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In this paper, we are concerned with the nonparametric estimation of an unknown density under censoring. Firstly, we propose a recursive kernel density estimators under censoring, based on a stochastic approximation algorithm. Then, we showed that our recursive estimator is consistent and asymptotically normally distributed. Moreover, we describe and investigate a data-driven bandwidth selection procedure based on normal pilot bandwidth reference distributions. We showed that the proposed recursive estimators can be better than the non-recursive in terms of estimation error and much better in terms of computational costs. We corroborated these theoretical results through a simulation study and on Malaria in Senegalese children dataset.

Introduction

The estimation of the probability density under censoring is a fundamental problem in statistics of considerable interest in many applied fields such as survival analysis, economics, engineering. Censoring is a condition in which the observation is only partially known. Let T, T 1 , . . . , T n be independent, identically distributed random variables, and let f and F denote respectively the probability density and the distribution of T . In many situations, the full data T 1 , . . . , T n are not available, let C, C 1 , . . . , C n be the corresponding censoring random variables, and let G denote the distribution function of C. T and C are assumed to be independent. We consider here the two cases right and left censored data. The observed random variables are then X i and δ i where X i = min (T i , C i ) and δ i = 1 {Ti≤Ci} , 1 ≤ i ≤ n, right censoring max (T i , C i ) and δ i = 1 {Ti≥Ci} , 1 ≤ i ≤ n, left censoring, and we let π i = P [δ i = 1|T i ], this probability is called the propensity score (see [START_REF] Rosenbaum | The central role of the propensity score in observational studies for causal effects[END_REF], in the framework of missing data).

In this paper, we propose a data driven bandwidth selection for censored recursive kernel density estimators defined by stochastic approximation method. Recently, data driven bandwidth selection method for recursive kernel density estimators defined by stochastic approximation method have been investigated by [START_REF] Slaoui | Bandwidth selection for recursive kernel density estimators defined by stochastic approximation method[END_REF] in the case of full data. [START_REF] Slaoui | Recursive kernel density estimators under missing data[END_REF] developed a data driven bandwidth selection in the case of missing data, while [START_REF] Slaoui | The stochastic approximation method for the estimation of a distribution function[END_REF] consider the recursive kernel distribution estimators. Recursive kernel regression estimators with a fixed design setting have been investigated by [START_REF] Slaoui | Plug-In Bandwidth selector for recursive kernel regression estimators defined by stochastic approximation method[END_REF], while the semi-recursive kernel regression estimators have been studied by [START_REF] Slaoui | Optimal bandwidth selection for semi-recursive kernel regression estimators[END_REF]. In this paper, we developed a specific data driven bandwidth selection method for the recursive kernel density estimators under censoring.

To construct a stochastic algorithm, which approximates the function f at a given point x, we define an algorithm of search of the zero of the function g : y → f (x)y. Following Robbins-Monro's scheme (see [START_REF] Robbins | A stochastic approximation method[END_REF]), we set f 0 (x) ∈ R and for all n ≥ 1, f n (x) = f n-1 (x) + γ n W n (x), where (γ n ) is a nonrandom positive sequence tending to zero as n goes to infinity, called the stepsize. In order to define W n at a point x we follow [START_REF] Révész | Robbins-Monro procedure in a Hilbert space and its application in the theory of learning processes I[END_REF][START_REF] Révész | How to apply the method of stochastic approximation in the non-parametric estimation of a regression function[END_REF], (see also [START_REF] Tsybakov | Recurrent estimation of the mode of a multidimensional distribution[END_REF] and [START_REF] Slaoui | The stochastic approximation method for the estimation of a distribution function[END_REF]), and we introduce a kernel K (that is, a function satisfying R K(x)dx = 1), and a bandwidth (h n ) (that is, a sequence of positive real numbers that goes to zero), and we set

W n (x) = h -1 n δ n π -1 n K h -1 n (x -X n ) -f n-1 (x)
, where

π i = n k=1 Q -1 k γ k h -1 k δ k K h -1 k [X i -X k ] n k=1 Q -1 k γ k h -1 k K h -1 k [X i -X k ] with Q n = n j=1 (1 -γ j ) . (1.1)
Then, our proposal in this paper to estimate recursively the function f at the point x is given by the following relation

f n (x) = (1 -γ n ) f n-1 (x) + γ n δ n π -1 n h -1 n K h -1 n [x -X n ] . (1.2) 
Throughout this paper, we suppose that f 0 (x) = 0. Then, we can estimate f recursively at the point x by

f n (x) = Q n n k=1 Q -1 k γ k δ k π -1 k h -1 k K x -X k h k .
Moreover, one can check that by considering the quantity E R f n (x)f (x)

2 dx as criteria of selecting the optimal bandwidth, the optimal bandwidth depend on the choice of the stepsizes (γ n ); in particular under some conditions of regularity of f and G and using the classical stepsizes (γ n ) = n -1 , the bandwidth (h n ) is asymptotically   3 10

1/5 R ∆ (2) (x) 2 dx -1/5 R K 2 (z) dz R z 2 K (z) dz 2 1/5 π 1/5 n n -1/5   , where ∆ (x) = f (x) (1 -G (x)) right censoring f (x) G (x) left censoring. (1.3)
This considered bandwidth depend on the unknown quantity R ∆ (2) (x) 2 dx, one can observe that is not easy to construct an asymptotic unbiased estimator of this quantity using just the observed data, rather than

E R f n (x) -f (x)
2 dx, we propose to use as criteria of selecting the optimal bandwidth the quantity

E R f n (x) -f (x) 2 w (x) dx, by considering the function w (x) = ∆ 2 (x) f -1 (x)
as a weight function; which conducted to estimate the two quantities R ∆ 2 (x) dx and R ∆ (2) (x)

2 ∆ (x) dx, which can be estimated using just the observed data (see Eqs. (2.9) and (2.10)). Then, the first aim of this paper is to propose a second generation plug-in bandwidth selection, and the second aim is to give the conditions under which the recursive estimators f n can be better than the non-recursive kernel density estimator under censoring, and defined as

f n (x) = 1 nh n n k=1 δ k π -1 k K x -X k h n , ( 1.4) 
where

π i = n k=1 δ k K h -1 n [X i -X k ] n k=1 K h -1 n [X i -X k ]
(see [START_REF] Nadaraya | On estimating regression[END_REF][START_REF] Watson | Smooth regression analysis[END_REF]).

