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SMOOTHING PARAMETERS FOR RECURSIVE KERNEL
DENSITY ESTIMATORS UNDER CENSORING

YOUSRI SLAOUT*

ABSTRACT. In this paper, we are concerned with the nonparametric es-
timation of an unknown density under censoring. Firstly, we propose a
recursive kernel density estimators under censoring, based on a stochastic
approximation algorithm. Then, we showed that our recursive estimator
is consistent and asymptotically normally distributed. Moreover, we de-
scribe and investigate a data-driven bandwidth selection procedure based
on normal pilot bandwidth reference distributions. We showed that the pro-
posed recursive estimators can be better than the non-recursive in terms
of estimation error and much better in terms of computational costs. We
corroborated these theoretical results through a simulation study and on
Malaria in Senegalese children dataset.

1. Introduction

The estimation of the probability density under censoring is a fundamental
problem in statistics of considerable interest in many applied fields such as sur-
vival analysis, economics, engineering. Censoring is a condition in which the
observation is only partially known. Let T,7Ti,...,7T;, be independent, iden-
tically distributed random variables, and let f and F denote respectively the
probability density and the distribution of 7. In many situations, the full data
T1,...,T, are not available, let C,C4,...,C),, be the corresponding censoring
random variables, and let G denote the distribution function of C. T and C
are assumed to be independent. We consider here the two cases right and left
censored data. The observed random variables are then X; and §; where

Y. min (73,C;) and 0; = Iyr,<¢,y, 1 <@ <n, right censoring
Y| max (T3, Cy)  and 6 =Ny, 1 <i<n, left censoring,

and we let m; = P[d; = 1|T;], this probability is called the propensity score
(see [16], in the framework of missing data).

In this paper, we propose a data driven bandwidth selection for censored re-
cursive kernel density estimators defined by stochastic approximation method.
Recently, data driven bandwidth selection method for recursive kernel density
estimators defined by stochastic approximation method have been investigated
by [20] in the case of full data. [24] developed a data driven bandwidth selection
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in the case of missing data, while [21] consider the recursive kernel distribution
estimators. Recursive kernel regression estimators with a fixed design setting
have been investigated by [22], while the semi-recursive kernel regression esti-
mators have been studied by [23]. In this paper, we developed a specific data
driven bandwidth selection method for the recursive kernel density estimators
under censoring.

To construct a stochastic algorithm, which approximates the function f at
a given point x, we define an algorithm of search of the zero of the function
g:y — f(z)—y. Following Robbins-Monro’s scheme (see [15]), we set fo(z) € R
and for all n > 1, f, (z) = fa_1 (2) + 7 W, (z), where (v,) is a nonrandom
positive sequence tending to zero as n goes to infinity, called the stepsize. In
order to define W, at a point z we follow [13, 14], (see also [27] and [21]), and
we introduce a kernel K (that is, a function satisfying [, K (z)dz = 1), and a
bandwidth (h,,) (that is, a sequence of positive real numbers that goes to zero),
and we set W, (z) = hy,; 16,7, 'K (b (x — X)) — fa—1(z), where

Yt Qi by K (B (X — X)) 1T
e o A | A

j=1
Then, our proposal in this paper to estimate recursively the function f at the
point z is given by the following relation

Fu () = (1= ) fao1 (@) + 3unTy thi LK (R o — X)) - (1.2)

Throughout this paper, we suppose that fo () = 0. Then, we can estimate f
recursively at the point x by

@) = QHZlevkaﬁklhle(xXk).
k=1

hi

~ 2
Moreover, one can check that by considering the quantity E fR [ folx)—f (z)} dx

as criteria of selecting the optimal bandwidth, the optimal bandwidth depend on
the choice of the stepsizes (7, ); in particular under some conditions of regularity
of f and G and using the classical stepsizes (v,) = (n™!), the bandwidth (k)
is asymptotically

! 2 -t 2(2)dz 1o
() o) {gisetis) #

where
f(x)(1—G(x)) right censoring

A(z) = { f(x)G (z) left censoring. (1-3)

2
This considered bandwidth depend on the unknown quantity [, (A® (z))” da,
one can observe that is not easy to construct an asymptotic unbiased estimator of

this quantity using just the observed data, rather than E [, {fn (x)—f (m)} ’ dz,
we propose to use as criteria of selecting the optimal bandwidth the quantity
E [¢ [fn () —f (m)} ’ w (x) dz, by considering the function w () = A? (z) f~1 (z)
as a weight function; which conducted to estimate the two quantities fR A? (7) dw
and [, (A® (J:))2 A (z) dz, which can be estimated using just the observed data
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(see Egs. (2.9) and (2.10)). Then, the first aim of this paper is to propose a
second generation plug-in bandwidth selection, and the second aim is to give
the conditions under which the recursive estimators ﬁl can be better than the
non-recursive kernel density estimator under censoring, and defined as

Fale) = o S a (1), (1.49)
™ k=1

n

where
= _ 21 O (R X — X))
CONRa K (e X - X))

The numerical studies given in Section 3 are corroborating these theoretical re-
sults. The layout of the paper is as follows. In Section 2, we state our main
results. Section 3 is devoted to our numerical studies, first by simulation (sub-
section 3.1) and second using a real dataset (subsection 3.3). We conclude the
paper in Section 4. Appendix A gives the proof of our theoretical results.

(see [11, 28]). (1.5)

2. Assumptions and Main Results
We define the following class of regularly varying sequences.

Definition 2.1. Let v € R and (vn)n21 be a nonrandom positive sequence. We
say that (v,) € GS (v) if

. Un—1
nll}r_’r_loon {1 o ] =". (2.1)

Condition (2.1) was introduced by [5] to define regularly varying sequences
(see also [2]) and by [8] in the context of stochastic approximation algorithms.
Noting that the acronym GS stand for (Galambos and Seneta). Typical se-
quences in GS (v) are, for b € R, n” (logn)’, n” (loglogn)’, and so on.

In this section, we investigate asymptotic properties of the proposed estima-
tors (1.2). The assumptions to which we shall refer are the following

: (Al) K : R — R is a non-negative continuous, bounded function satisfy-
ing [ K (2)dz=1, and, [ 2K (2)dz =0 and [, 22K (z)dz < oo.

