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We study in this article some statistical methods to fit some epidemiological parameters.

We first consider a fit of the probability distribution which underlines the serial interval

distribution of the COVID-19 on a given set of data collected on the viral shedding in

patients with laboratory-confirmed. The best-fit model of the non negative serial interval

distribution is given by a mixture of two Gamma distributions with different shapes

and rates. Thus, we propose a modified version of the generation time function of the

package R0. Second, we estimate the time-varying reproduction number in Mayotte.

Using a justified mathematical learning model, we estimate the transmission parameters

range values during the outbreak together with a sensitivity analysis. Finally, using some

regression and forecasting methods, we give some learning models of the hospitalized,

intensive care, and death cases over a given period. We end with a discussion and the

limit of this study together with some forthcoming theoretical developments.

Keywords: health statistics, parameter estimation, reproduction number, epidemiology, model, transmission rates

1. INTRODUCTION

Following the emergence of the COVID-19 and its spread outside of China, all countries are
experiencing the pandemic. The COVID-19 virus has caused great disruption to human health,
social life, development, and economics. In response, several countries have implemented several
interventions including nonpharmaceutical, vaccination, case isolation of symptomatic individuals
and their contacts, restriction and social distancing in schools, at work, and universities, banning
of mass gatherings and some public events, and local and national lockdowns of populations.
Also in response to the rising numbers of cases and deaths, and to maintain the capacity of
health systems to treat as many severe cases as possible, France like European countries and other
continents has implemented some process measures to control the epidemic, (refer to [1–4]). In
the French overseas department, especially in Mayotte, there is a high population density and
certain local issues such as access to water, housing, hindering distance measures, and barrier
gestures. The epidemic data in Mayotte started on 13 March 2020 when the first reported case
traveled from metropolitan France (3 days ago with two other family members, which in turn
were confirmed positive a few days later). Some other imported cases were confirmed later and
led to the actual state of the spread of the virus in Mayotte. Many mathematical models of the
COVID-19 coronavirus epidemic have been developed, and some of these are listed in the following
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articles [5–12, 42]. Based on the development of epidemiological
characteristics of COVID-19 infection, a model of type SEIARS
can be appropriate to study the dynamics of this disease. To
understand trends in the development of the epidemic curve,
it is important to know the serial interval distribution of the
COVID-19 virus estimate and hence the generation time to be
able to give some estimation of the epidemiological parameters
like the time- varying reproduction number and observed
transmission rates, among others. This article aims to study first
the statistical methods to fit the probability distribution function
which underlines the serial interval distribution of the COVID-
19 virus on a given set of data collected on the viral shedding in
patients with laboratory-confirmed COVID-19 (refer to [13, 14])
to obtain a best-fit model of the serial interval distribution. Based
on this estimation, we estimate the time- varying reproduction
number and the transmission rates observed on the island
of Mayotte from March 2020 to January 2022. The paper is
organized as follows. We present the material and methods
sections, the data, and the statistical tools together with the
mathematical learning model and tools. In the result section, we
give the estimation of the serial interval distribution by several
methods and the best-fit model with a mixture model. We derive
an estimation of the effective reproduction number along the
time. We fit the transmission rates parameters range values
obtain through the mathematical learning model together with
a sensitivity analysis of some parameters like the asymptotic ratio
and infectious period ratio. The results are presented together
with along with a discussion. We also present some regression
and forecasting models for the hospitalized, intensive care, and
death cases over a given period. We end with a conclusion
and the limit of this study and some theoretical perspectives as
forthcoming work.

FIGURE 1 | Reported daily infected cases from 13 March 2020 to 11 January 2022 and reported daily cases of hospitalization, intensive care, and death cases from

13 March 2021 to 26 February 2021 in Mayotte.

2. MATERIAL

This study is concerned with a statistical analysis of some
important parameters of the COVID-19 epidemic curve in
Mayotte.