(1.5)

The numerical studies given in Section 3 are corroborating these theoretical results. The layout of the paper is as follows. In Section 2, we state our main results. Section 3 is devoted to our numerical studies, first by simulation (subsection 3.1) and second using a real dataset (subsection 3.3). We conclude the paper in Section 4. Appendix A gives the proof of our theoretical results.

Assumptions and Main Results

We define the following class of regularly varying sequences.

Definition 2.1. Let γ ∈ R and (v n ) n≥1 be a nonrandom positive sequence. We say that (v n ) ∈ GS (γ) if lim n→+∞ n 1 - v n-1 v n = γ. ( 2.1) 
Condition (2.1) was introduced by [START_REF] Galambos | Regularly varying sequences[END_REF] to define regularly varying sequences (see also [START_REF] Bojanic | A unified theory of regularly varying sequences[END_REF]) and by [START_REF] Mokkadem | A companion for the Kiefer-Wolfowitz-Blum stochastic approximation algorithm[END_REF] in the context of stochastic approximation algorithms. Noting that the acronym GS stand for (Galambos and Seneta). Typical sequences in GS (γ) are, for b ∈ R, n γ (log n) b , n γ (log log n) b , and so on. In this section, we investigate asymptotic properties of the proposed estimators (1.2). The assumptions to which we shall refer are the following

: (A1) K : R → R is a non-negative continuous, bounded function satisfy- ing R K (z) dz = 1, and, R zK (z) dz = 0 and R z 2 K (z) dz < ∞. : (A2) i) (γ n ) ∈ GS (-α) with α ∈ (1/2, 1]. ii) (h n ) ∈ GS (-a) with a ∈ (0, 1). iii) lim n→∞ (nγ n ) ∈ (min {2a, (α -a) /2} , ∞]. : (A3) f is bounded, twice differentiable, and f (2) is bounded. • The intuition behind the use of such bandwidth (h n ) belonging to GS (-a)
is that the ratio h n-1 /h n is equal to 1 + a/n + o (1/n), then using such bandwidth and using the assumption (A2) on the bandwidth and on the stepsize, Lemma A.2 ensures that the bias and the variance will depend only on h n and not on h 1 , . . . , h n , then the M ISE will depend also only on h n , which will be helpful to deduce an optimal bandwidth. • In order to help the readers to follow the main results obtained in this paper, we underline that under the assumption (A2), we have

Q n n k=1 Q -1 k γ k = 1 + o (1), Q n n k=1 Q -1 k γ k h 2 k = O h 2 n and Q 2 n n k=1 Q -2 k γ 2 k h -1 k = O γ n h -1 h .
• Assumption (A2) (iii) on the limit of (nγ n ) as n goes to infinity is usual in the framework of stochastic approximation algorithms. It implies in particular that the limit of [nγ n ] -1 is finite.

For simplicity, we introduce the following notations:

ξ = lim n→∞ (nγ n ) -1 , (2.2) R (K) = R K 2 (z) dz, µ j (K) = R z j K (z) dz, Θ (K) = R (K) 4/5 µ 2 (K) 2/5 , I 1 = R ∆ 2 (x) dx, I 2 = R ∆ (2) (x) 2 ∆ (x) dx,
where ∆ (2) represent the second derivative of ∆.

2.1. Results on the recursive estimators f n . In this subsection, we explicit the choice of (h n ) through a second generation plug-in method, which is based on minimizing the Mean Weighted Integrated Squared Error (M W ISE) of the proposed recursive estimator (1.2), in order to provide a comparison with the non-recursive estimator (1.4). Our first result is the following proposition, which gives the bias and the variance of f n .

Proposition 2.2 (Bias and variance of f n ). Let Assumptions (A1) -(A3) hold, and assume that f (2) is continuous at x.

(1) If 0 < a ≤ α/5, then

E f n (x) -f (x) = h 2 n π -1 n 2 (1 -2aξ) ∆ (2) (x) µ 2 (K) + o h 2 n .
(2.3)

If α/5 < a < 1, then E f n (x) -f (x) = o γ n h -1 n .
(2.4)

(2) If α/5 ≤ a < 1, then V ar f n (x) = γ n h n π -1 n (2 -(α -a) ξ) f (x) R (K) + o γ n h n . (2.5) If 0 < a < α/5, then V ar f n (x) = o h 4 n . (2.6) (3) If lim n→∞ (nγ n ) > max {2a, (α -a) /2}, then (2.
3) and (2.5) hold simultaneously.

The bias and the variance of the estimators f n defined by the stochastic approximation algorithm (1.2) then heavily depend on the choice of the stepsizes (γ n ).

Let us first state the following theorem, which gives the weak convergence rate of the estimators f n defined in (1.2).

Theorem 2.3 (Weak pointwise convergence rate). Let Assumptions (A1)-(A3)

hold, and assume that f (2) is continuous at x.

(1) If there exists c ≥ 0 such that γ -1 n h 5 n → c, then The following theorem gives the strong pointwise convergence rate of the proposed recursive kernel density estimators under censoring. Theorem 2.4 (Strong pointwise convergence rate). Let Assumptions (A1) -(A3) hold, and assume that f (2) is continuous at x.