: (A2) 9) (yn) € GS (—a) with a € (1/2,1].
i7) (hyn) € GS (—a) with a € (0,1).

144) limy—y00 (Nyp) € (min {2a, (o — a) /2}, o0].

: (A3) f is bounded, twice differentiable, and f is bounded.

e The intuition behind the use of such bandwidth (h,,) belonging to GS (—a)
is that the ratio hy_1/h, is equal to 1+ a/n + o (1/n), then using such
bandwidth and using the assumption (A2) on the bandwidth and on the
stepsize, Lemma A.2 ensures that the bias and the variance will depend
only on h, and not on hy, ..., h,, then the MISFE will depend also only
on h,,, which will be helpful to deduce an optimal bandwidth.

e In order to help the readers to follow the main results obtained in this
paper, we underline that under the assumption (A2), we have
Qn ey Qe = 1+ 0(1), Qu i, Q' hi = O (h3) and
Q7 2kt Qi ki = O (v ).
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o Assumption (A2) (#i7) on the limit of (ny,) as n goes to infinity is usual
in the framework of stochastic approximation algorithms. It implies in

particular that the limit of ([n’yn]fl) is finite.

For simplicity, we introduce the following notations:

¢ = lim (ny) ", (2.2)
R(K):/]RK (2)dz, p;(K) = /RZJK(z)dz,
O(K) = R(K)"" s (K)*?,

2
I = / A2 (z)de, I, = / (A<2> (z)) A (z) dz,
R R
where A(?) represent the second derivative of A.

2.1. Results on the recursive estimators fn In this subsection, we explicit
the choice of (h,) through a second generation plug-in method, which is based
on minimizing the Mean Weighted Integrated Squared Error (MW ISE) of the
proposed recursive estimator (1.2), in order to provide a comparison with the
non-recursive estimator (1.4). Our first result is the following proposition, which

gives the bias and the variance of f,,.

Proposition 2.2 (Bias and variance of f,,). Let Assumptions (A1) — (A3) hold,
and assume that f® is continuous at x.

(1) If 0 < a < /5, then

E[fu@)] =1 0) = W gy g A% @ (K) 40 (h2). (23)

If a/5 <a <1, then

[ (@)] - £ (2) =0 (yuni?). (2.4

(2) If /5 <a <1, then

Var [f ()] = Z—:#%f (2) R(K) +o (Z—:) . (2.5)

If0 < a < a/b, then
Var {ﬁl (x)} =o(h?). (2.6)
(8) If limy, o0 (nyn) > max {2a, (o — a) /2}, then (2.3) and (2.5) hold si-

multaneously.

The bias and the variance of the estimators ]?n defined by the stochastic
approximation algorithm (1.2) then heavily depend on the choice of the stepsizes
(Yn)-

Let us first state the following theorem, which gives the weak convergence
rate of the estimators f, defined in (1.2).

Theorem 2.3 (Weak pointwise convergence rate). Let Assumptions (Al)—(A3)
hold, and assume that f?) is continuous at x.
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(1) If there exists ¢ > 0 such that v, *h3 — ¢, then

Vb (Fa @) = £ @)

SN (%A@ (2) pz (), === f (a) R (K)) :

(2) If v, 'hS — oo, then
. —1
7 (@) =1 @) B 575 A (@) o (1),

where 2 denotes the convergence in distribution, N the Gaussian-distribution

and 5 the convergence in probability.

The following theorem gives the strong pointwise convergence rate of the
proposed recursive kernel density estimators under censoring.

Theorem 2.4 (Strong pointwise convergence rate). Let Assumptions (Al) —
(A3) hold, and assume that f?) is continuous at x.

(1) If there exists ¢c1 > 0 such that v, 'hS/In (37, vk) — c1. then, with
probability one, the sequence

( T el CICEE <z>)>

is relatively compact and its limit set is the interval

M [faae, ] ml @)
2(1—2&5)\/;A ( ),LLQ(K) \/(2—(0&—@)5)R(K)7

! CLA@) ™ f (x)
2<1—2a£>ﬁA ”“Q(K”wkm—a)g)mm

(2) If v, thS /In (Y1, k) — oo then with probability one,

lim 72 (fu(2) - f (@) = %@A@) ().

n—o0
As a criteria of selecting the optimal bandwidth, we use the MW ISE, by
taking the function w (x) = A? (z) f~! (z) as a weight function,

MWISE [fn} = /R (IE (]?n (J:)) - f(x))2A2 (z) f (x) dx
+ /]R Var (]?n (J:)) A? (z) 71 (z) da.

The following proposition gives the MW ISFE of the proposed recursive estima-
tors given in (1.2).

Proposition 2.5 (MWISE of fA’n) Let Assumptions (Al) — (A3) hold, and
assume that f?) is continuous and integrable.

(1) If 0 < a < a/5, then
~ 1 2
MWISE[ n] —cpdi—Tn 12 (K)+o(hd).
f 4 (172(15)2 2:“2( ) ( )
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(2) If a = /5, then

1 —2

Fl = o T Loa ™™ oo
MWISE[f.] = e T MU + g e ()
+o (hfl).
(8) If a/5 < a < 1, then
N _In 7T7:1 Tn

The following corollary ensures that the bandwidth which minimize the
MWISE of the proposed recursive estimator ﬁl depend on the stepsize (v;,)
and on the propensity score m, and then the corresponding MW ISFE depend
also on the stepsize (y,) and on the propensity score m,,.

Corollary 2.6. Let Assumptions (A1) — (A3) hold. To minimize the MWISE
of fn, the stepsize () must be chosen in GS (—1), the bandwidth (hy) must

equal
g6\ 1/5 1/5
{ (1 - 2a€) 1_1} {R(K)} Y

2-(1-a)¢) >

Then, we have

MWISE [J.| = Z (1-2a6)"° (2~ (1 - a) &)~ 1/°1)°0 (K) m,,5/554/°
+o0 (73/5),

The following corollary shows that, for a special choice of the stepsize (y,) =
(von™'), which fulfilled that lim, . ny, = 7o and that (v,) € GS(—1), the
optimal value for the bandwidth (h,) depend on ~y and then the corresponding
MWISE depend also on ~p.