2.1. Observed COVID-19 Infected Cases in
Mayotte
Many efforts have been made by the French Regional Health
Agencies in Mayotte to collect the data. The present study is
based on a reported dataset of confirmed cases of COVID-19
from 13 March 2020 to 11 January 2022. The reported temporal
daily cases and total confirmed cases are illustrated in Figure 1.
We also consider a subset of the database containing the daily
observed cases of confirmed hospitalization, intensive care, and
death cases from 13 March 2020 to 26 February 2021 in Figure 1.

2.2. COVID-19 Infectiousness Profiles From
Transmission Pairs
Some major studies have been made on the determination
of generation times through serial interval distributions and
incubation time from real data, refer to for instance [13, 14].
In this section, we will focus on the data collected by He
et al. [13] where the authors report temporal patterns of viral
shedding in 94 patients with laboratory-confirmed COVID-19
and modeled COVID-19 infectiousness profiles from a separate
sample of 77 infector-infectee transmission pairs. The variation
between individuals (infector/infectee) and the transmission
process is summarized, respectively by the distribution of
incubation period and serial intervals. Figure 2 (picture above)
contains the number of infected cases (in red), the lower limit
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FIGURE 2 | Evolution of the infector and infectee pairs and histogram of the serial interval.

of infectors (in black), and the upper limit of infectors (in
green).

The variation between individuals and chains of transmission
is summarized, respectively by the distribution of incubation
periods and the distribution of serial intervals (refer to definition
below). For simplicity, we consider non-negative serial interval
values which represent 93% of the data. Figure 2 shows the
histogram (picture below) of the serial interval from the
underline database.

3. METHODS

First let us recall some definitions concerning the infectivity
process. Consider an infector i and infectee j. The generation
time interval Gi,j is the time interval from the infection of i to
infection of j. It is the time lag between infection in a primary case
and a secondary case; and should be obtained from the time lag
between all infectee/infector pairs [15]. In this way, it describes
infectiousness with respect to the point of infection. As it cannot
be observed directly, it is often substituted with the serial interval
distribution Si,j which is the time interval between symptom

onset of the infector i and symptom onset of the infectee j. They
can be captured by the following equations:

Gi,j = Si,j + Ei − Ej

or

Gi,j = Pi,j − Pj,i + Sj,i.

where E is the time interval between symptom onset and the
infection (incubation period) and Pi,j is the time interval from
the symptom onset of i to infection of j. We refer the reader to
Lehtinen et al. [16] and Svensson [15] for further details. The
serial interval that can be computed as follow (refer to [13]):

serial_interval = y− (
x.ub+ x.lb

2
)

with

• x.lb: Lower limit dates of onset of symptoms of infectors.
• x.ub: Upper limit dates of onset of symptoms of infectors.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 August 2022 | Volume 8 | Article 870080

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Manou-Abi et al. Estimating Some Epidemiological Parameters

FIGURE 3 | Summary of the method of moments, (A), and by the maximum

likelihood estimation (MLE), (B), of fitted distributions.

• y: Dates of onset of symptoms of the infectee.

There are many methods for generating estimates of parameters
for standard probability distributions such as the method of
moments and the maximum likelihood estimation. The use of
other methods was generally confined to analytical work on
mixture densities. Rapid analysis of the above histogram seems
to show that the serial interval can be fit by a set of exponential-
family distributions (e.g., «Gamma », «Lognormal », «Weibull
», and «Exponential »distributions) or a mixture of them. The
method of moments consists in estimating the parameters of
the distributions from the theoretical finite moments with their
empirical estimates. As concerned the Weibull distribution, we
estimate the scale and shape parameters from the analytical
expression of the mean, median, and the variance of the above
serial interval data.