γ -1 n h n f n (x) -f (x) D → N √ cπ -1 n 2 (1 -2aξ) ∆ (2) (x) µ 2 (K) , π -1 n (2 -(α -a) ξ) f (x) R (K) . (2) If γ -1 n h 5 n → ∞, then 1 h 2 n f n (x) -f (x) P → π -1 n 2 (1 -2aξ) ∆ (2) (x) µ 2 (K) ,
(1) If there exists c 1 ≥ 0 such that γ -1 n h 5 n / ln ( n k=1 γ k ) → c 1 , then, with probability one, the sequence

γ -1 n h n 2 ln ( n k=1 γ k ) f n (x) -f (x)
is relatively compact and its limit set is the interval

  π -1 n 2 (1 -2aξ) c 1 2 ∆ (2) (x) µ 2 (K) - π -1 n f (x) (2 -(α -a) ξ) R (K), π -1 n 2 (1 -2aξ) c 1 2 ∆ (2) (x) µ 2 (K) + π -1 n f (x) (2 -(α -a) ξ) R (K)   .
(2) If γ -1 n h 5 n / ln ( n k=1 γ k ) → ∞ then with probability one,

lim n→∞ h -2 n f n (x) -f (x) = π -1 n 2 (1 -2aξ) ∆ (2) (x) .
As a criteria of selecting the optimal bandwidth, we use the M W ISE, by taking the function w (x) = ∆ 2 (x) f -1 (x) as a weight function,

M W ISE f n = R E f n (x) -f (x) 2 ∆ 2 (x) f -1 (x) dx + R V ar f n (x) ∆ 2 (x) f -1 (x) dx.
The following proposition gives the M W ISE of the proposed recursive estimators given in (1.2).

Proposition 2.5 (M W ISE of f n ). Let Assumptions (A1) -(A3) hold, and assume that f (2) is continuous and integrable.

(1) If 0 < a < α/5, then

M W ISE f n = 1 4 h 4 n π -2 n (1 -2aξ) 2 I 2 µ 2 2 (K) + o h 4 n .
(2) If a = α/5, then

M W ISE f n = γ n h n π -1 n (2 -(α -a) ξ) I 1 R (K) + 1 4 h 4 n π -2 n (1 -2aξ) 2 I 2 µ 2 2 (K) +o h 4 n . (3) If α/5 < a < 1, then M W ISE f n = γ n h n π -1 n (2 -(α -a) ξ) I 1 R (K) + o γ n h n .
The following corollary ensures that the bandwidth which minimize the M W ISE of the proposed recursive estimator f n depend on the stepsize (γ n ) and on the propensity score π n and then the corresponding M W ISE depend also on the stepsize (γ n ) and on the propensity score π n .

Corollary 2.6. Let Assumptions

(A1) -(A3) hold. To minimize the M W ISE of f n , the stepsize (γ n ) must be chosen in GS (-1), the bandwidth (h n ) must equal   (1 -2aξ) 2 (2 -(1 -a) ξ) I 1 I 2 1/5 R (K) µ 2 2 (K) 1/5 (γ n π n ) 1/5   .
Then, we have

M W ISE f n = 5 4 (1 -2aξ) -2/5 (2 -(1 -a) ξ) -4/5 I 4/5 1 I 1/5 2 Θ (K) π -6/5 n γ 4/5 n +o γ 4/5 n .
The following corollary shows that, for a special choice of the stepsize (γ n ) = γ 0 n -1 , which fulfilled that lim n→∞ nγ n = γ 0 and that (γ n ) ∈ GS (-1), the optimal value for the bandwidth (h n ) depend on γ 0 and then the corresponding M W ISE depend also on γ 0 .

Corollary 2.7. Let Assumptions (A1) -(A3) hold, and suppose that

(γ n ) = γ 0 n -1 . To minimize the M W ISE of f n , the stepsize (γ n ) must be chosen in GS (-1), lim n→∞ nγ n = γ 0 , the bandwidth (h n ) must equal 2 -1/5 (γ 0 -2/5) 1/5 I 1 I 2 1/5 R (K) µ 2 2 (K) 1/5 π 1/5 n n -1/5 ,
and then the asymptotic M W ISE of the proposed recursive estimator f n is equal to

AM W ISE f n = 5 4 1 2 4/5 γ 2 0 (γ 0 -2/5) 6/5 I 4/5 1 I 1/5 2 Θ (K) π -6/5 n n -4/5 .
Moreover, the minimum of γ 2 0 (γ 0 -2/5) -6/5 is reached at γ 0 = 1, then the bandwidth (h n ) must equal 3 10

1/5 I 1 I 2 1/5 R (K) µ 2 2 (K) 1/5 π 1/5 n n -1/5 , (2.7)
and we then

AM W ISE f n = 5 4 1 2 4/5 5 3 6/5 I 4/5 1 I 1/5 2 Θ (K) π -6/5 n n -4/5 . (2.8)
In order to investigate a data-driven bandwidth selection based on the optimal bandwidth (2.7), we must estimate the unknown quantities I 1 and I 2 . For this purpose, we used the following kernel estimators:

I 1 = Q n n n i,k=1 Q -1 k β k b -1 k δ k K b X i -X k b k , ( 2.9 
)

I 2 = Q 2 n n n i,j,k=1 j =k Q -1 j Q -1 k β ′ j β ′ k b ′-3 j b ′-3 k δ j δ k K (2) b ′ X i -X j b ′ j K (2) b ′ X i -X k b ′ k , ( 2.10) 
where K b and K b ′ are a kernels, b n and b ′ n are respectively the associated bandwidth (called pilot bandwidth) and β n and β ′ n are the two pilot stepsizes for the estimation of I 1 and I 2 respectively.

In practice, we take

b n = n -β min s, Q 3 -Q 1 1.349 , β ∈ (0, 1) (2.11) 
(see [START_REF] Silverman | Density estimation for statistics and data analysis[END_REF]) with s the sample standard deviation, and Q 1 , Q 3 denoting the first and third quartiles, respectively. At this stage, we need to give the optimal choice of (b n ), (b ′ n ), (β n ) and (β ′ n ). In order to achieve this task, we followed the same steps as the work of [START_REF] Slaoui | Bandwidth selection for recursive kernel density estimators defined by stochastic approximation method[END_REF] in the context of recursive kernel density estimation with no censoring data, and we showed that in order to minimize the AM ISE of I 1 the pilot bandwidth (b n ) must belong to GS (-2/5) and the pilot stepsize (β n ) should be equal to 1.36n -1 , and in order to minimize the AM ISE of I 2 the pilot bandwidth (b ′ n ) must belong to GS (-3/14) and the pilot stepsize (β ′ n ) should be equal to 1.48n -1 .

