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Abstract: Serotonin (5-hydroxytryptamine, 5-HT) is a biogenic monoamine acting as a neurotransmit-
ter in the central nervous system (CNS), local mediator in the gut, and vasoactive agent in the blood.
It has been linked to a variety of CNS functions and is implicated in many CNS and psychiatric
disorders. The high comorbidity between some neuropathies can be partially understood by the
fact that these diseases share a common etiology involving the serotoninergic system. In addition
to its well-known functions, serotonin has been shown to be a mitogenic factor for a wide range of
normal and tumor cells, including glioma cells, in vitro. The developing CNS of fetus and newborn
is particularly susceptible to the deleterious effects of neurotoxic substances in our environment,
and perinatal exposure could result in the later development of diseases, a hypothesis known as the
developmental origin of health and disease. Some of these substances affect the serotoninergic system
and could therefore be the source of a silent pandemic of neurodevelopmental toxicity. This review
presents the available data that are contributing to the appreciation of the effects of the exposome
on the serotoninergic system and their potential link with brain pathologies (neurodevelopmental,
neurodegenerative, neurobehavioral disorders, and glioblastoma).

Keywords: brain; glioblastoma; neurobehavioral disorders; neurodegenerative disorders; neurode-
velopmental disorders; pesticides; pollutants; serotonin

1. Introduction

Serotonin (5-hydroxytryptamine, 5-HT) is a biogenic monoamine that acts as a neuro-
transmitter in the central nervous system (CNS), a hormone in the gut, a mitogen factor,
and that can regulate vascular tone [1]. A two-step synthetic pathway from the essential
amino acid tryptophan involving the rate-limiting enzyme tryptophan hydroxylase (TPH1,
mostly expressed in the periphery, and TPH2, the neuron-specific isoform), and then 5-
hydroxytryptophan (5-HTP) decarboxylase, produces serotonin. In the CNS, serotonin is
concentrated in the synaptic vesicles of neurons by the vesicular monoamine transporter
(VMAT), and removed from the synaptic cleft by the selective serotonin transporter (SERT,
SLC6A4), and further recycled either back into presynaptic vesicles or metabolized to
5-hydroxyindole-3-acetic acid (5-HIAA) mainly by monoamine oxidase-A (MAO-A) within
the neuronal cytosol [2]. In the CNS of vertebrates, a majority of the cell bodies of sero-
toninergic neurons is in the raphe nuclei of the brain stem. The neurons of the raphe nuclei
give rise to broad projections to the forebrain (rostral group) and to the hindbrain (caudal
group), allowing serotonin to influence many brain functions [3]. In humans, 13 receptor
subtypes are recognized, spreading over seven receptor families, with different gene splice
variants for some of them [4]. Except for the 5-HT3, which is a ligand-gated ion channel,
all the serotonin receptors belong to the family of G-protein coupled receptors that allows
serotonin to modulate the activity of different effector systems, such as adenylyl cyclase
and phospholipase C [5,6]. In addition, many subtypes of serotonin receptors can modulate
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the activity of ERK1/2 and Akt [7,8]. Serotonin, which is now considered a neurohormone,
has been linked to diverse CNS functions and is implicated in many CNS disorders, in-
cluding neurodevelopmental, neurodegenerative, neurobehavioral diseases, and cancer
(glioma) [9].

In the CNS, serotonin is a morphogenic agent and a neurotrophic factor directing
brain development during embryogenesis [10]. However, in mice and humans, before the
formation of the dorsal raphe, the placenta is the source of serotonin for the early forebrain
development [11]. In humans, the two first trimesters of development include cortical
neurogenesis, migration, and initial axon targeting [12]. A recent study reveals that ex vivo
activation of the 5-HT2A receptor in the fetal human neocortex promotes basal progenitor
proliferation, cells that are linked to mammalian neocortex evolutionary expansion [13]. In
mice, forebrain disruption of serotonin signaling affects axon guidance leading to abnormal
thalamocortical axon trajectories [14]. Moreover, in the first postnatal week of the rodent,
the serotoninergic system has a transient influence on the development of the barrel fields
in layer IV of the somatosensory cortex [15].

During the last decades, the serotoninergic system emerged as a target of an increasing
number of environmental pollutants. Among them are pesticides, bisphenol A (BPA),
phthalates, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs),
fine particulate matter with a diameter less than 2.5 µm (PM2.5), and toxic heavy metals.
During prenatal development, before the maturation of the blood-brain barrier (BBB),
pollutants can exert their toxic effects on neural tissue. The developing nervous system of
a fetus and newborn is susceptible to the deleterious effects of neurotoxic substances in our
environment, and perinatal exposure could result in the later development of diseases [16].
From childhood up to adult life, because of their lipophilic properties, some of these
pollutants are able to cross the BBB and reach the CNS [17]. This review presents the
data that are contributing to establish a link between the effects of the exposome on the
serotoninergic system and the increasing incidence of brain pathologies.