3.1. Estimation by the Maximum Likelihood
Method
The maximum likelihood estimation (refer to [17] is a statistical
method used to estimate the parameters of the probability law
of a given observation x = (x1, .., xn) with probability densities
f (xi, θ) by determining the values of the parameters maximizing
the log-likelihood function given by:

L(θ) = log(
n

∏

i=1

f (xi, θ)) =
n

∑

i=1

log(f (xi, θ))

where θ is the (vector) parameter to be estimated. The likelihood
function then represents the joint density of the individual
observations xi for any given level of the distribution parameters.
The maximum likelihood estimate is the distribution parameter
values, which maximize the likelihood function since these
same values of the estimators also maximize the log-likelihood
function.

3.2. Estimation by a Mixture Method
We present a mixture estimation which is a flexible tool (see
[18, 19]) to model a known smooth probability density function
as a weighted sum of parametric density functions fj(x, θj) in a
possibly multivariate independent observations x = (x1, .., xn)
drawn from k several densities:

f (x) =
k

∑

j=1

pjfj(x, θj)

where k represents the number of classes or groups of the mixing,
pj > 0 is the relative proportion of observations from each class
j such that

∑n
j=1 pj = 1. The mixture density will allow finding

the parameter 2 = (pj, θj) of the model where θj is the (vector)
parameter from class j.
The log-likelihood of the mixing density is defined by:

L(2) = log(
n

∏

i=1

f (xi,2)) =
n

∑

i=1

log(
k

∑

j=1

pjfj(xj, θj)).

The maximum likelihood estimates are:

max
n

∑

i=1







log
(

k−1
∑

j=1

(pjfj(xi, θj))+ (1−
k−1
∑

j=1

pj)fk(xi, θk)
)







subject to

k−1
∑

j=1

pj ≤ 1.

For k > 1, the sum of the term appearing inside a logarithm
makes this optimization quite difficult. Solution of this non-
linear optimization problem has long been a difficult task for
applied researchers. There are, of course, many general iterative
procedures that are suitable for finding an approximate solution
to the likelihood equations.

3.3. Non Parametric Estimation of the Time
Varying Reproduction Number
Understanding the development of an epidemic is important
as well as the basic reproduction number R0 at the start of
an epidemic and the time varying reproduction numbers. It
is historically defined as the average number of new cases of
infection generated by an individual during a period of infectivity
(refer to [20]). There are several methods for computing this
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parameter, e.g., the next-generation matrix method. Let us
mention here a non-parametric approach followingWallinga and
Lipsitch [21]. Let η be the probability that an individual will
remain infectious over a unit of time after being infected (i.e.,
age of infection) and β the transmission rate at age of infection
a. Then τ (a) = η(a)β(a) is the transmissibility of an infectious
individual at the age of infection a, assuming that the entire
population is susceptible. Hence,

R0 =

∫ ∞

a=0
τ (a) da.

We can normalize τ (a) to be a probability density function:

w(a) =
τ (a)

∫ ∞

a=0
τ (s)ds

=
τ (a)

R0
.

so that

τ (a) = R0w(a).

Let Ŵ(t) be the number of new infections during the time
interval ]t; t + dt[ and s(t) the proportion of susceptibles in the
population. Note that the new infections at time t are the sum of
all infections caused by infectious individuals infected at a unit of
time (i.e., at time t = a) if they remain infectious at time t (with
an infectious age a). In other words

Ŵ(t) =

∫ ∞

0
Ŵ(t − a)τ (a)s(t)da = s(t)

∫ ∞

0
Ŵ(t − a)τ (a)da

= s(t)
∫ ∞

0
Ŵ(t − a)w(a)R0da.

For t 6= 0, we have a non parametric formula of the time
varying reproduction number

R0(t) = R0 ∗ s(t) =
Ŵ(t)

∫ ∞

0
Ŵ(t − a)w(a)da

.

For practical calculation, this formula offers a discrete version as
follows

R0(t) =
Ŵ(t)

∑

τ≤t w(τ )Ŵ(t − τ )
, (1)

implemented in the package R0, Obadia et al. [22] and Boelle
et al. [23] and package EpiEstim, [24, 25]. In this study, we will
compare our results on the reproduction numbers with the R0
package. For more on the calculation of the R0, we refer to
Batista [26]. Other improved estimation methods also exist in the
literature, refer to Demongeot et al. [27] andWaku et al. [28], and
references therein.