Corollary 2.7. Let Assumptions (A1) — (A3) hold, and suppose that (y,) =
('yonfl). To minimize the MW ISE of f,, the stepsize (y,) must be chosen in
GS (1), limy, 00 nyn = Y0, the bandwidth (h,) must equal

and then the asymptotic MW ISE of the proposed recursive estimator fn is equal
to

% 14511/5g (K) 7 8/5n=4/5,

~ 1
AMWISE[f] = 95 [y a5t

| Ot

Moreover, the minimum of v2 (yo — 2/5)_6/5 is reached at v9 = 1, then the
bandwidth (h,) must equal

((%) : (%)1/5 {E((?) }1/5 Wi/5n1/5> , (2.7)
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and we then
-~ 5 1 5)%/° 4/5,1/5 —6/5, —4/5
AMWISE [fn} = 257 (3) LPRPeU)m T (28)

In order to investigate a data-driven bandwidth selection based on the optimal
bandwidth (2.7), we must estimate the unknown quantities I; and Iy. For this
purpose, we used the following kernel estimators:

L= @S o, (ﬁ) (2.9)

b
i k=1 k

~ 2 = o e X; — X;

ho= By orarte s s (T )
i,j,k=1 J
J#k

2y [ Xy — Xg
k

where K}, and K are a kernels, b, and b), are respectively the associated band-

width (called pilot bandwidth) and 3, and 5/, are the two pilot stepsizes for the

estimation of I; and Iy respectively.
In practice, we take

1.349

(see [18]) with § the sample standard deviation, and @1, Q5 denoting the first
and third quartiles, respectively.

At this stage, we need to give the optimal choice of (b,), (b,), (8,) and (3.,).
In order to achieve this task, we followed the same steps as the work of [20] in
the context of recursive kernel density estimation with no censoring data, and
we showed that in order to minimize the AMISE of IAl the pilot bandwidth
(b,) must belong to GS (—2/5) and the pilot stepsize (8,) should be equal to
(1.36n™!'), and in order to minimize the AMISE of I, the pilot bandwidth
(b],) must belong to GS (—3/14) and the pilot stepsize (5,) should be equal to
(1.48n71).

Then, the conducted data-driven bandwidth selector (h,,) in this work using
the proposed recursive estimators given in (1.2) with the chosen stepsizes (v,) =
(n_l) is equal to

15 /+\ /5 1/5
(3) " (L {R(K) } P s, s (2.12)
10 I 115 (K) " ’

and the associated plug-in AMWISE is equal to

bnnﬁmm{g,u}, Be(0,1) (2.11)

5 1 (5\%° /sy
T n 24/571/5 ~ -
AMWTISE [fn} = 2o (g) TPTP0 (K)770/5n =475,
2.2. Results on the non-recursive estimator fn Let us claimed the follow-
ing Lemma which gives the bias and variance of the non-recursive kernel density
estimator under censoring f,,, the proof follows immediately from the proof the
Proposition 2.2.



8 YOUSRI SLAOUI

Lemma 2.8 (Bias and variance of f,,). Let Assumptions (A1), (A2)ii) and (A3)
hold, and assume that f?) is continuous at x.

h2

E[fo@]~f@) = Z2m'a® @) u2(K)+o(h2),
and
~ —1 1
Var [fn (J:)} = Z’;Lnf(x)R(K) +o (n—hn) ,
It follows from Lemma 2.8, that
- -1 h4
AMWISE [fu| = ZELR(K)+ =2 2Ll (K).

Then, to minimize the AMW ISE of jN’n, the bandwidth (h,) must equal to
1/5 1/5
<I—1> / {R(K>} / TL/5p /5 (2.13)
I 13 (K) " ’

AMWISE {fn} - 213/5121/59 (K)m;8/50=4/5. (2.14)

and we have

Remark 2.9. Tt follows from (2.8) and (2.14), that the AMWISE of the proposed
recursive estimators f,, with the choice of the stepsizes (v,,) = (n’l) is 1.06 larger
than the AMW ISE of the non-recursive estimator f,.

Moreover, in order to estimate the optimal bandwidth (2.13), we must esti-
mate I; and I. For this purpose, we use the following two kernel estimators

L = ﬁ Z 5, Ky (%) (2.15)

zsﬁj
~ X; — X X, — X
L = —— Z 66kK(2)< )K,S?) <Tk> (2.16)
" i,5,k=1 n
Jj#k

where K; and K are a kernels, b, and b), are respectively the associated band-
width given in (2.11).

At this stage, we need to give the optimal choice of (b,) and (b;,). For thus
purpose, we used as a criteria the AMISE of L respectively of I, we showed
that, the pilot bandwidth (b,,) respectively (b),) must belong to GS (—2/5), re-
spectively to GS (—3/14).

Then, the data-driven bandwidth selector (h;,) using the non-recursive esti-
mator (1.4), is given by

I e { R(K) }1/5 71/5,-1/5 (2.17)
I 13 (K) " ’

and the plug-in of the AMWISE of the non-recursive estimator (1.4), is given
by

— - 5
AMWISE { fn} = 21°L0 () 7, e,
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Moreover, a hint of the proof of the following corollary are given in the ap-
pendix.

Corollary 2.10. Let the assumptions (A1) — (A3) hold, and the bandwidth (hy,)
equal to (2.12) and the stepsize (v,) = (n™') when we apply the estimators fn
and the bandwidth (hy,) equal to (2.17) when we apply the estimator ;fvn We have
E [MWI\SE (ﬁ)}

<1 for small sample setting. (2.18)

=iwvise (7))

Then, for small sample size, the expected value of MWISE of the proposed
recursive estimators defined by (1.2) where the bandwidth is replaced by its data-

based version is smaller than the expected value of Mﬁ/\fS*E of the non-recursive
estimator defined by (1.4) where the bandwidth is replaced by its data-based ver-
ston.

3. Numerical Studies

The aim of this section is to compare the performance of the proposed recur-
sive kernel density estimators under censoring defined in (1.2) with that of the
non-recursive estimator defined in (1.4). The comparison is done first through a
simulation study and then through a real data set.

