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 gives the same pointwise LDP and MDP as the Rosenblatt kernel estimator. We provide results both for the pointwise and the uniform deviations.

Introduction.

Let X 1 , . . . , X n be independent, identically distributed R d -valued random vectors, and let f denote the probability density of X 1 . To construct a stochastic algorithm, which approximates the function f at a given 2010

point x, Mokkadem et al. [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF] defined an algorithm of search of the zero of the function h : y → f (x) -y. They proceed as follows: (i) they set f 0 (x) ∈ R; (ii) for all n ≥ 1, they set

f n (x) = f n-1 (x) + γ n W n (x)
where W n (x) is an "observation" of the function h at the point f n-1 (x) and (γ n ) is a sequence of positive real numbers that goes to zero. To define W n (x), they follow the approach of Révész [START_REF] Révész | Robbins-Monro procedure in a Hilbert space and its application in the theory of learning processes I[END_REF][START_REF] Révész | How to apply the method of stochastic approximation in the non-parametric estimation of a regression function[END_REF] and of Tsybakov [START_REF] Tsybakov | Recurrent estimation of the mode of a multidimensional distribution[END_REF], and introduced a kernel K (which is a function satisfying R d K(x)dx = 1) and a bandwidth (h n ) (which is a sequence of positive real numbers that goes to zero), and they set

W n (x) = h -d n K(h -1 n [x -X n ]) -f n-1 (x).
The stochastic approximation algorithm introduced in [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF] which estimate recursively the density f at the point x is (1)

f n (x) = (1 -γ n )f n-1 (x) + γ n h -d n K x -X n h n .
Recently, large and moderate deviations results have been proved for the wellknown nonrecursive kernel density estimator introduced by Rosenblatt [START_REF] Rosenblatt | Remarks on some nonparametric estimates of a density function[END_REF] (see also [START_REF] Parzen | On estimation of a probability density and mode[END_REF]). The large deviations principle has been studied by Louani [START_REF] Louani | Large deviations limit theorems for the kernel density estimator[END_REF] and Worms [START_REF] Worms | Moderate and large deviations of some dependent variables, Part II: Some kernel estimators[END_REF]. Gao [START_REF] Gao | Moderate deviations and large deviations for kernel density estimators[END_REF] and Mokkadem et al. [START_REF] Mokkadem | Large and moderate deviations principles for kernel estimation of a multivariate density and its partial derivatives[END_REF] extend these results and provide moderate deviations principles. The purpose of this paper is to establish large and moderate deviations principles for the recursive density estimator defined by the stochastic approximation algorithm [START_REF] Bojanic | A unified theory of regularly varying sequences[END_REF].

Let us first recall that a R m -valued sequence (Z n ) n≥1 satisfies a large deviations principle (LDP) with speed (ν n ) and good rate function I if :

1. (ν n ) is a positive sequence such that lim B and B denote the interior and the closure of B respectively. Moreover, let (v n ) be a nonrandom sequence that goes to infinity; if (v n Z n ) satisfies a LDP, then (Z n ) is said to satisfy a moderate deviations principle (MDP).

The first aim of this paper is to establish pointwise LDP for the recursive kernel density estimators defined by the stochastic approximation algorithm [START_REF] Bojanic | A unified theory of regularly varying sequences[END_REF]. It turns out that the rate function depend on the choice of the stepsize (γ n ); In the first part of this paper we focus on the following two special cases : (1)

(γ n ) = n -1 and (2) (γ n ) =   h d n n k=1 h d k -1 
 , the first one belongs to the subclass of recursive kernel estimators which have a minimum MSE or MISE and the second choice belongs to the subclass of recursive kernel estimators which have a minimum variance (see [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF]).

We show that using the stepsize (γ n ) = n -1 and (h n ) ≡ cn -a with c > 0 and a ∈ ]0, 1/d[, the sequence (f n (x) -f (x)) satisfies a LDP with speed nh d n and the rate function defined as follows:

(2)

   if f (x) = 0, I a,x : t → f (x) I a 1 + t f (x) if f (x) = 0, I a,x ( 
0) = 0 and I a,x (t) = +∞ for t = 0.

where

I a (t) = sup u∈R {ut -ψ a (u)} ψ a (u) = [0,1]×R d s -ad e us ad K(z) -1 dsdz,
which is the same rate function for the LDP of the Wolverton and Wagner [START_REF] Wolverton | Asymptotically optimal discriminant functions for pattern classification[END_REF] kernel estimator (see [START_REF] Mokkadem | Large and moderate deviations principles for recursive kernel estimation of a multivariate density and its partial derivatives[END_REF]).