TABLE 1 | Explicit fitted parameters by the method of moments and

Kolmogorov-Smirnov test.

Law Parameters P-value

Gamma Shape = 2.13344 and Rate = 0.3390897 0.686

Log-normal Mean = 1.836804 and sd = 0.3843958 1.96 ∗ 10−6

Weibull Scale = 6.87615 and Shape = 1.15031 2.69 ∗ 10−2

Exponential Rate = 0.1589404 0.986

3.4. Regression and Forecasting Models
A regression method (refer to [29]) is a predictive statistical
approach for modeling the relationship between a dependent
variable say Y with a given set of observed variables say X =

(X1,X2, . . . ,Xn) under the form Y = f (X, η) + ω, where η is
an unknown (vector) parameter and ω representing an additive
error that may stand for white noise. The prediction models
provide the insights that result in tangible outcomes.

The predictive statistical approach for disease research work
found in the literature deals with ARIMA models [30, 31],
polynomial regression and hierarchical polynomial regression
models [32–34]. Recall that a process Yt is said to be
ARIMA(p, d, q) if

Yt = α +

p
∑

i=1

φiYt−i +

q
∑

j=1

θjωt−j + ωt ,

where Yt−1,Yt−2, ...,Yt−p are the lags (past values); φ1,φ2, ...,φp

are lag coefficients that are estimated by the model;
ωt−1,ωt−2, ...,ωt−q are error terms of the model for the
respective lags; θ1, θ2, ..., θq their coefficients, and

α =
(

1−
p

∑

i=1

φi

)

µ

with µ the mean of the process.
When analyzing a model, it is important to measure its
performance in order to draw the best conclusion and
interpretation of the data. We will use the coefficient of
determination or R2 as a metric given by

R2 = 1−
SSres

SStot
,

where for n values marked y1, ..., yn, each associated with a fitted
value ŷ1, ..., ŷn, the sum of squares of residuals SSres =

∑n
i (yi−ŷi),

and the total sum of squares SStot =
∑n

i=1(yi − ȳ).

3.5. The Mathematical Learning Model
We propose a simple model that generalizes the SEIR
model commonly used for virus disease modeling. The total
population is partitioned into the following compartments:
Susceptible S, Exposed E, Infected but not yet infectious, in
a latent homogeneous period λ−1; symptomatic Infected Is
with infectious period γ−1

1 and asymptomatic Infected Ia in
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TABLE 2 | Log-likelihood, AIC, BIC and parameters with the MLE.

Law Log-likelihood AIC BIC Parameters P-value

Gamma 192.8342 387.6683 389.6791 Shape = 2.315722 and Rate = 0.3680613 0.4758116

Log-normal 192.5157 387.0313 389.3751 Mean = 1.60804 and Variance = 0.702471 0.6716618

Weibull 194.3016 390.6032 392.9470 Shape = 1.568012 and Scale = 7.047558 0.5583907

FIGURE 4 | Mixture distribution by the Optim function.

an infectious period γ−1
2 ; Recovered R cases, and disease Dead

cases D. We assume that every Exposed subject that enters Is
cohort later develops symptoms with probability 1 − q and
those who do not enter the Ia cohort with probability q. This
assumption comes from real information in Mayotte and can
be seen also in some studies, refer to Mizumoto et al. [35, 36].
We assume that a protected fraction ω of recovered individuals
move to S (loss of immunity and re-infection). Given initial
conditions S(0) > 0, E(0) > 0, Is(0) > 0, Ia(0) >

0, R(0) > 0, and D(0) ≥ 0, the differential equations

that govern the trajectories of our model are formulated
as follow































dS(t) = −βS (Is+Ia)
N dt + ωRdt

dE(t) = βS (Is+Ia)
N dt − λEdt

dIs(t) = (1− q)λEdt − (γ1 + α)Isdt
dIa(t) = qλEdt − γ2Iadt
dR(t) = γ1Isdt + γ2Iadt − ωRdt
dD(t) = αIsdt
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TABLE 3 | Fitted parameter, Log-likehood, AIC, and BIC values with the mixture models.