: When applying fn one need to choose four quantities:
(1) The function K, we choose the Normal kernel.
(2) The stepsizes (7,) equal to (n™1).
(3) The propensity score (m,) is chosen to be equal to (1.1).
(4) The bandwidth (h,) is chosen to be equal to (2.12).

(a) To estimate I;, we use (2.9); The pilot bandwidth is chosen
to be equal to (2.11) with the choice of § = 2/5 and the pilot
stepsize equal to (1.36n71).

(b) To estimate I, we use (2.10); The pilot bandwidth is chosen
to be equal to (2.11) with the choice of 8 = 3/14 and the
pilot stepsize equal to (1.48n71).

: When applying jN’n one need to choose three quantities:
(1) The function K, as in the recursive framework, we use the Normal
kernel.
(2) The propensity score () is chosen to be equal to (1.5).
(3) The bandwidth (h,,) is chosen to be equal to (2.17).

(a) To estimate I;, we use (2.15); The pilot bandwidth is chosen
to be equal to (2.11) with the choice of § = 2/5.

(b) To estimate I, we use (2.16); The pilot bandwidth is chosen
to be equal to (2.11) with the choice of 8 = 3/14.

3.1. Simulation experiments. In our simulation study, we consider three
sample size, n = 100, n = 200, n = 500 and the following five densities functions
f : 1- the standard normal : X ~ N (0,1), 2- the normal mixture distribution :
X ~1/2N (2,1)41/2/N (=3, 1), 3- the weibull distribution with shape parameter
2 and scale parameter 1: X ~ Weibul (2,1), 4- the log normal distribution:
X ~log N (0,1), 5- the chi squared distribution with 12 degree of freedom: X ~
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X% (12). Moreover, we simulated different censoring levels, in each considered
case, we fixed the level after ordering the data. For each density and sample
size n, we approximate the average ISFE of the estimators using N = 500 trials
of sample size n; ISE = % Zszl ISE [g[’ﬂ, where g[k] () is the estimator
computed from the kth sample and ISFE [ﬁ[k]] = fR{ (x)—f (J:)} dzx, and

we approximate the average correlation; Cor = % Zgzl Cor (ﬁm f (z))

3.2. Computational cost. In order to give some comparative elements with
the non-recursive censored estimator (1.4), including computational costs. We
consider a 500 samples of size ny = |n/2| (the lower integer part of n/2) gen-
erated from respectively the five considered distributions, moreover, we suppose
that we receive an additional 500 samples of size n — n; generated also from the
same five considered densities.

This property can be generalized, one can check that it follows from (1.2)
that for all ny € [0,n — 1],

n

H (1_7.7)}\.711 (:E)

j=ni+1

n—1 n
Ve o A x — X
+Z H (1 =) h—kék”le( hi )

k=n1 | j=k+1

n ~— *Xn
+l5nﬂn 'K (z >

o ()

hp, hn,
_ Yk r— Xy
= alfn1 kz Bk 6k k ( hi )
Tn ¢ ~—1 - X,
onT, K ;
e ()
where ay = [[j_,, (1 —2;) and By = [[j_;,, (1 —~;). It is clear, that the

proposed estimators can be viewed as a linear combination of two estimators,
which improve considerably the computational cost.

Performing the two methods, we report the total CPU time values for each
considered density and in all cases given in Tables 1, 2, 3, 4 and 5, the CPU time
is given in seconds.

From Figures 1 and 2, Tables 1, 2, 3, 4 and 5, we conclude that

e The proposed recursive kernel density estimator under censoring (1.2),
with the stepsize (y,) = (n_l) is closer to the true density function as
compared with the non-recursive estimator (1.4).

e In all the considered densities, the proposed estimator performed better
than the non-recursive kernel density (1.4) for a completed data (no
censoring).

e In all the considered cases of tables 1, 3 and 4, the average ISE of the
proposed recursive censored kernel density estimators is smaller than to
the non-recursive kernel density estimator under censoring (1.4), even
when the censoring levels is equal to 30% and the sample size equal to
500.
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e In all the considered cases of table 2 and 5, the average ISE of the
proposed recursive censored kernel density estimator using the stepsize
(Yn) = (nil) is quite similar to the non-recursive kernel density estima-
tor under censoring (1.4).

e The estimators get closer to the true density function as sample size
increase and the censoring level decrease.

e The two estimators ((1.2) and (1.4)) can deal effectively with both right
and left censored data and under uncensored data.

e The CPU time are always faster using the proposed recursive estimator
and the reduction of CPU time goes from a minimum of 32% to a maxi-
mum of 59% compared to the non-recursive estimator.

3.3. Real dataset. We considered a dataset of 176 families in Senegal, total-
izing 505 children between 2 and 19 years old, living in two villages of Niakhar
(Diohine and Toucar). The number of observations was 6986. We measured
Plasmodium falciparum Parasite Load (PL) from thick blood smears obtained
by finger-prick during two different seasons and regularly over a three-year obser-
vation period (2001-2003), the number of measurements per child ranged from
1 to 15, for more details see ([7]), this data was used also in [26] in a parametric
context.

We had the following variables: 1- Family identification: A factor with
176 levels; 2- Child identification: A factor with 505 levels; 3- PL : Parasite
Load; 4- infection : A factor with two levels (infected: 1 or not infected: 0);
5- year : A factor with three levels (0 for 2001, 1 for 2002 and 2 for 2003); 6-
number of measurements per child: A factor with 15 levels; 7- age : Age of
the child in years between 2 and 19; 8- season : A factor with two levels (July-
October and October-March); 9- village : A factor with two levels (Diohine
and Toucar).

Assuming that all these measurement are corrects, we simulated different
censoring levels, in each considered case, we fixed the level after ordering the
data.

The density are then compared to those obtained with the full data. Even
when 10%, 20% or even 30% of the original measurements are censored, the
produced density remain very accurate thus demonstrating the effectiveness of
our approach.

Figure 3 illustrate the outcomes of the two estimators (1.2) and (1.4) com-
pared to the non-recursive kernel estimator introduced by [17] (see also [12]) and
the recursive estimator proposed in [10] using the stepsize (v,,) = (n™!) (see also
[19] and [20]).

We refer by N-rec to the non-recursive estimator and by Rec to the recursive
estimator.