2. Effects of Environmental Chemical Pollutants on the Serotoninergic System

BPA (2,2-bis(4-hydroxy-phenyl)propane) is a synthetic estrogen that was widely em-
ployed in a variety of consumer products made of polycarbonate plastic and epoxy resins.
Exposure to BPA in humans is widespread and almost continuous, and this pollutant
has been shown to be transferred to the CNS via the BBB [18]. The effects of BPA can be
mediated by classical nuclear estrogen receptors (ERs), non-nuclear ERs, and also by the
seven-transmembrane GPR30 ER and the estrogen-related receptor γ [17]. Fetal, prenatal,
and lactational BPA exposures were suggested to perturb the serotoninergic system in
adult rodents [19]. Thus, studies conducted in rats and mice suggest that BPA increases
the turnover of serotonin in the brain (Figure 1) [20–22]. In the hippocampus of the young
female mice, this change in the turnover is mediated by an increased gene expression of
enzymes of the serotonin metabolism (Tph2 and Maoa) and its carrier (SLC6A4) [23]. On
the other hand, mouse prenatal and lactational BPA exposure does not alter serotoninergic
neurons’ immunoreactivity and morphology in the dorsal raphe [24]. Long-term exposure
to BPA also disrupts serotonin levels in the forebrain of adult male rats through changes
in its metabolism [25]. Two substitutes of BPA, bisphenol F and bisphenol S, also affect
the serotoninergic system in the prefrontal cortex of juvenile female rats, highlighting the
importance of preventive vigilance in the industrial use of these compounds [26].

Pesticides are a heterogeneous group of chemical substances used to eliminate pests
and to protect crops with many different mechanisms of action. Based on the types of
targets, pesticides include herbicides, which are the most common, insecticides, antipar-
asitics, and fungicides. In developing rat brains, the serotoninergic system is vulnerable
to disruption by organophosphate insecticides altering the architectural assembly of the
brain and later behavior. However, three widely used organophosphate pesticides, chlor-
pyrifos, diazinon, and parathion, showed a distinctly different spectrum of actions on
TPH induction, expression of serotonin transporter genes, and expression of serotonin
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receptor subtypes [27,28], pointing to mechanistic differences between their effect on neural
development [29]. The organochlorine insecticide dieldrin strongly induces TPH and has a
similar effect to that of diazinon on the pattern of expression of serotonin receptors [28]. The
organochlorine insecticide lindane (γ-hexachlorocyclohexane) enhances serotonin levels in
brain mice. Several mechanisms have been proposed to explain this observation, either a
direct action on serotoninergic neurons or an indirect action, by an effect on GABAergic
inhibitory neurons. Indeed, the treatment of mice with lindane results in a decrease in the
levels of GABA in the nervous system by inhibition of glutamic acid decarboxylase (GAD).
Thus, the action of lindane would raise a tonic inhibitory action exerted on serotoninergic
neurons [30]. Another organochlorine insecticide, 1,1,1-trichloro-bis(p-chlorophenyl)ethane
(p,p′-DDT) p,p′-DDT, induces a marked increase in 5-HIAA, but not in serotonin, in the
brain stem, hypothalamus, and striatum of rats [31]. The organochlorinated chlordecone
(kepone) follows several toxicological pathways, including in vivo neurotoxicity and per-
turbation of the serotoninergic system [32]. Increases in both serotonin and 5-HIAA content,
and only in serotonin content, were detected in the hypothalamus and the preoptic area of
chlordecone-treated female rats, respectively [33]. The chronic administration of fipronil, a
broad-spectrum insecticide that belongs to the phenylpyrazole chemical family, induces
massive and inhomogeneous changes in the serotoninergic systems in the rat brain [34].
Type II pyrethroids (with an α-cyano group) accelerated the turnover of serotonin in
the midbrain and striatum areas of rats and so can affect serotonin neurotransmission
levels [35].
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Polychlorinated biphenyls (PCBs) are industrial chemical mixtures used in a wide
variety of commercial applications. Increased serotonin levels were observed after exposure
of rats to PCB153 [36].

Phthalates are dialkyl or alkyl aryl ester derivatives of phthalic acid (1,2-benzenedicarboxylic
acid) that are used in a variety of products to make them flexible and soluble, including
cosmetic products and lotions, aerosol delivery agents, plasticizers and adhesives, flooring
and medical tubing [37]. Phthalates have estrogenic activity and can interfere with nuclear
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receptors, membrane receptors, intracellular signaling pathways, and modulate gene
expression [38]. Upregulation of some serotonin receptor subtypes was observed after
rat exposure to the phthalate di-cyclohexylphthalate (DCHP) [39]. Benzyl butyl phthalate
(BBP) was also reported to modulate the serotoninergic system in the brain of Fundulus
heteroclitus (mummichog) [40]. Interestingly, a recent study that better mimics the real-life
situation demonstrated that administration of a mixture of phthalates, pesticides, and BPA
to mice throughout gestation modified serotonin receptor subtypes 1A and 2A expression
in the limbic system of adult offspring animals [41]. These two serotonin receptor subtypes
were known to be involved in emotionality and stress coping strategies [42].