Then, the conducted data-driven bandwidth selector (h n ) in this work using the proposed recursive estimators given in (1.2) with the chosen stepsizes (

γ n ) = n -1 is equal to   3 10 1/5 I 1 I 2 1/5 R (K) µ 2 2 (K) 1/5 π 1/5 n n -1/5   , ( 2.12) 
and the associated plug-in AM W ISE is equal to

AM W ISE f n = 5 4 1 2 4/5 5 3 6/5 I 4/5 1 I 1/5 2 Θ (K) π -6/5 n n -4/5 .

Results on the non-recursive estimator f n .

Let us claimed the following Lemma which gives the bias and variance of the non-recursive kernel density estimator under censoring f n , the proof follows immediately from the proof the Proposition 2.2. Lemma 2.8 (Bias and variance of f n ). Let Assumptions (A1), (A2) ii) and (A3) hold, and assume that f (2) is continuous at x.

E f n (x) -f (x) = h 2 n 2 π -1 n ∆ (2) (x) µ 2 (K) + o h 2 n
, and

V ar f n (x) = π -1 n nh n f (x) R (K) + o 1 nh n , It follows from Lemma 2.8, that AM W ISE f n = π -1 n nh n I 1 R (K) + h 4 n 4 π -2 n I 2 h 4 n µ 2 2 (K) .
Then, to minimize the AM W ISE of f n , the bandwidth (h n ) must equal to Moreover, in order to estimate the optimal bandwidth (2.13), we must estimate I 1 and I 2 . For this purpose, we use the following two kernel estimators :

I 1 I 2 1/5 R (K) µ 2 2 (K) 1/5 π 1/5 n n -1/
I 1 = 1 n (n -1) b n n i,j=1 i =j δ j K b X i -X j b n , ( 2.15 
)

I 2 = 1 n 3 b ′6 n n i,j,k=1 j =k δ j δ k K (2) b ′ X i -X j b ′ n K (2) b ′ X i -X k b ′ n , ( 2.16) 
where K b and K b ′ are a kernels, b n and b ′ n are respectively the associated bandwidth given in (2.11).

At this stage, we need to give the optimal choice of (b n ) and (b ′ n ). For thus purpose, we used as a criteria the AM ISE of I 1 respectively of I 2 , we showed that, the pilot bandwidth (b n ) respectively (b ′ n ) must belong to GS (-2/5), respectively to GS (-3/14).

Then, the data-driven bandwidth selector (h n ) using the non-recursive estimator (1.4), is given by

  I 1 I 2 1/5 R (K) µ 2 2 (K) 1/5 π 1/5 n n -1/5   , (2.17)
and the plug-in of the AM W ISE of the non-recursive estimator (1.4), is given by

AM W ISE f n = 5 4 I 4/5 1 I 1/5 2 Θ (K) π -6/5 n n -4/5 .
Moreover, a hint of the proof of the following corollary are given in the appendix.

Corollary 2.10. Let the assumptions (A1) -(A3) hold, and the bandwidth (h n ) equal to (2.12) and the stepsize (γ n ) = n -1 when we apply the estimators f n and the bandwidth (h n ) equal to (2.17) when we apply the estimator f n . We have

E M W ISE f n E M W ISE f n < 1 for small sample setting. (2.18)
Then, for small sample size, the expected value of M W ISE of the proposed recursive estimators defined by (1.2) where the bandwidth is replaced by its databased version is smaller than the expected value of M W ISE of the non-recursive estimator defined by (1.4) where the bandwidth is replaced by its data-based version.

Numerical Studies

The aim of this section is to compare the performance of the proposed recursive kernel density estimators under censoring defined in (1.2) with that of the non-recursive estimator defined in (1.4). The comparison is done first through a simulation study and then through a real data set.

: When applying f n one need to choose four quantities:

(1) The function K, we choose the Normal kernel.

(2) The stepsizes (γ n ) equal to n -1 .

(3) The propensity score (π n ) is chosen to be equal to (1.1).

(4) The bandwidth (h n ) is chosen to be equal to (2.12). (a) To estimate I 1 , we use (2.9); The pilot bandwidth is chosen to be equal to (2.11) with the choice of β = 2/5 and the pilot stepsize equal to 1.36n -1 . (b) To estimate I 2 , we use (2.10); The pilot bandwidth is chosen to be equal to (2.11) with the choice of β = 3/14 and the pilot stepsize equal to 1.48n -1 . : When applying f n one need to choose three quantities:

(1) The function K, as in the recursive framework, we use the Normal kernel.

(2) The propensity score (π n ) is chosen to be equal to (1.5).

(3) The bandwidth (h n ) is chosen to be equal to (2.17 

Simulation experiments.

In our simulation study, we consider three sample size, n = 100, n = 200, n = 500 and the following five densities functions f : 1-the standard normal : X ∼ N (0, 1), 2-the normal mixture distribution : X ∼ 1/2N (2, 1)+1/2N (-3, 1), 3-the weibull distribution with shape parameter 2 and scale parameter 1: X ∼ Weibul (2, 1), 4-the log normal distribution: X ∼ log N (0, 1), 5-the chi squared distribution with 12 degree of freedom: X ∼ χ 2 [START_REF] Parzen | On estimation of a probability density and mode[END_REF]. Moreover, we simulated different censoring levels, in each considered case, we fixed the level after ordering the data. For each density and sample size n, we approximate the average ISE of the estimators using N = 500 trials of sample size n; ISE = 1 N N k=1 ISE g [k] , where g [k] (.) is the estimator computed from the kth sample and ISE g [k] = R g [k] (x)f (x) dx, and we approximate the average correlation; Cor = 1 N N k=1 Cor g [k] , f (x) .

Computational cost.

In order to give some comparative elements with the non-recursive censored estimator (1.4), including computational costs. We consider a 500 samples of size n 1 = ⌊n/2⌋ (the lower integer part of n/2) generated from respectively the five considered distributions, moreover, we suppose that we receive an additional 500 samples of size nn 1 generated also from the same five considered densities.