4. Conclusion

This paper propose an automatic bandwidth selection of the recursive kernel
density estimators under censoring defined by the stochastic approximation algo-
rithm (1.2). The proposed estimators are consistent and asymptotically follows
normal distribution. Our proposal estimators are compared to the non-recursive
censored kernel density estimator (1.4). We showed that, using some data based
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X ~N(0,1)
n =100 n = 200 n = 500
0% ISE Cor CcPU| ISE Cor CcPU| ISE Cor CPU
N-rec 2.5e~1 0.998 113 1.5e¢ % 0.999 484 [ 6.0e=5 0.999 2062
Rec  2.3¢™% 0.999 57 |1de* 0999 293|595 0.999 1320
10% ISE Cor cpPu| ISE Cor CcPU| ISE Cor CPU
N-rec 2.4e3 0.979 131 | 2.2¢73 0.978 477 [1.9¢—3 0.977 2247
Rec  2.4e3 0.980 58 |2.1e™® 0979 258 | 1.9¢=3 0.978 1308
20% ISE Cor cpu| ISE Cor CPU| ISE Cor CPU
N-rec 8.7¢~3 0.899 132 [ 7.8¢2 0.906 483 |6.8¢=3 0.911 2046
Rec  85e~3 0.906 56 | 7.7e72 0.909 228 | 6.7¢=3 0.914 1228
30% ISE Cor cpu| ISE Cor CPU| ISE Cor CPU
N-rec 1.7¢=2 0.727 130 | 1.6e 2 0.748 484 | 1.4e=2 0.763 2060
Rec 1.7¢72 0.735 58 | 1.6e"2 0.754 286 | 1.4e=2 0.770 1034

TABLE 1. Average ISFEs and Correlations (approximated us-
ing N = 500 trials) and total CPU time in seconds of the non-

recursive estimator fn and the proposed recursive estimator fn
with the choice of the stepsize (7,) = (n™!). Here we consider
the normal distribution X ~ N (0,1) with the censoring level
equal respectively to 0% (in the first block), equal to 10% (in
the second block), equal to 20% (in the third block) and equal to
30% (in the last block), we consider three sample sizes n = 100,
n = 200 and n = 500.

selected bandwidth and some particularly stepsizes, the proposed recursive es-
timator can be better than the non-recursive one in terms of estimation error.
The two estimators ((1.2) and (1.4)) can deal effectively with both right and left
censored and uncensored data. The simulation study confirms the nice features
of our proposed recursive estimators and satisfactory improvement in the CPU
time in comparison to the non-recursive estimator.

In conclusion, the proposed method allowed us to obtain better results com-
pared to the non-recursive censored kernel density estimator in terms of estima-
tion error and much better in terms of computational costs. Moreover, we plan
to consider the following estimator computed with Kaplan-Meier (KM) weights
to estimate a density of probability in the presence of censored data,

_ n — X
Ful@) = I,y I gk '6:Gt (Xk)K<$ . "). (4.1)
k=1

where G, (.) is given by

n 1-6¢; ILXigt .
Gn(f):{ Hi:l (17717—11)1) { ® } if t<X(n)

0 otherwise

which is known to be uniformly convergent to G and X (1) < X(g) < - < X, are
the order statistics of (X(;))1<i<n and d(; is the concomitant of X(;), and then
to compare the estimator (4.1) to the kernel density estimator computed with
Kaplan-Meier, see [1], [4] and [3], and then to compare the two estimators to
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X ~IN(2,1)+ IN(=3,1)
n = 100 n = 200 n = 500
0% ISE Cor cpu| ISE Cor CPU| ISE Cor CPU
N-rec 1.1e~% 0.998 136 | 6.8 > 0.999 499 [ 3.3¢=° 0.999 2142
Rec  1.0e=* 0.998 70 |6.5e> 0.999 266 | 3.2¢7° 0.999 1118
10% ISE Cor cpPu| ISE Cor cPU| ISE Cor CPU
N-rec 5.4e~ % 0.955 133 |5.1e T 0.959 481 [ 4.9¢—% 0.961 2032
Rec  5.5¢™% 0.955 69 |5.1le”* 0959 261 |4.9¢ % 0.961 1070
20% ISE Cor CPU| ISE Cor cpu| ISE Cor CPU
N-rec 2.0e 2 0.836 138 [ 1.9e2 0.838 493 | 1.8¢ 3 0.845 2018
Rec  2.0e™3 0.823 76 |1.9e2 0.837 259 | 1.8¢=3 0.845 1069
30% ISE Cor CPU| ISE Cor cpu| ISE Cor CPU
N-rec 4.1e 3 0.645 134 ]3.8¢~2 0.669 491 | 3.7e—> 0.684 2041
Rec 4.le™® 0.639 71 |3.8¢72 0.665 251 |3.7¢”3 0.683 1069

TABLE 2. Average [SFEs and Correlations (approximated us-
ing N = 500 trials) and total CPU time in seconds of the non-
recursive estimator fn and the proposed recursive estimator fn
with the choice of the stepsize (y,) = (nil). Here we consider
the normal mixture distribution X ~ $A(2,1) + 3N (=3,1),
with the censoring level equal respectively to 0% (in the first
block), equal to 10% (in the second block), equal to 20% (in the
third block) and equal to 30% (in the last block), we consider
three sample sizes n = 100, n = 200 and n = 500.

those conducted in this work. We plan also to extend this work by considering
Bernstein polynomials rather than kernels and to propose an adaptation of the
estimators developed in [6] and [25] in the case of censored data.

Appendix A. Proofs

First, we approximate the estimators fn by the unobservable estimators f,
recursively defined by

(@) = (1= ) fa1 (@) + Yabpmy ' hi VK (B [ = X)) - (A.1)

Remark A.1. The consistency results of 7, can be obtained from the generalized
recursive version of Nadaraya-Watson’s estimator proposed in ([23])).