Ambient and household air pollution have an increasing impact on public health in
industrial countries. Fine and ultrafine particulate matter (PM2.5, less than 2.5 and PM0.1,
less than 0.1 µm in diameter, respectively) can translocate to the brain either through the
BBB [43] or via the olfactory epithelium [44] or via sensory afferents in the gastrointestinal
tract [45]. Lower levels of the serotonin metabolite 5-HIAA were found in human adults
exposed to urban air pollutants [46]. Diesel exhaust nano-sized particles are among the
most abundant air pollutants in urban environments. Prenatal exposure to diesel exhaust
particles decreases the serotonin and 5-HIAA levels in the nucleus accumbens, amygdala,
and hypothalamus of male mice [47]. Ozone (O3) exposure in rats changes the pattern of
serotonin receptors expression in the hippocampus [48] and reduces serotonin levels in the
frontal cortex and hippocampus [49].

3. Neurodevelopmental Disorders

The etiology of autism spectrum disorders (ASD) is believed to involve genetic, epige-
netic, and environmental components [50]. In patients with ASD, an increased whole-blood
serotonin level and dysfunction of the brain serotoninergic system have been described
even if a clear link cannot be established between the two phenomena [51]. A hyper-
serotonemia is also found among some parents, brothers, and sisters of ASD children,
suggesting the involvement of genetic susceptibility factors related to the serotoniner-
gic system in ASD [52,53]. At the brain level, studies using medical imaging showed a
difference in serotonin synthesis capacities, focal and asymmetrical serotonin synthesis
abnormalities, and decreases in serotonin transport and binding to its receptors in ASD
children compared to control children [54,55]. It is interesting to note that serotonin levels
have an influence on the development and size of the barrel fields and that alterations in
the organization of cortical columns have been detected in ASD [15,56]. Several studies
point to the importance of serotonin for social function, cognitive flexibility, stereotypic
behavior and sensory development, modulation of the processing of facial expressions
of emotion, sleep-wake rhythm, and locomotion, phenomena that significantly differ in
ASD patients compared with healthy control individuals [57–59]. Moreover, the CHARGE
study showed that in boys, prenatal exposure to selective serotonin reuptake inhibitors
(SSRI) such as fluoxetine, especially during the first trimesters, may be associated with an
increased risk of ASD [60]. There is evidence suggesting that a number of environmental
pollutants (BPA, pesticides, traffic-related air pollution, phthalates, . . . ) contribute to ASD
pathogenesis [61]. The CHARGE study reports an increased risk of ASD diagnosis among
children whose mothers lived during pregnancy near fields where pesticides, particularly
organophosphates, were applied [62]. A positive association was recently corroborated in
the SEED study between air pollution exposure during the late prenatal and early postnatal
periods and ASD [63]. Moreover, there is increasing concern that BPA exposure may influ-
ence human brain development and contributes to the increasing prevalence of ASD. For
the first time, a study of 46 children with ASD and 52 controls found a direct association
between children with ASD and BPA exposure and demonstrated that children with ASD
do not metabolize BPA correctly. The metabolomic analyses showed a correlation between
ASD and essential amino acid metabolism pathways such as tryptophan, the serotonin
precursor [64]. The aryl hydrocarbon receptor (AhR) could represent an additional level of
interaction between BPA and the serotoninergic system. Indeed, BPA and some tryptophan
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catabolites (TRYCATs) are AhR ligands, and some of them are produced by the commensal
microbiome whose involvement has been proposed in the development of ASD [65,66].
Altogether, these results suggest that the link between BPA and ASD could be a defect of in
utero or perinatal serotoninergic system development or function [67].

Attention deficit hyperactivity disorders (ADHD) etiology is multifaceted, with many
risk factors, including prenatal and perinatal expositions to environmental toxins, even at
exposure levels considered safe for adults. Organophosphate pesticides, PCBs, lead, BPA,
phthalates, and air pollution exposition have been associated with an increased risk of
ADHD [68–73]. These agents may have a neurotoxic effect on the neural systems involved
in ADHD [74], in particular the serotoninergic system. In rat and mouse models, fetal and
prenatal BPA exposure was suggested to perturb the serotoninergic system [20–22], which
is suspected to be involved in ADHD etiology [75]. A complex gene-environmental toxins
interplay could amplify ADHD risk early on in life through epigenetic mechanisms [76].
Genetic studies identified candidate ADHD risk genes [77] such as those associated with
the serotoninergic system (SLC6A4, coding for SERT; HTR1B, HTR2A, coding for the 1B
and 2A serotonin receptors; DDC, coding for dopamine decarboxylase; TPH2). Serotonin
deficits have been proposed to be involved in the etiology of the hyperactive and impulsive
component of ADHD. Interestingly, oral administration of the precursor of serotonin,
tryptophan, allowed significant improvement of ADHD symptoms [78]. A recent case-
control study made on 216 students and strictly matching age, sex, height, weight and
class, associated ADHD with low blood levels of serotonin. Therefore, the lack of impulse
control and the aggressiveness found in ADHD may be partially related to lower blood
levels of serotonin [79].