This property can be generalized, one can check that it follows from (1.2) that for all n 1 ∈ [0, n -1],

f n (x) = n j=n1+1 (1 -γ j ) f n1 (x) + n-1 k=n1   n j=k+1 (1 -γ j )   γ k h k δ k π -1 k K x -X k h k + γ n h n δ n π -1 n K x -X n h n = α 1 f n1 (x) + n-1 k=n1 β k γ k h k δ k π -1 k K x -X k h k + γ n h n δ n π -1 n K x -X n h n ,
where

α 1 = n j=n1+1 (1 -γ j ) and β k = n j=k+1 (1 -γ j ).
It is clear, that the proposed estimators can be viewed as a linear combination of two estimators, which improve considerably the computational cost.

Performing the two methods, we report the total CPU time values for each considered density and in all cases given in Tables 1, 2, 3, 4 and 5, the CPU time is given in seconds.

From Figures 1 and2, Tables 1, 2, 3, 4 and 5, we conclude that

• The proposed recursive kernel density estimator under censoring (1.2), with the stepsize (γ n ) = n -1 is closer to the true density function as compared with the non-recursive estimator (1.4). • In all the considered densities, the proposed estimator performed better than the non-recursive kernel density (1.4) for a completed data (no censoring). • In all the considered cases of tables 1, 3 and 4, the average ISE of the proposed recursive censored kernel density estimators is smaller than to the non-recursive kernel density estimator under censoring (1.4), even when the censoring levels is equal to 30% and the sample size equal to 500.

• In all the considered cases of table 2 and 5, the average ISE of the proposed recursive censored kernel density estimator using the stepsize (γ n ) = n -1 is quite similar to the non-recursive kernel density estimator under censoring (1.4). • The estimators get closer to the true density function as sample size increase and the censoring level decrease. • The two estimators ((1.2) and (1.4)) can deal effectively with both right and left censored data and under uncensored data. • The CPU time are always faster using the proposed recursive estimator and the reduction of CPU time goes from a minimum of 32% to a maximum of 59% compared to the non-recursive estimator.

Real dataset.

We considered a dataset of 176 families in Senegal, totalizing 505 children between 2 and 19 years old, living in two villages of Niakhar (Diohine and Toucar). The number of observations was 6986. We measured Plasmodium falciparum Parasite Load (PL) from thick blood smears obtained by finger-prick during two different seasons and regularly over a three-year observation period (2001)(2002)(2003), the number of measurements per child ranged from 1 to 15, for more details see ( [START_REF] Milet | Genome Wide Linkage Study, Using a 250K SNP Map, of Plasmodium falciparum Infection and Mild Malaria Attack in a Senegalese Population[END_REF]), this data was used also in [START_REF] Slaoui | Parameter estimation in a hierarchical random intercept model with censored response: An approach using a SEM algorithm and Gibbs sampling[END_REF] in a parametric context. We had the following variables: 1-Family identification : A factor with 176 levels; 2-Child identification : A factor with 505 levels; 3-PL : Parasite Load; 4infection : A factor with two levels (infected: 1 or not infected: 0); 5year : A factor with three levels (0 for 2001, 1 for 2002 and 2 for 2003); 6number of measurements per child : A factor with 15 levels; 7age : Age of the child in years between 2 and 19; 8season : A factor with two levels (July-October and October-March); 9village : A factor with two levels (Diohine and Toucar).

Assuming that all these measurement are corrects, we simulated different censoring levels, in each considered case, we fixed the level after ordering the data.

The density are then compared to those obtained with the full data. Even when 10%, 20% or even 30% of the original measurements are censored, the produced density remain very accurate thus demonstrating the effectiveness of our approach.

Figure 3 illustrate the outcomes of the two estimators (1.2) and (1.4) compared to the non-recursive kernel estimator introduced by [START_REF] Rosenblatt | Remarks on some nonparametric estimates of a density function[END_REF] (see also [START_REF] Parzen | On estimation of a probability density and mode[END_REF]) and the recursive estimator proposed in [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF] using the stepsize (γ n ) = n -1 (see also [START_REF] Slaoui | Large and moderate principles for recursive kernel density estimators defined by stochastic approximation method[END_REF] and [START_REF] Slaoui | Bandwidth selection for recursive kernel density estimators defined by stochastic approximation method[END_REF]).

We refer by N-rec to the non-recursive estimator and by Rec to the recursive estimator.

Conclusion

This paper propose an automatic bandwidth selection of the recursive kernel density estimators under censoring defined by the stochastic approximation algorithm (1.2). The proposed estimators are consistent and asymptotically follows normal distribution. Our proposal estimators are compared to the non-recursive censored kernel density estimator (1.4). We showed that, using some data based 1. Average ISEs and Correlations (approximated using N = 500 trials) and total CPU time in seconds of the nonrecursive estimator f n and the proposed recursive estimator f n with the choice of the stepsize (γ n ) = n -1 . Here we consider the normal distribution X ∼ N (0, 1) with the censoring level equal respectively to 0% (in the first block), equal to 10% (in the second block), equal to 20% (in the third block) and equal to 30% (in the last block), we consider three sample sizes n = 100, n = 200 and n = 500. selected bandwidth and some particularly stepsizes, the proposed recursive estimator can be better than the non-recursive one in terms of estimation error. The two estimators ((1.2) and (1.4)) can deal effectively with both right and left censored and uncensored data. The simulation study confirms the nice features of our proposed recursive estimators and satisfactory improvement in the CPU time in comparison to the non-recursive estimator.