Throughout this section we use the following notation:
j=1

- X
hoto,m 'K (x ") : (A.2)

<

Zyn (x) »

Before giving the outlines of the proofs, we state the following technical lemma,
which is proved in [10], and which will be used throughout the demonstrations.
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X ~ Weibull (2,1)
n =100 n = 200 n = 500
0% ISE Cor cpu| ISE Cor CPU| ISE Cor CPU
N-rec 4.7¢=% 0.999 133 [2.3e % 0999 483 [ 1.1e-* 0.999 2028
Rec  4.6e~* 0.999 87 |2.2e* 0999 254 | 1.1e=* 0.999 1085
10% ISE Cor cpPu| ISE Cor CcPU| ISE Cor CPU
N-rec 4.9¢—3 0.994 138 [ 4.9¢=3 0.992 494 [ 4.7¢=3 0.990 2056
Rec  4.9¢73 0.994 69 |4.8¢72 0.992 256 | 4.6~ 0.990 1048
20% ISE Cor CPU| ISE Cor cpu| ISE Cor CPU
N-rec 1.8¢72 0.970 137 [ 1.7e=2 0.964 487 | 1.8¢72 0.957 2044
Rec 1.8¢72 0.970 80 |1.7e2 0.964 278 | 1.7e=2 0.958 1068
30% ISE Cor cpu| ISE Cor CPU| ISE Cor CPU
N-rec 4.0e=2 0.920 134 | 3.8¢=2 0.910 491 | 3.7¢ 2 0.900 2051
Rec  3.6e72 0.921 92 |3.7e72 0913 256 | 3.6e=2 0.902 1080

TABLE 3. Average ISFEs and Correlations (approximated us-
ing N = 500 trials) and total CPU time in seconds of the non-
recursive estimator fn and the proposed recursive estimator fn
with the choice of the stepsize (7,) = (n™!). Here we consider
the weibull distribution with shape parameter 2 and scale pa-
rameter 1, X ~ Weibull (2,1), with the censoring level equal
respectively to 0% (in the first block), equal to 10% (in the
second block), equal to 20% (in the third block) and equal to
30% (in the last block), we consider three sample sizes n = 100,
n = 200 and n = 500.

Lemma A.2. Let (v,) € GS (v*), () € GS (—n), and m > 0 such that m —
v*€ > 0 where £ is defined in (2.2). We have

n—-+oo

lim v,Q Z Q;m'ykvgl =(m— 1)*5)71 .
k=1

Moreover, for all positive sequence (ay,) such that lim, 4o o, = 0, and all

CeR,

n
. Z: — -1
nE{IFloovnQ;n k kankvk ak+0 =0.
=1

Lemma A.2 is widely applied throughout the proofs. Let us underline that it
is its application, which requires Assumption (A2)(ii:) on the limit of (nv,) as
n goes to infinity.

Our proofs are organized as follows. Propositions 2.2 and 2.5 in Sections A.1
and A.2 respectively, Theorem 2.3 in Section A.3.

A.1. Proof of Proposition 2.2. In view of (A.1) and (A.2), we have

fo(@) = f@) = QuY_ Qu'w(Zk(x)— f(2))

k=1

+@n (fo (z) = [ (2)). (A.3)
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FIGURE 1. Qualitative comparison between the non-recursive
kernel density estimator (1.4) (approximated using N = 500 tri-
als of size n = 200 and given by the dashed line) and the recur-
sive kernel density estimator (1.2) (approximated using N = 500
trials of size n = 200 and given by the dotted line), with the
right censoring level equal respectively to 15% (in the top left
panel), equal to 30% (in the top right panel), and with the left
censoring level equal to 15% (in the down left panel) and equal
to 30% (in the down-right panel) for the normal distribution
N (0,1).

It follows that

E(fo(@)—f(@) = QuY Qu'w(E(Zk(z)— [ ()
k=1

+Qn (fo (x) = f(2)) .

First in the case of right censoring and since X = min (T}, C), we have

— — x 7Xk
hkpﬁk "E |:]1{kack}Kp ( h >}
— — x 7Tk
= hkpﬁka |:]1{kack}Kp h )}

., ¢t )
_ hkpﬂ‘kp/R/R]l{tgc}Kp (whk )f(t)G (c) dtde
X

= h,;%,;P/R (/R]I{KC}G’ (c) dc) KP( h_kt) f(t)dt

r—t

= hkpwkp/]R(lG(t))Kp< ” >f(t)dt.

15
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FIGURE 2. Qualitative comparison between the non-recursive
kernel density estimator (1.4) (approximated using N = 500 tri-
als of size n = 200 and given by the dashed line) and the recur-
sive kernel density estimator (1.2) (approximated using N = 500
trials of size n = 200 and given by the dotted line), with the
right censoring level equal respectively to 15% (in the top left
panel), equal to 30% (in the top right panel), and with the left
censoring level equal to 15% (in the down left panel) and equal
to 30% (in the down-right panel) for the Weibull distribution
with shape parameter 2 and scale parameter 1, X ~
Weibull (2,1).

Now, in the case of left censoring and since Xy, = max (T}, Cj), we have

p z—X

E[Z} (z)] = h,"m,’E {]umck}m( " g }
p x — 1T

= hkpﬁka {]l{TkECk}Kp< h k)}

Then, in follows from (1.3), (A.4) and (A.5), that

E[ZP (z)] = h,;P*lw,;P/RA(x—zhk)Kp (2)dz.
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X ~logN (0,1)

17

n = 100 n = 200 n = 500
0% ISE Cor cpu| ISE Cor CcPU| ISE Cor CPU
N-rec 2.3e 5 0.9623 139 [ 1.5e=3 0.968 498 | 8.7¢~* 0.977 2069
Rec  2.1e 3 0.9659 69 | 1.4e=3 0971 292 |8.1e * 0.979 1045
10% ISE Cor <cPU| ISE Cor cPU| ISE Cor CPU
N-rec 3.le 3  0.951 153 [2.2e3 0.958 479 [ 1.3¢—3 0.967 2066
Rec  2.8¢3 0.956 72 |2.0e® 0.963 266 | 1.2¢3 0.970 1073
20% ISE Cor CPU| ISE Cor cPU| ISE Cor CPU
N-rec 4.3e 5  0.946 164 [ 3.0e=> 0.949 489 | 1.8¢~3 0.955 2081
Rec  4.0e 3 0953 86 |2.8e3 0.955 253 | 1.7¢73 0.960 1053
30% ISE Cor <cpu| ISE Cor CPU| ISE Cor CPU
N-rec 5.6e™3 0.950 168 | 4.1e72 0.948 522 | 2.7¢3 0.946 2134
Rec  5.4e 3 0.957 69 |3.9e3 0.955 287 |2.6e 3 0.952 1070

TABLE 4. Average [SFEs and Correlations (approximated us-

ing N = 500 trials) and total CPU time in seconds of the non-
recursive estimator fn and the proposed recursive estimator fn
with the choice of the stepsize (7,) = (n™!). Here we consider
the log normal distribution X ~ log N (0, 1), with the censoring
level equal respectively to 0% (in the first block), equal to 10%
(in the second block), equal to 20% (in the third block) and
equal to 30% (in the last block), we consider three sample sizes

n = 100, n = 200 and n = 500.