Pollutant exposure during pregnancy or after birth may be at the origin of epilepsy [17].
The link underlying this association is not understood but might be mediated by serotonin
levels since its increase appears to be protective against seizures and sudden unexpected
death in epilepsy (SUDEP) [80]. Similarly, animal models suggest that serotonin depletion
is a risk factor for epilepsy [81]. This situation is in line with studies showing that seizures
and epilepsy may reduce serotonin levels and increase the risk of both seizures and
SUDEP [82,83]. Therefore, any environmental exposure leading to a decrease in serotonin
is susceptible to lead to an increased risk of epilepsy. This link between serotonin levels
and epilepsy occurrence is illustrated by the fact that mediators of serotonin function
are also involved in epilepsy. For instance, patients with temporal lobe epilepsy (TLE)
exhibit decreased binding to 5-HT1A receptors within several parts of the brain [80].
Studies in epilepsy patients have also shown that seizure-induced decrease in expression
of SERT contributes to reduced serotonin reuptake [84,85]. SERT binding is also reduced
within the neocortex of post-mortem samples from TLE patients [86]. Moreover, seizures
may influence levels of serotonin metabolites such as 5-HIAA, which is decreased in the
cerebrospinal fluid (CSF) of adults with progressive myoclonic epilepsy [87,88]. Pediatric
epilepsy patients also exhibit decreased concentrations of tryptophan within blood serum
and CSF [89,90]. Pollution leads to neuroinflammation, which may play a role in epilepsy.
In this situation, leukocytes and inflammatory mediators seem to contribute to a reduction
in seizure threshold [91]. Even if their significance is unknown, immune cells from patients
with TLE with hippocampal sclerosis exhibit high expression of 5-HT1A, 5-HT1B, 5-HT2A,
and 5-HT4 receptors [91]. Platelets are also probably involved in this process by secreting
proinflammatory mediators during neuroinflammation and traumatic brain injury (TBI).
These factors increase the permeability of the BBB, which may create a predisposition
to epileptic seizures, as observed in a mouse model. In this model, it is interesting to
note that if platelets contribute to increased BBB permeability and are present in the
CNS parenchyma during epileptic seizures, they also secrete serotonin [92]. Apparently,
the presence of platelets in the CNS parenchyma is sufficient to induce severe seizures,
as shown by intracranial injections of platelets that mimic TBI-associated bleeding [92].
Therefore, the role of serotonin might be different in the neuroinflammation context by
favoring the risk of epilepsy.
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4. Neurodegenerative Disorders

Brain neurodegenerative disorders (Alzheimer’s disease (AD), Parkinson’s disease
(PD), amyotrophic lateral sclerosis, Friedreich’s ataxia, Huntington’s disease, . . . ) consti-
tute a broad corpus of diseases [93]. All of them share neuron degeneration as a common
characteristic leading to overlapping clinical features such as cognitive impairment, move-
ment disorders (called ataxias), sleep disorders, and neuronal pathway alterations (protein
quality control, autophagy–lysosome pathway, mitochondria homeostasis, protein seed-
ing, propagation of stress granules, and synaptic toxicity and network dysfunction) [94].
However, the prevalence of each of them varies greatly and affects people in an age-related
manner. Rare neurodegenerative disorders (for example, amyotrophic lateral sclerosis,
Friedreich’s ataxia, Huntington’s disease) mostly affect young people, whereas PD and
AD affect older people and are more prevalent in countries with high life expectancy.
Such epidemiological differences seem to be the consequence of genetic causes. Indeed,
genetic involvement is clearly established in cases of rare neurodegenerative disorders. If
genetic involvement cannot be excluded for AD and PD, especially for younger cases, these
pathologies are clearly associated with age in the general population and thus potentially
with environmental exposure [95]. Therefore, due to their high prevalence in the human
population and their increased risk with age [96], we will focus on the two most prevalent
neurodegenerative diseases, PD and AD.

PD is a progressive neurodegenerative disorder characterized by selective degen-
eration of dopaminergic neurons in the substantia nigra, leading to a reduced level of
dopamine in the cortex. It remains unclear whether dopaminergic neuronal death results
from events triggered during development into adulthood or represents a cumulative
effect throughout life. Although advanced age is the only unequivocally accepted risk
factor, it has been postulated that exposure to environmental neurotoxins combined with
aging could increase the risk of developing PD. Among those neurotoxins are pesticides
(rotenone, paraquat, maneb, ziram). In rats, motor and depressive behaviors associated
with serotonin and norepinephrine alterations induced by the administration of rotenone
were observed [97]. As a major comorbidity of PD, depression is associated with the loss
of serotoninergic neurons in neuronal cultures of the midbrain. The depolymerization
of microtubules induced by rotenone or colchicine caused an accumulation of vesicles
in the soma and killed the serotoninergic neurons by a mechanism dependent on the
metabolism of serotonin in the cytosol [98]. Finally, it has been recently shown that the
first signs of PD can appear in the gastrointestinal (GI) tract and in the olfactory system,
preceding the onset of motor disturbances by several years. A study showed the presence
of specific deficits in olfactory function associated with a concomitant decrease in tyrosine
hydroxylase-positive neurons and an increase in the turnover of serotonin in the olfactory
bulb. These results suggest that exposure to rotenone induces GI and olfactory dysfunction
involving immunological and neurotransmitter alterations, similar to the early signs of
PD. This provides further evidence for the involvement of the gut-brain axis in PD [99].
Paraquat, a widely used herbicide in the world, leads to the apoptosis of dopaminergic
cells [100]. In addition, paraquat, in combination with other pesticides (maneb and ziram),
increased synergistically three times the risk of developing PD [101]. One study hypothe-
sized that exposure to paraquat and maneb during critical periods of development could
permanently alter the nigrostriatal dopamine system. These results indicate that exposure
to the mixture of the two pesticides during the postnatal period may produce permanent
and progressive damage to the nigrostriatal dopamine system [102]. In addition, it has been
shown that paraquat triggers processes characteristic of the early stages of degeneration of
dopaminergic neurons and activates compensatory mechanisms involving dopaminergic,
noradrenergic, serotoninergic, and GABAergic transmissions [103]. Biochemical analysis
showed that paraquat and maneb reduce the tissue content of striatal dopamine alongside
changes in the activity of subthalamic nucleus neurons without changing the content of
norepinephrine and serotonin in the cortex [104]. Like other environmental neurotoxicants,
ziram can enter the CNS from the nasal mucosa via the olfactory nerves. This is consistent
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with the evidence that exposure to dimethyldithiocarbamate (NaDMDC) increases the risk
of PD and points to the possibility that the olfactory system may be a major pathway for
entry of NaDMDC into the CNS [105].