X ∼ N (0,
In conclusion, the proposed method allowed us to obtain better results compared to the non-recursive censored kernel density estimator in terms of estimation error and much better in terms of computational costs. Moreover, we plan to consider the following estimator computed with Kaplan-Meier (KM) weights to estimate a density of probability in the presence of censored data,

f n (x) = Π n n k=1 Π -1 k γ k h -1 k δ k G -1 n (X k ) K x -X k h k . (4.1)
where G n (.) is given by

G n (t) = n i=1 1 - 1-δ (i) n-i+1 1 { X (i) ≤t } if t < X (n) 0 otherwise ,
which is known to be uniformly convergent to G and X (1) < X (2) < • < X (n) are the order statistics of (X (i) ) 1≤i≤n and δ (i) is the concomitant of X (i) , and then to compare the estimator (4.1) to the kernel density estimator computed with Kaplan-Meier, see [START_REF] Blum | Maximal deviation theory of density and failure rate function estimates based on censored data[END_REF], [START_REF] Földes | Strong consistency properties of nonparametric estimators for randomly censored data, part II: Estimation of density and failure rate[END_REF] and [START_REF] Diehl | Kernel density and hazard function estimation in the presence of censoring[END_REF], and then to compare the two estimators to 2. Average ISEs and Correlations (approximated using N = 500 trials) and total CPU time in seconds of the nonrecursive estimator f n and the proposed recursive estimator f n with the choice of the stepsize (γ n ) = n -1 . Here we consider the normal mixture distribution X ∼ 1 2 N (2, 1) + 1 2 N (-3, 1), with the censoring level equal respectively to 0% (in the first block), equal to 10% (in the second block), equal to 20% (in the third block) and equal to 30% (in the last block), we consider three sample sizes n = 100, n = 200 and n = 500. those conducted in this work. We plan also to extend this work by considering Bernstein polynomials rather than kernels and to propose an adaptation of the estimators developed in [START_REF] Jmaei | Recursive distribution estimators defined by stochastic approximation method using Bernstein polynomials[END_REF] and [START_REF] Slaoui | Recursive density estimators based on Robbins-Monro's scheme and using Bernstein polynomials[END_REF] in the case of censored data. 3. Average ISEs and Correlations (approximated using N = 500 trials) and total CPU time in seconds of the nonrecursive estimator f n and the proposed recursive estimator f n with the choice of the stepsize (γ n ) = n -1 . Here we consider the weibull distribution with shape parameter 2 and scale parameter 1, X ∼ Weibull (2, 1), with the censoring level equal respectively to 0% (in the first block), equal to 10% (in the second block), equal to 20% (in the third block) and equal to 30% (in the last block), we consider three sample sizes n = 100, n = 200 and n = 500. Lemma A.2. Let (v n ) ∈ GS (v * ), (η n ) ∈ GS (-η), and m > 0 such that mv * ξ > 0 where ξ is defined in (2.2). We have

X ∼ 1 2 N (2, 1) + 1 2 N (-
lim n→+∞ v n Q m n n k=1 Q -m k γ k v -1 k = (m -v * ξ) -1 .
Moreover, for all positive sequence (α n ) such that lim n→+∞ α n = 0, and all C ∈ R,

lim n→+∞ v n Q m n n k=1 Q -m k η k v -1 k α k + C = 0.
Lemma A.2 is widely applied throughout the proofs. Let us underline that it is its application, which requires Assumption (A2)(iii) on the limit of (nγ n ) as n goes to infinity.

Our proofs are organized as follows. Propositions 2.2 and 2.5 in Sections A.1 and A.2 respectively, Theorem 2.3 in Section A.3.

A.1. Proof of Proposition 2.2.

In view of (A.1) and (A.2), we have It follows that

f n (x) -f (x) = Q n n k=1 Q -1 k γ k (Z k (x) -f (x)) +Q n (f 0 (x) -f (x)) . (A.3)
E (f n (x)) -f (x) = Q n n k=1 Q -1 k γ k (E (Z k (x)) -f (x)) +Q n (f 0 (x) -f (x)) .
First in the case of right censoring and since X k = min (T k , C k ), we have 

E [Z p k (x)] = h -p k π -p k E 1 {T k ≤C k } K p x -X k h k = h -p k π -p k E 1 {T k ≤C k } K p x -T k h k = h -p k π -p k R R 1 {t≤c} K p x -t h k f (t) G ′ (c) dtdc = h -p k π -p k R R 1 {t≤c} G ′ (c) dc K p x -t h k f (t) dt = h -p k π -p k R (1 -G (t)) K p x -t h k f (t) dt. (A.
E [Z p k (x)] = h -p k π -p k E 1 {T k ≥C k } K p x -X k h k = h -p k π -p k E 1 {T k ≥C k } K p x -T k h k = h -p k π -p k R R 1 {t≥c} K p x -t h k f (t) G ′ (c) dtdc = h -p k π -p k R R 1 {t≥c} G ′ (c) dc K p x -t h k f (t) dt = h -p k π -p k R G (t) K p x -t h k f (t) dt. (A.5)
Then, in follows from (1.3), (A.4) and (A.5), that 4. Average ISEs and Correlations (approximated using N = 500 trials) and total CPU time in seconds of the nonrecursive estimator f n and the proposed recursive estimator f n with the choice of the stepsize (γ n ) = n -1 . Here we consider the log normal distribution X ∼ log N (0, 1), with the censoring level equal respectively to 0% (in the first block), equal to 10% (in the second block), equal to 20% (in the third block) and equal to 30% (in the last block), we consider three sample sizes n = 100, n = 200 and n = 500.

E [Z p k (x)] = h -p+1 k π -p k R ∆ (x -zh k ) K p (z) dz. (A.6) X ∼ log N (0,
Then, it follows from (A.6), for p = 1, that

E [Z k (x)] -f (x) = π -1 k R K (z) [∆ (x -zh k ) -∆ (x)] dz = π -1 k h 2 k 2 ∆ (2) (x) µ 2 (K) + η k (x) , (A.7) with η k (x) = π -1 k R K (z) ∆ (x -zh k ) -∆ (x) - 1 2 z 2 h 2 k ∆ (2) (x) dz,
and, since ∆ is bounded and continuous at x, we have lim k→∞ η k (x) = 0. In the case a ≤ α/5, we have lim n→∞ (nγ n ) > 2a; the application of Lemma A.2 then gives 5. Average ISEs and Correlations (approximated using N = 500 trials) and total CPU time in seconds of the nonrecursive estimator f n and the proposed recursive estimator f n with the choice of the stepsize (γ n ) = n -1 . Here we consider the chi squared distribution with 12 degrees of freedom X ∼ χ 2 [START_REF] Parzen | On estimation of a probability density and mode[END_REF], with the censoring level equal respectively to 0% (in the first block), equal to 10% (in the second block), equal to 20% (in the third block) and equal to 30% (in the last block), we consider three sample sizes n = 100, n = 200 and n = 500. and (2.3) follows from remark A.1. In the case a > α/5, we have h