Law Parameters Log-likehood AIC BIC

Gamma p = 0.35, a1=5.36 , b1 = 0.52 , a2 = 3.53, b2 = 0.86 191.5252 –373.0503 –361.3313

Log-normal p = 0.3, c1 = 2.26 , d1 = 0.4 , c2 = 1.32, d2 = 0.6 191.6813 –373.3626 –361.6436

Weibull p = 0.24 , e1 = 2.67, f1 = 12.74, e2 = 1.92, f2 = 5.08 191.8430 –373.6860 –361.9670

FIGURE 5 | Evolution of the time varying reproductive number in Mayotte from

13 March 2020 to 11 January 2022 with the best-fit mixture of the SI.

FIGURE 6 | Evolution of the time varying reproductive number in Mayotte from

13 March 2020 to 11 January 2022 with a mixture of Log-normal distribution

fit of the serial interval (A) and a mixture of Weibull distribution fit of the serial

interval (B).

where N = S+ E+ Is + Ia + R+D is the fixed total population.
With the initial conditions, the above system is well posed, with
all variables remaining non-negative and N positive constant.

The epidemic equilibrium X0 of the system is obtained by
setting all the derivatives to zero with Is = Ia = 0, which yields
to X0 = (N, 0, 0, 0, 0). To obtain the basic reproduction number,
we use the next generation matrix (Dieckmann) by writing the
Jacobian matrix of the flows of individuals between the different

compartments at equilibrium:

F =





0 β β

0 0 0
0 0 0





V =

















λ + µ 0 0

−(1− q)λ γ1 + α 0

−qλ 0 γ2

















The Jacobian matrix FV−1 has two zero and one positive
eigenvalues so that

R0 =
qβ

γ2
+

(1− q)β

γ1 + α
.

Considering the negligible death rate, we have

R0 ∼ β

( q

γ2
+

1− q

γ1

)

.

Thus

β ∼
R0γ1

r + 1− q
, (2)

where ratio r : = γ1
γ2
. We assume in this article that, due to the

isolation the symptomatic individual reduces their infectiousness
so we shall consider values of r less than one.

4. RESULTS AND DISCUSSION

The purpose of this section is to present the results not only on
the parameter estimation of the serial interval distribution, and
the reproduction numbers but also estimates of the transmission
rates based on the above simple model.

4.1. Estimation of the Serial Interval
The basic method of moments (Figure 3A) and maximum
likelihood estimation (Figure 3B) are summarized in Figure 3

for a set of classical distributions.
As we can see in the method of moments, the «Gamma

»distribution seems to fit better than others. Note that
the method of moments does not give a good fit since
it does not use any optimization techniques such as the
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FIGURE 7 | Comparison of our time varying (figure below) reproductive

number in Mayotte from 11 January 2021 to 11 January 2022 with the

time-varying reproductive number from package R0 (figure above) with the

best-fit of the SI by the MLE method.

Maximum Likelihood Estimation (MLE) method. The fit
with the exponential distribution is not good and in the
sequel, we will focus on «Gamma », «Lognormal », and
«Weibull »distributions. The Kolmogorov-Smirnov test
result for them is given also in Table 1 for the method
of moments.

The maximum likelihood estimate is done using the R
software function nlm, refer to Obadia et al. [22]. In Figure 3B,
we represent several fitted densities estimated by this method.