AD has been reported to be the consequence of various risk factors such as ge-
netic predisposition, obesity, smoking, diabetes, and exposure during life to environ-
mental agents [106,107]. If genetic predisposition is considered to account for most
cases (70%) [106,107], the part due to pollutant exposure is probably underestimated.
Indeed, toxic metals (aluminum, copper, . . . ) [108–113], pesticides (organochlorine and
organophosphate insecticides: β-hexachlorocyclohexane, dieldrin, etc.) [114–119], indus-
trial pollutants (flame retardants, BPA, phthalates, . . . ) [120–122], airborne particles (PM2.5
and PM10) [123–128] and O3 [127,128] have been hypothesized to induce or aggravate AD.
Despite their chemical and physical variety, these pollutants seem to act through a common
process, neuroinflammation, due to microglia activation, which is known to play an essen-
tial role in neurodegenerative diseases such as AD and PD [124,125,129–131]. Activated
microglia are known to release proinflammatory factors, such as TNFα and IL-1β [132,133],
which are found to be increased in the CSF of patients with AD [134–136]. Neuritic plaques
composed of Aβ and neurofibrillary tangles are, indeed, surrounded by astrocytes and mi-
croglia with reactive characteristics [137]. Interestingly, proinflammatory factors have been
observed in biological samples (blood, urine, and necropsy tissue) of children and adults
from polluted areas [131,138–140] and were related to amyloid processing (tau hyperphos-
phorylation, Aβ immunoreactivity, and plaques) and inflammation response in the human
brain [138–141]. Similar observations linking brain damage (white matter lesions, damaged
BBB, degenerating neurons) and neuroinflammation were made in dogs from highly pol-
luted urban areas compared to dogs living in rural areas [142–144]. All these observations
have been confirmed by experimental data obtained from rodent models. Indeed, such
data demonstrate that PM (PM0.1, PM2.5) exposures elicit increased brain inflammation,
measured by IL-1β and TNFα [145–148]. Such a phenomenon is accompanied, for longer
exposures (30–39 weeks), by brain damage (loss of dendritic spine density in the CA1
region of the hippocampus) and buildup of Aβ plaques, which correlates with impaired
cognitive outcomes [149,150]. Other kinds of exposures, as diesel exhaust particles or nickel
nanoparticles, also lead to increased inflammatory cytokines (TNFα, IL-1β) and increased
levels of Aβ42 in multiple brain regions of rats [151,152] and mice [153], suggesting that the
effect on Aβ buildup in the brain may be, in part, due to the concentration of particulates
exposed, rather than its chemical constituents. Globally, all these findings demonstrate
the association between chronic exposure to PM and inflammation and the development
of AD-like neuropathology. Interestingly, the use of transgenic mice also confirmed that
PM exposure effects on AD pathogenesis can be increased with susceptible genotypes, as
seen in epidemiological studies [154,155]. A possible link between neuroinflammation and
AD could be mediated by the attachment of complement proteins, such as complement
C3, which helps microglia in the clearing of the plaques and is up-regulated in AD, con-
tributing to the synapse loss that leads to cognitive decline [156,157]. It was demonstrated
that knocking out the gene of this molecule in mice models of AD improved the animals’
performance in both learning and memory tests, despite them having more plaques in their
brains and fewer activated microglia [158]. Increased proinflammatory cytokines in AD,
such as IL-1β and TNFα, impact the serotoninergic system by increasing the uptake rate
of serotonin [159] through SERT [160]. Therefore, such an effect could lead to decreased
serotonin levels, which might be related to depression that is currently observed in AD
patients. Such a hypothesis is supported by studies reporting that accumulation of Aβ

oligomers and toxins present in AD patients leads to depressive episodes in mice through
microglial activation, alterations in the TNFα signaling pathway, and reduced presence
of serotonin in the brain [161]. Interestingly, it has been shown that treatments with SS-
RIs reduce the number of cytokines in the circulation [162,163]. Moreover, the following
increased levels of serotonin resulted in lower Aβ production, supporting the idea that
serotonin-induced pathways influence Aβ deposits in a negative way [164]. Such an effect
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is probably linked with the fact that serotonin can prevent the activation of microglial cells
that are induced by Aβ [161]. Therefore, the modulation of the serotoninergic system may
represent a therapeutic target for AD treatment, as suggested by recent clinical data [165].