E [f n (x)] -f (x) = 1 2 π -1 n ∆ (2) (x) R z 2 K (z) dzQ n n k=1 Q -1 k γ k h 2 k [1 + o (1)] +Q n (f 0 (x) -f (x)) = 1 2 (1 -2aξ) π -1 n ∆ (2) (x) µ 2 (K) h 2 n + o (1)
2 n = o γ n h -1 n
, and lim n→∞ (nγ n ) > (αa) /2, then Lemma A.2 ensures that

E [f n (x)] -f (x) = Q n n k=1 Q -1 k γ k o γ k h -1 k + O (Q n ) = o γ n h -1 n , then (2 
.4) follows from remark A.1. Further, we have

V ar [f n (x)] = Q 2 n n k=1 Q -2 k γ 2 k V ar [Z k (x)] = Q 2 n n k=1 Q -2 k γ 2 k E Z 2 k (x) -(E (Z k (x))) 2 . (A.8)
Moreover, in view of (A.6), for p = 2, that

E Z 2 k (x) = h -1 k π -2 k R ∆ (x -zh k ) K 2 (z) dz = h -1 k π -2 k ∆ (x) R K 2 (z) dz + ν k (x) , (A.9)
Since ∆ is bounded continuous, we have lim k→∞ ν k (x) = 0 and lim k→∞ ν k (x) = 0. In the case a ≥ α/5, we have lim n→∞ (nγ n ) > (αa) /2, and the application of Lemma A.2 gives

V ar [f n (x)] = γ n h n π -1 n (2 -(α -a) ξ) -1 f (x) R (K) + o γ n h n ,
then, (2.5) follows from remark A.1. Now, in the case a < α/5, we have γ n h -1 n = o h 4 n , and lim n→∞ (nγ n ) > 2a, then the application of Lemma A.2 gives 

V ar [f n (x)] = Q 2 n n k=1 Q -2 k γ k o h 4 k = o h
-1 n h n (f n (x) -E [f n (x)]) D → N 0, π -1 n (2 -(α -a) ξ) -1 f (x) R (K) . (A.11)
In the case when a > α/5, Part 1 of Theorem 2.3 follows from the combination of (2.4), (A.11) and remark A.1. In the case when a = α/5, Parts 1 and 2 of Theorem 2.3 follow from the combination of (2.3), (A.11) and remark A.1. In the case a < α/5, (2.6) implies that

h -2 n (f n (x) -E (f n (x))) P → 0,
and the application of (2.3) and remark A.1 gives Part 2 of Theorem We now prove (A.11). In view of (A.3) , we have

f n (x) -E [f n (x)] = Q n n k=1 Q -1 k γ k (Z k (x) -E [Z k (x)]) . Set Y k (x) = Q -1 k γ k (Z k (x) -E [Z k (x)]) . (A.12)
The application of Lemma A.2 ensures that

v 2 n = n k=1 V ar (Y k (x)) = n k=1 Q -2 k γ 2 k V ar (Z k (x)) = n k=1 Q -2 k γ 2 k h -1 k f (x) π -1 n R (K) + o (1) = Q -2 n γ n h -1 n (2 -(α -a) ξ) -1 f (x) π -1 n R (K) + o (1) . (A.13)
On the other hand, we have, for all p > 0,

E |Z k (x)| 2+p = O 1 h 1+p k , (A.14)
and, since lim n→∞ (nγ n ) > (αa) /2, there exists p > 0 such that lim n→∞

(nγ n ) > 1 + p 2 + p (α -a) .
Applying Lemma A.2, we get

n k=1 E |Y k (x)| 2+p = O n k=1 Q -2-p k γ 2+p k E |Y k (x)| 2+p = O n k=1 Q -2-p k γ 2+p k h 1+p k = O γ 1+p n Q 2+p n h 1+p n ,
and we thus obtain

1 v 2+p n n k=1 E |Y k (x)| 2+p = O γ n h -1 n p/2 = o (1) .
The convergence in (A.11) then follows from the application of Lyapounov's Theorem. where Y k is defined in (A.12).

• Let us first consider the case a ≥ α/5. We let H 2 n = Π V ar

[Y k (x)] = π -1 n f (x) R (K) 2 -(α -a) ξ .
Now, in view of (A.14), we have

E |Y k (x)| 3 = O Q -3 k γ 3 k h -2 k
, and then, the application of Lemma A.2 ensures that

n -3/2 n k=1 E |H n Y k (x)| 3 = O n -3/2 H 3 n n k=1 Q -3 k γ 3 k h -2 k = o ln H -2 n -1 .
Then, the application of Theorem 1 of [START_REF] Mokkadem | Compact law of the iterated logarithm for matrixnormalized sums of random vectors[END_REF] Moreover, in view of (A.14), it follows from (A.17) and Lemma A.2 that

n -3/2 n k=1 E |H n Y k (x)| 3 = O n -3/2 H 3 n h -6 n ln ln Q -2 n h 4 n 3/2 n k=1 Q -3 k γ 3 k h -2 k = o ln H -2 n -1 .
The application of Theorem 1 of [START_REF] Mokkadem | Compact law of the iterated logarithm for matrixnormalized sums of random vectors[END_REF] ensures that, with probability one, where C 1 , C 2 and C 3 are some quantities depending on the density f and on ∆. Then, we can deduce that for some specific case and for n small enough the expectation of M W ISE f n can be smaller than the expectation of M W ISE f n .

whereD→→

  denotes the convergence in distribution, N the Gaussian-distribution and P the convergence in probability.