Then, it follows from (A.6), for p = 1, that

with

e (z) = 7rk_1/RK(z) {A (z — zh) — A () —

E[Zk ()] = f (2)

! /RK (z) [A(x — zh) — A (x)]d=

h2
7 A (@) iy (K) + e (@)

1

Lon2a®@
2

<x>] iz,

(A7)

and, since A is bounded and continuous at x, we have limg_,o, nx () = 0. In
the case a < «/5, we have lim,,_, (ny,) > 2a; the application of Lemma A.2
then gives

E[fn(z

)| = f ()

1
2 n

+Qn (fo (x) = [ (2))

1

—1A(2)
2(1— 2af) ™

() p2 (K) [, + 0 (1)]

—rtA®) (J:)/ 22K (2)dzQp z": Qr 'vkhi [1+0(1)]
R k=1
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X ~x*(12)
n =100 n = 200 n = 500

0% ISE Cor CcPU| ISE Cor cPU| ISE Cor CPU
N-rec 1.0e=° 0.997 130 | 7.1e % 0.998 493 [3.33¢=% 0.999 2066
Rec  9.5¢ 6 0.998 69 |6.7¢e % 0.998 258 | 3.25¢76 0.999 1095
10% ISE Cor CcPU| ISE Cor cPu| ISE Cor CPU
N-rec 3.4e 5 0.992 136 | 3.3e> 0.991 490 | 3.1e"®> 0.990 2149
Rec  3.4e™® 0.992 70 |3.3¢7® 0991 256 | 3.1e7®> 0.990 1064
20% ISE Cor cPu| ISE Cor cpPu| ISE Cor CPU
N-rec 1.2¢e=1 0.972 130 ] 1.2¢7T 0966 474 | 1.2¢—T 0.962 2008
Rec 1.2¢7% 0972 77 | 1.2¢7* 0.967 259 | 1.1e=* 0.963 1063
30% ISE Cor cpu| ISE Cor CPU| ISE  Cor CPU
N-rec 2.9¢~% 0.925 130 [ 2.8 T 0.919 498 | 2.6eT 0.914 2027
Rec  2.9e~% 0.927 75 | 2.7e* 0.920 252 | 2.6e~* 0.916 1060

TABLE 5. Average [SFEs and Correlations (approximated us-
ing N = 500 trials) and total CPU time in seconds of the non-
recursive estimator fn and the proposed recursive estimator fn
with the choice of the stepsize (v,) = (n™'). Here we con-
sider the chi squared distribution with 12 degrees of freedom
X ~ x%(12), with the censoring level equal respectively to 0%
(in the first block), equal to 10% (in the second block), equal to
20% (in the third block) and equal to 30% (in the last block),
we consider three sample sizes n = 100, n = 200 and n = 500.

and (2.3) follows from remark A.1. In the case a > «/5, we have h2 =
0 ( ’ynhﬁl), and lim,_,o (n7yn) > (o — a) /2, then Lemma A.2 ensures that

E[fn(@)] = [ (2)

Qn Z Q]Zlf)/ko (\/ ’Ykhkl) +0 (Qn)
k=1
= 0 ( 'Ynhn1> )

then (2.4) follows from remark A.1. Further, we have

Var[fa(@)] = Q) Qp*iVar(Zy (2)]

k=1

= Q2> 02 (B (22 (@) - (B(2k ()))*).
k=1

Moreover, in view of (A.6), for p = 2, that

E (2} (v))

hk_,lﬂ',f/ A (x — zhy) K? (2)dz
R

= h'm ?A(x) /RK2 (2)dz + v (2),

(A.8)

(A.9)
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FIGURE 3. Quantitative comparison between the non-recursive
estimator (1.4) and the proposed recursive estimator (1.2) with
the choice of (v,) = (n™!). Here we consider the Parasite
Load with the censoring level equal respectively to 0% (in the
first block line), equal to 10% (in the second block line), equal
to 20% (in the third block line) and equal to 30% (in the last
block line), the first block column correspond to the use of the no
censored kernel density estimators; the non-recursive estimator
introduced by [17] and the recursive estimator given by [10],
the second block column correspond to the use of the censored
kernel density estimators, we consider three sample sizes n =
100, n = 200 and n = 500, the number of simulations is 500.

with
v () P 72/K2 A(x — zh) — A(z)] dz.
Moreover, it follows from (A.7), that
EZy(2)] = f(2)+w(2), (A.10)
with
v (x) =, /K A (z — zhy) — A (x)] dz.

Then, it follows from (A.8), (A.9) and (A.10), that

Var[fn(x)] = A( )R Q22Qk27}%h ! 72"'@22@1@ 'Yka )

A% (x QQZQk =20 (z QQZQk Yok ()

k=1 k=1

-Q5 Z Qi ki (x
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Since A is bounded continuous, we have limy_,o v () = 0 and limyg o0 Uk, (z) =
0. In the case a > a/5, we have lim,,_,o (ny,) > (o — a) /2, and the application
of Lemma A.2 gives

Varlfa(@)] = ' 2= (@=a)&) 7 f @) R(K) +o (Z—) ,

then, (2.5) follows from remark A.1. Now, in the case a < /5, we have v, h,, ! =
0 (hﬁ), and lim,, o (ny,) > 2a, then the application of Lemma A.2 gives

Var(fa(@)] = @2 Qu*wo (hh)

k=1
= o0 (hﬁ) ,
then, (2.6) follows from remark A.1.