To summarize, it does not seem that pollutant exposure induces AD by directly im-
pairing the serotoninergic system. According to our current knowledge, pollutants first
activate neuroinflammation in the brain, which, in turn, leads to brain damage. Among
such damage, the serotoninergic dorsal raphe nucleus can be one of the first brain lo-
cations to be affected by tau protein abnormalities [166] even if the degeneration of the
serotoninergic system can be observed in other brain regions (cortical, striatal, thalamic,
and limbic regions) of patients with cognitive impairments compared to cognitively normal
controls [167].

5. Neurobehavioral Disorders

Behaviors result from a complex interaction of genetic, environmental, and psychoso-
cial influences and different kinds of stressors. Neurobehavioral disorders, among which
major depression is the most common mood disorder, may be seen in association with brain
disease (e.g., stroke, multiple sclerosis (MS), dementia, and neuro-oncological conditions),
brain impairment (e.g., metabolic and toxic encephalopathies), and/or injury [168]. The
interactions of the population with different factors, including environmental pollutants,
can potentiate these behavioral disorders.

Mood and emotional disturbances are common complications observed in post-stroke
patients [169] and may manifest when the lesions damage the serotoninergic neuronal
system. Accordingly, SSRIs are the first-line medication choice to treat depressive symptoms
in stroke patients and generally improve mood symptoms [170]. Emerging data suggest
a role of serotonin in the recovery of neurological dysfunction in stroke patients, but the
efficacy of SSRIs to improve emotional disturbances and/or neurological dysfunction may
depend on SERT gene polymorphisms [171].

MS is a progressive neurological disorder in which environmental and genetic etiolo-
gies were suspected. In this disease, the immune system attacks and destructs the myelin
protective sheath that covers nerve fibers resulting in CNS dysfunction. Both synthesis
and metabolism of serotonin are disrupted in the brain of patients with MS. The level of
tryptophan is reduced in the plasma and the CSF of patients, changes that might lead to
impaired synthesis of brain serotonin [172,173]. On the other hand, a low level of 5-HIAA
was found in CSF of patients with MS [174]. In a proof-of-concept study, the SSRI fluoxetine
has a neuroprotective effect by reducing the formation of new lesions in non-depressed MS
patients [175]. Nevertheless, depression is a common comorbidity observed in MS, and
dysregulation of the serotoninergic system is observed in both diseases. Thus, reregula-
tion of the serotoninergic system with SSRIs was also effective in MDD treatment in MS
patients [176,177].

Disruption in the serotoninergic system has been established in AD and related
dementia (see supra, AD paragraph). However, new results of a brain scan study suggest
that serotonin loss is a key player in cognitive decline rather than a byproduct of AD
and other dementias. Compared to controls, the brain of patients with mild cognitive
impairment had up to 38% less SERT, a selective marker of the integrity of the serotoninergic
system. This observation could also explain the limited success of the treatment of AD with
SSRIs in some studies [167]. AD and depression have a complex relationship. Early onset
depression is an etiological risk factor for AD, and late-onset depression may be a catalyst of
cognitive decline. Thus, taking into account that SSRIs have an impact on plaque formation
rather than on plaque clearance, it has been suggested to use these antidepressants early in
order to alleviate the risk of developing AD and to treat depression as a risk factor [178].

In neuro-oncology, serotonin, which is part of the tumor microenvironment, can con-
tribute to gliomagenesis, and the serotoninergic system may represent a potential novel
therapeutic target for the most common primary malignant brain tumor glioblastoma
(GBM) [2]. Serotonin may originate from the activity of serotoninergic synapse present
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in the microenvironment of the tumor, but it was also proposed that GBM cells can gain
the ability to produce and secrete their own serotonin ([179]; and see also infra, GBM
paragraph). MDD is a common comorbidity for GBM and is known to promote disease
progression. MDD and GBM share several pathophysiological pathways, including dys-
function of the serotoninergic system. Due to these overlapping molecular pathways, the
benefits of antidepressant treatment on GBM progression are unclear and need further
study [180].

Metabolic encephalopathies are a group of neurological disorders not related to pri-
mary CNS structural damage. The classification distinguishes those due to lack of glucose,
oxygen, or metabolic cofactors from those due to peripheral organ dysfunction [181].
Among the seconds, hepatic encephalopathy (HE) is a consequence of late-stage liver
disease that can result from multiple causes, including cirrhosis. Several neurological
symptoms are associated with HE, including depressive mood [182]. Abnormal sero-
tonin production was reported in patients with HE, suggesting an involvement of this
monoamine in mood disorders associated with this encephalopathy [183,184].