  ). (a) To estimate I 1 , we use (2.15); The pilot bandwidth is chosen to be equal to (2.11) with the choice of β = 2/5. (b) To estimate I 2 , we use (2.16); The pilot bandwidth is chosen to be equal to (2.11) with the choice of β = 3/14.
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 1 Figure1. Qualitative comparison between the non-recursive kernel density estimator (1.4) (approximated using N = 500 trials of size n = 200 and given by the dashed line) and the recursive kernel density estimator (1.2) (approximated using N = 500 trials of size n = 200 and given by the dotted line), with the right censoring level equal respectively to 15% (in the top left panel), equal to 30% (in the top right panel), and with the left censoring level equal to 15% (in the down left panel) and equal to 30% (in the down-right panel) for the normal distribution N (0, 1).

4 )Figure 2 .

 42 Figure 2. Qualitative comparison between the non-recursive kernel density estimator (1.4) (approximated using N = 500 trials of size n = 200 and given by the dashed line) and the recursive kernel density estimator (1.2) (approximated using N = 500 trials of size n = 200 and given by the dotted line), with the right censoring level equal respectively to 15% (in the top left panel), equal to 30% (in the top right panel), and with the left censoring level equal to 15% (in the down left panel) and equal to 30% (in the down-right panel) for the Weibull distribution with shape parameter 2 and scale parameter 1, X ∼ Weibull (2, 1).

A. 4 .

 4 Proof of Theorem 2.4. Set S n (x) =

  [Y k (x)] = o (1) .

n h 4 n 2 ln ln H - 2 n 2 nA. 5 .Corollary A. 3 . 7 +

 4222537 (f n (x) -E [f n (x)]) = 0.Moreover, since (A.17) ensures that lim n→∞ ln ln H -n (x) -E [f n (x)]) = 0 a.s., then, the second part of Theorem 2.4 follows from (2.3) and remark A.1. Proof of Corollary 2.10. Following similar steps as in[START_REF] Slaoui | Bandwidth selection for recursive kernel density estimators defined by stochastic approximation method[END_REF], we prove first the following corollary Let the assumptions (A1) -(A3) hold, and the bandwidth (h n ) equal to (2.12) and the stepsize (γ n ) = n -1 when we apply the estimator f n and the bandwidth (h n ) equal to (2.17) when we apply the estimator f n . We haveE M W ISE f n .26522 × C 1 I -1 2 n -3/7 + (0.08793 × C 2 + 0.03521 × C 3 ) I -1 2 n -6/7 -0.22316 × n -1 +o n -1 n -4/5 (1 + o (1)) and E M W ISE f n (0.06496 × C 2 + 0.02165 × C 3 ) I -12 n -6/7 n -4/5 (1 + o (1)) ,

. Proof of Proposition 2.5.

  Following similar steps as the proof of the Proposition 2 of[START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF], we proof the Proposition 2.5.

	4 n ,
	then, (2.6) follows from remark A.1.
	A.2

A.

3. Proof of Theorem 2.3.

  Let us at first assume that, if a ≥ α/5, then

	γ

  ξ (αa)) s n + o (s n ) . (A.15) Since 2ξ (αa) > 0, it follows in particular that lim n→+∞ H -2 n = ∞. Moreover, since we have lim n→+∞ H 2 n /H 2 n-1 = 1, it follows from (A.13) 

				2 n γ -1 n h n , then
	ln H -2 n	= -2 ln (Π n ) + ln	n k=1	γ -1 k-1 h k-1 γ -1 i h k
	n = (2 lim H 2 n n→+∞ k=1		

  Moreover, it follows from (A.[START_REF] Robbins | A stochastic approximation method[END_REF], that lim n→∞ ln ln H -2 n / ln s n = 1, and then, with probability one, the sequenceγ -1 n h n (f n (x) -E [f n (x)]) / 2 ln s nis relatively compact, and its limit set is the interval (A.16). Then, the combination of (2.3), (2.4) and remark A.1 concludes the proof Theorem 2.4 in the case a ≥ α/5. • Let us now consider the case a < α/5.

							ensures that, with probability
	one, the sequence				
							
	 H n S n (x) 2 ln ln H -2 n	 =	 γ -1 n h n (f n (x) -E [f n (x)]) n 2 ln ln H -2	
	is relatively compact and its limit set is the interval
							
	 -	π -1 n f (x) R (K) 2 -(α -a) ξ	,	π -1 n f (x) R (K) 2 -(α -a) ξ	 .	(A.16)
	We set H -2 n = Q -2 n h 4 n ln ln Q -2 n h 4 n	-1 , then
	ln H -2 n h 4					n k=1	h -4 k-1 h -4
	n h 4 n = ∞. n-1 = 1, the application of A.2, n /H 2 Moreover, since we have lim n→+∞ H 2
	ensures that					
		lim n→+∞				

n = -2 ln (Q n ) + ln k = (2 -4aξ) s n + o (s n ) .

(A.17)

Since 2 -4aξ > 0, it follows in particular that lim n→+∞ H -2
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Appendix A. Proofs

First, we approximate the estimators f n by the unobservable estimators f n recursively defined by

Remark A.1. The consistency results of π n can be obtained from the generalized recursive version of Nadaraya-Watson's estimator proposed in ( [START_REF] Slaoui | Optimal bandwidth selection for semi-recursive kernel regression estimators[END_REF])).

Throughout this section we use the following notation:

Before giving the outlines of the proofs, we state the following technical lemma, which is proved in [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF], and which will be used throughout the demonstrations. 2) with the choice of (γ n ) = n -1 . Here we consider the Parasite Load with the censoring level equal respectively to 0% (in the first block line), equal to 10% (in the second block line), equal to 20% (in the third block line) and equal to 30% (in the last block line), the first block column correspond to the use of the no censored kernel density estimators; the non-recursive estimator introduced by [START_REF] Rosenblatt | Remarks on some nonparametric estimates of a density function[END_REF] and the recursive estimator given by [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF], the second block column correspond to the use of the censored kernel density estimators, we consider three sample sizes n = 100, n = 200 and n = 500, the number of simulations is 500. with

Moreover, it follows from (A.7), that

Then, it follows from (A.8), (A.9) and (A.10), that