A.2. Proof of Proposition 2.5. Following similar steps as the proof of the
Proposition 2 of [10], we proof the Proposition 2.5.

A.3. Proof of Theorem 2.3. Let us at first assume that, if a > «/5, then

Vo h (fn (2) = E[fa (2)])

BN (0,7 2= (a-a))  f @) R(K)). (A.11)

In the case when a > «/5, Part 1 of Theorem 2.3 follows from the combination
of (2.4), (A.11) and remark A.1. In the case when a = a/5, Parts 1 and 2 of
Theorem 2.3 follow from the combination of (2.3), (A.11) and remark A.1. In
the case a < /5, (2.6) implies that

hy? (fa (@) = E(fa () 2 0,

and the application of (2.3) and remark A.1 gives Part 2 of Theorem 2.3.
We now prove (A.11). In view of (A.3) , we have

fr (@) = E[fo (@)] = Qu Y Q' (Zi (2) — E[Zk ().

k=1
Set

Yi(z) = Qy'w(Zi(2) —E[Zk(2)]). (A.12)

The application of Lemma A.2 ensures that

v: = Z Var (Y (z))
k=1

= Y QiVar(Z(x)

k=1

= Y QR [f (@) m R(K) +o(1)]

= QPwhit 2= (-0 @) m RIK) +o(1)] . (A13)
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On the other hand, we have, for all p > 0,

elawr] - o). (a1

and, since lim,, oo (ny,) > (@ — a) /2, there exists p > 0 such that

1
Jim (n7) > 5= (o~ a).

Applying Lemma A.2, we get

S E[v @] - o(iczk“vi*% [|Yk<z>|2+p}>
k=1

k=1

Qk 2— p 2+p
= 0 <Z h1+p )
- o)
Q%erh,lfp ’
and we thus obtain

ﬁ%iE[IYk(x)l“”} = O([%h ]”2)_0(1).
nook=1

The convergence in (A.11) then follows from the application of Lyapounov’s
Theorem.

A.4. Proof of Theorem 2.4. Set

x):ZYk (x), and S":Z%’
k=1 k=1

where Y}, is defined in (A.12).
e Let us first consider the case a > «/5. We let H2 = 124, *hy,, then

LY T
In (H,?) —2In(IT,) + In { [] jlfh
k

k=1 i
= (2—-¢&(a—a))sp+o(sn)- (A.15)

Since 2 — ¢ (a — a) > 0, it follows in particular that lim,_, y o, H,, % = co.
Moreover, since we have lim,_, oo H2/H?2_; = 1, it follows from (A.13)

- _ m f (@) R(K)
ngr}rlooH 2 1Va7’[ % ()] = 2 la—a)E

Now, in view of (A.14), we have E [|Yk (z)ﬂ = 0 (Qy*v¢h;?), and
then, the application of Lemma A.2 ensures that

n-3/2iE(|HnYk(x)|3) = O(n‘3/2HSiQk37§hk2>
k=1

k=1

= o([m(m,%)]™").
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Then, the application of Theorem 1 of [9] ensures that, with probability
one, the sequence

H, S, (z) [ Ve (fa () = E[fn (2)])
2Inln (H,?) 2Inln (H,?)

is relatively compact and its limit set is the interval

W;lf(z)R(K) wglf(x)R(K)
\/2—(a—a)£’\/2_(a_a)§ : (A.16)

Moreover, it follows from (A.15), that lim, o InIn (H,?) /Ins, = 1,
and then, with probability one, the sequence

(\/vnlhn (fn () —E[fn (2)]) /2 lnsn)

is relatively compact, and its limit set is the interval (A.16). Then, the
combination of (2.3), (2.4) and remark A.1 concludes the proof Theo-
rem 2.4 in the case a > a/5.

Let us now consider the case a < a/5.

We set Hy2 = Q;2h% (Inln (Q;2h%)) ™", then

n —4

In (H,%hy) = —2In(Qn)+1In <H ’;k_—;)
k=1 "k

= (2—4a)sp+o(sn). (A.17)

Since 2 — 4a€ > 0, it follows in particular that lim, . H,, 2ht = oco.
Moreover, since we have lim,,_, yoo H2/H?2_; = 1, the application of A.2,
ensures that

lim H?» Var[Yi (x)] =o(1).
k=1

n—-+oo

Moreover, in view of (A.14), it follows from (A.17) and Lemma A.2 that

n=3/2 iE <|HnYk (x)|3)

k=1
o) <n—3/2H,§h;6 nln (Q,20)]** Y Q,;?wgh,f)
k=1

=0 ([ln (HTZQ)} _1) .
The application of Theorem 1 of [9] ensures that, with probability one,
H
lim —nSn (z)
"7 /2Inln (H{Q)

Y ey i ) (@)

n—00 2Inln (HT?Q) (fn(z) = E[fn (2)]) =0.
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Moreover, since (A.17) ensures that lim, o Inln (H,; %) /Inln (Q,2h}) =
1, we obtain

lim hy? (fo(2) —E[fn(2)]) =0 as,

n—oo

then, the second part of Theorem 2.4 follows from (2.3) and remark A.1.

A.5. Proof of Corollary 2.10. Following similar steps as in [20], we
prove first the following corollary

Corollary A.3. Let the assumptions (A1) — (A3) hold, and the band-
width (hy) equal to (2.12) and the stepsize (v,) = (n™') when we apply

the estimator f, and the bandwidth (hy,) equal to (2.17) when we apply
the estimator f,. We have

s[urrse 7]

5 5)%°
=2 (6) e (K) I} n°

[(1 +0.26522 x Oy Iy 'n=37
+(0.08793 x C3 +0.08521 x Cy) I3 'n~%/7 — 022316 x n ™)
~+o (n_l)} n~% (14 0(1))
and
e[S 7]
- g@ (K) I}/°1)/°
[(1 +0.22797 x Cy Iy 'n =3/
+(0.06496 x Cy + 0.02165 x Cs) Igln—ﬁﬁﬂ Y5 (1+0(1),

where C1, Cy and C5 are some quantities depending on the density
f and on A. Then, we can deduce that for some specific case and for n

small enough the expectation of MWISE [fn] can be smaller than the
expectation of M%E [:fvn}
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