Toxic encephalopathies are caused by acute or chronic exposures to various substances
and pollutants that can act as neurotoxicants (see also paragraph 2 for the effects of
pollutants on the serotoninergic system). They are characterized by several symptoms,
including an altered mental status, seizures, and depressive mood. Toxic encephalopathy
was described in patients following co-administration of the dye methylene blue to enable
pre-operative visualization of parathyroid glands and SSRI. This dye being a potent MAO-A
inhibitor, severe serotonin toxicity (or serotonin syndrome) was suggested [185]. Most cases
of serotonin toxicity involve an overdose of serotonin-elevating drugs, monoamine-oxidase
inhibitors, serotonin-norepinephrine reuptake inhibitors (SNRIs), and SSRIs.

Major depressive disorders (MDD) are psychiatric illnesses with an etiology deter-
mined by a complex set of influences (genetic, social, and environmental). Despite advances
in the understanding of the etiology and pathophysiology of MDD [186], currently, no
established mechanism can explain all facets of the disease. Among the neurophysiolog-
ical theories of this disease, the monoamine hypothesis proposes a deficiency of central
monoamine systems, including the serotoninergic [187]. Many antidepressant drugs act by
inhibiting the reuptake of one or more monoamine neurotransmitters or by an increase in
neurotransmitters release and thus improve the neurotransmission system altered in MDD.
For example, SSRIs, some of the most commonly prescribed drugs worldwide, inhibit
serotonin uptake through the blockage of neuronal and astrocytic SERT, and the subse-
quent enhancement of synaptic serotonin levels is known to act on 5-HT receptors that
mediate antidepressant response. Moreover, reduced serotoninergic neurotransmission
is a hypothesis to explain the etiology of suicide [188]. Two other hypotheses, the neu-
rotrophic and neurogenic hypotheses, have been proposed to explain the role of serotonin
in the pathophysiology of depression. These hypotheses are based on the fact that 5-HT
receptors and 5-HT signaling are involved in regulating the levels of both neurotrophic
factors (i.e., BDNF, VEGF, FGF2, IGF1) and adult neurogenesis in the subgranular zone
of the dentale gyrus in the hippocampus [189]. In a previous review, we reported that
many environmental chemical pollutants had been related to the etiology of MDD [17].
Several epidemiological studies suggest that exposure to BPA [190] phthalates [191,192],
heavy metals [190], PAH [192], pesticides [190], and airborne pollutants [193] contribute
to an increased prevalence of MDD. Moreover, in mice, early life exposure to BPA dose,
representative of human exposure levels, induces depressive-like behavior specific to F1
generation adult males, associated with a reduction in whole hippocampal serotonin lev-
els [194]. Interestingly, hippocampal and frontal cortex serotonin levels were reduced in a
stress-sensitive rat model of depression following chronic O3 exposure [49].

Migraine is an episodic neurobehavioral disorder with complex pathophysiology,
which depends upon gene-environmental interactions. Studies have implicated serotonin
and its signaling pathways in the pathophysiology of migraines, and the mainstay acute
treatment for migraines is a class of drugs, which act on serotonin receptors, called trip-
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tans. Although migraine was proposed to be a low serotonin syndrome, it was recently
suggested that migrainers have a low brain serotonin level between attacks and that this
level elevates as a consequence of migraine attacks [195,196]. Moreover, a recent study of
117 migraine Danish families suggests that dysfunction in the 5-HT2 receptor-mediated
signaling pathway is part of migraine pathophysiology [197]. The function of serotonin
in migraine pathophysiology is complex, depending on the site of action and the recep-
tor subtype it activates [196]. The influence of environmental factors on the attacks of
migraine led to extensive debate over the past decades, and determining the triggering
factors is crucial to prevent this disorder. Chemical exposure and specific environmental
irritants are well-known triggers of the attacks of migraine [198]. In a study made in Seoul
(South Korea), higher air pollutant levels from traffic combustion sources were associated
with the risk of migraine, especially on high-temperature days [199]. Air fresheners emit
volatile organic compounds (terpenes, benzene, toluene, . . . ) and semi-volatile organic
compounds (such as phthalates) that contribute to indoor hazardous air pollutants associ-
ated with migraine headaches [200]. Copper toxicity in women that experience migraine
three times more frequently than men and tobacco smoke were also associated with mi-
graine attacks [201,202]. A multibehavioral model of migraines in rats developed based
on clinical diagnostic criteria from the International Classification of Headache Disorders
demonstrates that BPA exposure can exacerbate migraine-like behaviors and alter mRNA
levels of a number of nociception-related genes [203].