We can see that, compared to the method of moments, the
maximum likelihood improves in some way the estimation,
refer to Table 2 for the Kolmogorov test. Akaike’s Information
Criterion (AIC) and the Bayesian Information Criterion (BIC)
are written as follows:

AIC = 2k− 2 log(L) BIC = −2 log(L)+ k log(N),

where k is the number of parameters to estimate, L is the
maximum of the likelihood function of the model, and N is
the number of observations in the sample. The log-likelihood

values, widely applicable information AIC and BIC criteria, and
estimate parameters are summarize in Table 2. We note that the
log-normal distribution is the best to fit the data in this context.

In the case of a mixture, a two-component mixture model is a
reasonable model based on the bi-modality. Using the R software
function optim, it is possible to minimize the log-likelihood
functions of the different laws taken as arguments in addition
to the initialization of the parameters to be optimized for the
serial interval distributions. In Figures 3, 4, we summarize the
estimation results of the mixture models.

The Log-likelihood, AIC, and BIC values are given in Table 3,
and we conclude that the best-fit mixture is given by the
mentioned mixture of «Gamma »distributions. This best-fit
mixture is better than the MLE.

4.2. The Reproduction Number
In this section, we propose to modify the generation time
function provided in the R0 package (refer to [22, 23]) to take
into account a mixture modeling framework. Indeed, the choices
of series interval estimation models in the R0 package are fixed
distributions («Gamma », «Lognormal », and «Weibull ») and
do not allow mixture distributions of the serial interval (SI).
Furthermore, note that there is no reason for a mixture of
Gamma distributions with different non-integer parameters to
be Gamma distributed. Thus, using the epidemic incidence curve
in Mayotte, we derive a generation time distribution in order to
estimate the time varying reproduction number R0(t) using the
non parametric formula in Equation (1) and the best-fit mixture
of the SI. The picture in Figure 5 represents the evolution of
the time varying reproduction number R0(t); we make the curve
smooth using estimated values.

The picture in Figure 6 shows not only the evolution of the
time-varying reproduction number R(t) with package R0 but also
a comparison with our method of estimation in a given period.
We can see that at the start of the epidemic the basic reproductive
number is around 3. This is consistent with the literature [1, 6, 37]
and show that, at the start of the epidemic, an infected individual
could contaminate an average of 3 individuals. The public policy
measures taken by the authorities and health agency of Mayotte
in response to the COVID-19 with a total lockdown on March
17 made it possible to observe a value of this indicator below 1
around the middle of April 2020, showing a temporary decline in
the epidemic curve during this period. After then, unfortunately,
the dynamic changed over time since the end of the lockdown
at the end of May 2020. Subsequently, the Mayotte authorities
implemented several measures including non-pharmaceutical
intervention measures such as the establishment of curfews,
the wearing of mandatory masks in public spaces, and now
vaccination. As we can see two other maximum values (explained
by the appearance of new variants being more contagious over
time) were observed at the end of 2020 and 2021 which justified
restriction decisions by the local authorities. Figure 7 shows
the relative variation of the reproduction numbers under other
mixtures of the SI distributions.
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FIGURE 8 | Estimates of the transmission rate with respect to time varying reproduction number R0(t) and a range of infectious period of symptomatic γ−1
1 ∈ (3, 10).

TABLE 4 | Best-fit models and quality measures.

Variable Model AIC

Daily Hospitalized cases ARIMA(1,0,2) 1580.291

Daily Intensive care ARIMA(0,0,1) 1057.323

Daily Death ARIMA(0,0,2) 754.9549

4.3. Estimates of the Transmission Rates
We give some estimated results of the transmission rates for
some given periods such as March 2020, December 2020 and
2021. The following pictures in Figure 8 show the range values
of the time-varying transmission rates β(t) using the formula (2)
according to the time-varying reproduction numbers R0(t) and
infectious rate γ1. We make a sensitivity analysis for some values
of the asymptotic ratio q. The information we have about the
data allow to choose q = 0.2 or q = 0.3. For an infectious ratio
r ∼ 0.7, one observed transmission rate going around up to 1.6
in March 2020 for a range from 20 % to 30 % of asymptomatic
ratio. In the same conditions, the range of transmission rate
goes up to 0.9 in December 2020 and up to 2.6 in December
2021. This show strong contact rates in December 2021, which
can be explained by the traditional weddings in December in
Mayotte. In December 2020, the contact rates were not strong

and this can be explained by perhaps less contagiousness of the
first variant at this time or by the fact that there were fewer
traditional weddings in this same period of 2020 because of the
fears of the population.

