) was combined with end
plates. Those estimations of K � 4.5 by Fujita et al. [23]
from wall-pressure measurements and by Nakato et al.
[16] from HWA, in agreement with present data, shows that
a sharp-edge geometry does not necessarily leads to a higher
spanwise coherence length than a smooth geometry for
9,700 � Re � 33,000.

Table B.3. Coherence length values for the circular cylinder
flow at Re = 30,000, extracted from Maryami et al. [27]. KG is
read in Figure 11a on the lag axis where the Gaussian lines reach
exp(�p/2) � 0.208. KI is computed by trapezoidal integration of
the square root of data from Figure 11. K�

G is obtained by present
fitting (10) of the original coherence data.

Angular position (h) 45� 90� 135� 180� (rear)

1st peak, KG 5.9 5.3 5.6
1st peak, K�

G 4.9 4.0 4.2
2nd peak, KI 2.1 1.7 1.8 2.1
3rd peak, KI 1.6 1.4 1.1

Table B.4. Coherence length values for the circular cylinder
flow at Re = 77,000, computed from the data reported by Geyer
[17].

1st peak Stp 0.173 (0.161–0.200)
KI 2.8

KL (R2
a) 3.3 (0.79)

Stm 0.173

2nd peak Stp 0.336 (0.312–0.343)
KI 0.62

3rd peak Stp 0.552 (0.536–0.555)
KI 0.37

Fig. B.1. Coherence length (∎ with error bars) and Sound
Pressure Level (SPL, h) for a 20 mm side square cylinder at
incidence in a flow at 25 m/s, according to Fujita et al. [23]. Note
that the coherence length is given as normalized by the square
side, which does not correspond with the body height at
incidence (referred to as “the effective geometrical width normal
to the flow” by the Authors).
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Fig. B.2. Spanwise coherence data (symbols) and model (lines) for the flow over a circular (a–g) and a rectangular of AR = 3 cylinder
(h, i). Literature data and models have been obtained as described in Appendix B. Data from Maryami et al. [14] are for h = 135�. In
(e), the line KG = 8.2 accounts for the numerical data reported by Orselli et al. [25] (Re = 90,000). The Reynolds numbers in (i) are the
same as in (h).
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As for the rectangular cylinder with AR = 3, the
coherence is reported for three lags: g = [7.5, 15, 22.5]. A
Gaussian model fits well (R2

a ¼ 0:99) the decay with
LG � 48d, as visible in Figure B.2h. This is consistent with
the present result of a flow still in the 2D regime for the main
flapping mode. Indeed, although the coherence lengths are
thus of different values if normalized by the diameter,
Nakato et al. [16] data return LG � ‘=3:8 while present data
lead to LG � ‘=5:0 and ‘=4:4 for P2 and P4 respectively at
Re = 13,300. The slightly lower coherence length, once
normalized by the cylinder span, obtained in the present
experiment may be associated with the end conditions:
2.5 times shorter span, and no end-plates (so that the span
effectively wetted by the potential flow shall be considered
a little bit shorter than the jet width of 70d).

B.3 Numerical works

A couple of numerical studies on cylinder aeroacoustics
reported spanwise coherence data, whose characteristics are
summarized in Table B.5. Seo and Moon [24] proposed a
correction method to compare noise prediction based on
Large Eddy Simulation of the flow over a short span
(‘ ¼ 3d in their case) with experimental data obtained for
longer cylinders. The spanwise coherence length is a key ele-
ment of such method. Coherence data for the surface pres-
sure at h = 90� is provided in Figure 13 for lags up to one
diameter at Re = 46,000. For the lift peak, the coherence
level is still above 0.98 for the largest lag. This makes digi-
tization of the published chart a hard task. However, the
regression with a Gaussian decay provided by the Authors
yields KG = 5.3 in agreement with Jacob et al. [13]. For the
drag peak, the numerical data is well fitted by a Gaussian
decay with KG = 0.6 for g � 0.4 and by a Laplacian with
KL = 1.1 decay beyond (see the inset in Fig. B.2f). Combin-
ing both models allows to estimate KI � 1.1. This is consis-
tent with, and interestingly complementing at short lags,
available experimental values at this frequency. In a similar
study, Orselli et al. [25] simulated the flow at Re = 90,000

over a 2.5 diameter long circular cylinder. The same remark
holds for coherence data at the lift peak (Fig. 11), leading to
KG = 8.2. This is about twice as high than values reported
by Jacob et al. [13] at Re = 76,800 or Fujita [6] at
Re = 250,000. At the drag peak, the coherence data exhi-
bits a plateau around C � 0.5 for 0.05 � g � 0.8, yielding
KI � 0.5.

Coherence data of local fluctuations in fluid force on
rectangular cylinders were reported by Rakugou et al. [26]
from numerical simulation of a ‘ ¼ 8d spanwise extended
computational domain using periodic boundary condition,
at Re = 10,000. The plot of coherence decays at peak fre-
quencies is not provided for the square section, however,
data for AR = 0.6, provided in Figure 12, lead to
KG = 3.2 and KI = 0.4 for the lift and drag peaks, respec-
tively. The first value is in good agreement with those
reported in the present study for the square section at the
lowest velocity. Data at the main peak for AR = 3
(Fig. 14) is well fitted by a Laplacian decay, leading to
KL = 11.4. This is larger than ‘, like the coherence length
reported for the main peak by the numerical studies on
the circular cylinder using periodic boundary conditions.
However, the level of coherence at harmonics seems under-
estimated by the simulations.

Different spanwise extents of the computational
domain were tested by Karthik et al. [41] for the circular
section at Re = 85,000, combined with a finite span cylinder
boundary condition: the simulated domain extends 7.5d
beyond the body span at each end. Surprisingly, no coher-
ence data is reported in Figure 18 for greater lags than 0.5d
even for the ‘ ¼ 35d cylinder case, and the good fit with a
Gaussian model leads to KG = 0.4d at the main peak
frequency.

One may conclude from Table B.5 that the accurate
simulation of the spanwise coherence decay of the flow in
the subcritical regime at peak frequencies is a difficult
and/or expensive task, the issue of the necessary simulation
time to converge coherence statistics at low frequencies
notwithstanding.

Cite this article as: Margnat F. Gonçalves da Silva Pinto WJ. & Noûs C. 2023. Cylinder aeroacoustics: experimental study of the
influence of cross-section shape on spanwise coherence length. Acta Acustica, 7, 4.

Table B.5. Numerical studies reporting spanwise coherence data of cylinder flows in the framework of aeroacoustics. For rectangular
(rect) cross-sections, the parenthesized numbers are the breadth (b) to height (d) ratio, denoted as AR = b/d herein.

Reference Reynolds
number

Cross-
section

‘=d Boundary
Condition

1st peak 2nd peak

Rokugou et al. (2008) [26] 10,000 Rect (0.6) 8.0 Periodic KG = 3.2 KI = 0.4
Rect (3.0) KL = 11.4 KI = 0.2

Seo and Moon (2007) [24] 46,000 Circular 3.0 Periodic KG = 5.3 KI = 1.1
Orselli et al. (2009) [25] 90,000 Circular 2.5 Periodic KG = 8.2 KI = 0.5

Karthik et al. (2018) [41] 85,000 Circular 35.0 Finite cylinder KG = 0.38
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