6. Cancer

The most common primary malignant brain tumor in adults is the grade IV glioma,
GBM. It has a poor prognosis with an estimated overall survival time of 16–18 months.
During the last 30 years, the incidence of GBM in France increased about four times. Better
diagnostic imaging and population aging are not sufficient to explain such a rise. Among
exposures involved in brain tumors (ionizing radiations) [204], carbamate pesticides have
been recently implicated in excess of CNS tumors in farmers [205]. A high number of GBM
cases was also observed in areas probably contaminated by aluminum [206]. Molecular
mechanisms linking chemical exposure to GBM are unknown [207]. However, it is possible
that such exposure may interact with the serotonin network. Indeed, serotonin activates
adult neurogenesis and gliogenesis [179,208–210] by acting on neural stem cells whose
characteristics are similar to initiating cells from which GBM derives [211,212]. Several hu-
man GBM cell lines express 5-HT receptors such as 5-HT7 [213,214]. Other 5-HT receptors
have been found to be specifically (i.e., 5-HT1E, 5-HT1Dα) expressed in human glioma cell
lines or at higher rates (i.e., 5-HT2) than in normal astrocytes [215]. These data suggest
that serotonin activates cell proliferation, migration, and invasion of glioma cells without
acting on a particular receptor [215]. Knowing that serotonin receptors interact with MAPK
and Akt cascades reinforces their involvement in GBM growth [7,8]. Rat C6 glioma cells
treated with 5-HT2A agonists exhibit increased proliferation and migration [216,217]. This
highlights the potential for serotonin receptor activation to promote GBM growth and
invasion [179]. This is in line with PET scanning observation showing serotonin binding
to various receptors [218] and tryptophan uptake correlated with decreased survival of
patients [219]. The tumor source of serotonin may come from the platelet aggregation of
the thrombotic environment of GBM. Serotonin would not only act directly on GBM cell
growth but also on angiogenesis by enhancing endothelial cell growth [220,221].

To conclude, our lack of knowledge about etiological factors prevents us from estab-
lishing whether they affect glioma genesis by impacting directly on the serotoninergic
system. However, as presented above, the serotonin receptors seem to be involved in all
aspects of glioma growth and reflect by their variety the characteristic high heterogeneity
of GBM tumors [222]. Despite their variety, it is possible then to consider the serotoninergic
system, through its receptors, as a therapeutical target for limiting glioma growth by using
specific inhibitors [223].
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7. Discussion and Future Directions

The incidence of brain pathologies has increased in recent years [224], and a link
with environmental pollutants is suspected [17]. Environmental factors through epigenetic
markings could exacerbate the genetic susceptibility of some patients. Interestingly, a
decline in a child’s intelligence quotient is also observed [225], and chemical pollution
could be a factor contributing to this decline. The developing nervous system of a fetus and
newborn is susceptible to the deleterious effects of environmental neurotoxic substances,
and perinatal exposure could result in the later development of diseases, a hypothesis
known as the developmental origin of health and diseases [16]. As discussed in this review,
some of these environmental pollutants affect the serotoninergic system and could be the
source of a silent pandemic of neurodevelopmental toxicity.

The comorbidity frequently present between some neuropathies can be understood by
the fact that these diseases share, at least in part, a common etiology involving the serotonin-
ergic system. Observations suggest that abnormalities of the serotoninergic system during
prenatal and early postnatal development of the CNS may result in a predisposition of
these children to brain disorders [19]. A link between brain diseases and the inflammatory
processes was proposed to interact in a complex way with serotoninergic pathways [226].
We have recently proposed that a common part between cerebral neuropathies could be
inflammatory processes in which connexin 43 (Cx43)- and pannexin-based channels seem
to be involved [227]. On the other hand, through the action on some of its receptor subtypes,
serotonin could regulate Cx expression and/or function, leading to a complex interplay
between these cellular mechanisms [228].

Studies have indicated that environmental chemicals (bisphenols, phthalates, persis-
tent organic pollutants, heavy metals, and pesticides) exposition during various stages
of life could significantly affect the human gut microbiome and the host health. One
open question is to what extent, and how, gut microbiome mediates the brain disorders-
causing effects of the pollutants [229]. Interestingly, the brain-gut axis is a bidirectional
communication network in which serotonin acts at both ends. Moreover, it was suggested
that the gut microbiome impacts the host serotoninergic system through its tryptophan
metabolism [230].

As suggested by studies carried out on the sudden infant death syndrome (SIDS), the
number of pathologies whose etiology involves a defect in the serotoninergic system would
be greater, and environmental pollutants would be partly responsible for the increase in
their prevalence [231,232]. The number of CNS pathologies, in which part of the etiology is
a disruption of the serotoninergic system under the influence of environmental pollutants,
is probably underestimated. Most of these pollutants that accumulate in the environment
due to agricultural, industrial, and urban activities have a long persistence, can still be
widely found in soils, in water, in the air, and in various animal species, decades after
their use has been discontinued. Human exposure to these pollutants can occur by several
routes, including ingestion of contaminated foods, skin absorption, or through respiration
and accidental contamination. However, despite overwhelming evidence of the impact
of environmental pollutants on human health, restrictive political decisions to limit or
eliminate this pollution have still not been taken. Consequently, in the short term, the
availability of a large array of pharmacological tools acting on the serotoninergic system
makes it possible to use some of them in the treatment of chemical pollutants-related brain
diseases.

What is really known about environmental risks? Epidemiological and clinical studies
suggest a correlation between human exposition to environmental pollutants and the
incidence of brain pathologies. However, as correlation does not necessarily mean cau-
sation, these observational findings need to be completed with experimental studies on
the biological mechanisms. In the future, new in vitro models using pluripotent stem cells,
brain organoids, and culture of neuronal cells derived from patients may help to ascertain
in these pathologies the disruption of the serotoninergic system under the influence of
environmental pollutants.
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