4.4. Regression and Forecasting Results
The decomposition of the time series of daily hospitalized,
intensive care unit, and death cases, allowed us to choose the
best models summarized in Table 4. The prediction of the above
models is given in Figure 9.

We analyze in Figure 10, the performance of a polynomial
regression model on the cumulative cases with a common R2 =
0.998.. The model equations read as follows:

ICU(t) = 81.1352+ 845.1673I(t)− 209.4965I(t)2 + 161.9409I(t)3

−12.5283I(t)4 − 14.1357I(t)5 + 13.7583I(t)6.

H(t) = 500.5775+ 4597.2940I(t)− 1308.7433I(t)2 + 1107.8621I(t)3

−432.4763I(t)4 + 84.7675I(t)5 + 51.4808I(t)6.

D(t) = 28.81127+ 287.13657I(t)− 67.34181I(t)2 + 64.48529I(t)3

− 6.12134I(t)4 + 15.39411I(t)5 − 18.32997I(t)6 − 6.64249I(t)7

+ 17.83960I(t)8 − 4.97188I(t)9 − 0.32299I(t)10 + 15.86371I(t)11

− 5.82441I(t)12 − 3.39272I(t)13 + 5.66989I(t)14 − 6.59240I(t)15

−1.09633I(t)16 + 4.11664I(t)17 + 0.66552I(t)18.
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FIGURE 9 | Predicted daily hospitalized, intensive care, and death cases from March 2020 to February 2021.

5. CONCLUSION AND FURTHER STUDIES

In this study, the outbreak dynamics of COVID-19 in Mayotte
are discussed through the estimation of the time-varying
reproduction number using a non parametric method. To
this end, we first make use of statistical methods to fit
the probability distribution function which underlines the
serial interval distribution of the COVID-19 virus on a
given set of data collected on the viral shedding in patients
with laboratory-confirmed COVID-19 in He et al. [13]. We
propose a modified version in package R0 of the time-varying
reproduction number with a mixture estimation model of
the serial interval distribution. After that, we considered a
deterministic mathematical dynamic epidemic model to estimate
the transmission rate parameters by using the Dykman method.
In the model, we did not integrate the impact of vaccination
because it is well known that vaccination does not prevent being
infected, and instead, we introduce a re-infection parameter even
though we do not deal in this article with the simulation of
the dynamic model. The fit of the transmission rates is done in

some given period of observation together with a sensitivity in
the asymptotic ratio and infectious ratio between symptomatic
and asymptomatic. We discuss some non-pharmaceutical
interventions in the evolution of the time-varying reproduction
number and the transmission rate coefficients. Any conclusion
that can be drawn subject to our assumptions is that mitigation
and non-pharmaceutical interventions of the COVID-19 have an
impact on the transmission rate parameters. Note also that some
conditions can be different in reality, e.g., the infectious rate, the
virus mortality rate, and the generation time distribution. This is
the limit of our study.

In terms of forthcoming study, we are currently interested
in theoretical developments in a context of a cross-mixture
in order to improve the estimates considering negative serial
interval and α-stables distributions with stochastic Expectation-
Maximization algorithm and Bayesian methods, refer to Castillo-
Barnes et al. [38] and El Haj et al. [39]. As concerned the
regression methods, we are currently working on some other
non-parametric forms, refer to Slaoui [40] and Bouzebda and
Slaoui [41].
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FIGURE 10 | Predicted cumulative intensive care, hospitalized, and death cases from March 2020 to February 2021.
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