Moreover, we show that using the stepsize (γ

n ) =   h d n n k=1 h d k -1



 and more general bandwiths defined as h n = h (n) for all n, where h is a regulary varing function with exponent (-a), a ∈ ]0, 1/d[. We prove that the sequence (f n (x) -f (x)) satisfies a LDP with speed nh d n and the rate function defined as follows:

   if f (x) = 0, I x : t → f (x) I 1 + t f (x) if f (x) = 0, I x (0) = 0 and I x (t) = +∞ for t = 0. ( 3 
)
where

I (t) = sup u∈R {ut -ψ (u)} ψ (u) = R d e uK(z) -1 dz,
which is the same rate function for the LDP of the Rosenblatt kernel estimator (see [START_REF] Mokkadem | Large and moderate deviations principles for kernel estimation of a multivariate density and its partial derivatives[END_REF]).

Our second aim is to provide pointwise MDP for the density estimator defined by the stochastic approximation algorithm [START_REF] Bojanic | A unified theory of regularly varying sequences[END_REF]. In this case, we consider more general stepsizes defined as γ n = γ (n) for all n, where γ is a regulary function with exponent (-α), α ∈ ]1/2, 1]. Throughout this paper we will use the following notation:

(4) ξ = lim n→+∞ (nγ n ) -1 .
For any positive sequence (v n ) satisfying

lim n→∞ v n = ∞ and lim n→∞ γ n v 2 n h d n = 0
and general bandwidths (h n ), we prove that the sequence

v n (f n (x) -f (x)) satisfies a LDP of speed h d n / γ n v 2 n
and rate function J a,α,x (.) defined by ( 5)

   if f (x) = 0, J a,α,x : t → t 2 (2 -(α -ad) ξ) 2f (x) R d K 2 (z) dz if f (x) = 0, J a,α,x (0) = 0 and J a,α,x (t) = +∞ for t = 0.
Let us point out that using the stepsize (γ

n ) =   h d n d k=1 h d k -1 
 which minimize the variance of f n , we obtain the same rate function for the pointwise LDP and MDP as the one obtained for the Rosenblatt kernel estimator. Finally, we give a uniform version of the previous results. More precisely, let U be a subset of R d ; we establish large and moderate deviations principles for the sequence sup

x∈U |f n (x) -f (x)| .
2. Assumptions and main results. We define the following class of regularly varying sequences. Definition 1. Let γ ∈ R and (v n ) n≥1 be a nonrandom positive sequence. We say that

(v n ) ∈ GS (γ) if lim n→+∞ n 1 - v n-1 v n = γ. (6) 
Condition [START_REF] Louani | Large deviations limit theorems for the kernel density estimator[END_REF] was introduced by Galambos and Seneta [START_REF] Galambos | Regularly varying sequences[END_REF] to define regularly varying sequences (see also [START_REF] Bojanic | A unified theory of regularly varying sequences[END_REF]), and by Mokkadem and Pelletier [START_REF] Mokkadem | A companion for the Kiefer-Wolfowitz-Blum stochastic approximation algorithm[END_REF] in the context of stochastic approximation algorithms. Typical sequences in GS (γ) are, for b ∈ R, n γ (log n) b , n γ (log log n) b , and so on.

2.1.

Pointwise LDP for the density estimator defined by the stochastic approximation algorithm (1).

2.1.1. Choices of (γ n ) minimizing the MISE of f n . It was shown in [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF] that to minimize the MISE of f n , the stepsize (γ n ) must be chosen in GS (-1) and must satisfy lim n→∞ nγ n = 1. The most simple example of stepsize belonging to GS (-1) and such that lim

n→∞ nγ n = 1 is (γ n ) = n -1 .
For this choice of stepsize, the estimator f n defined by (1) equals the recursive kernel estimator introduced by Wolverton and Wagner [START_REF] Wolverton | Asymptotically optimal discriminant functions for pattern classification[END_REF].

To establish pointwise LDP for f n in this case, we need the following assumptions.

(L1) K : R d → R is a bounded and integrable function satisfying

R d K (z) dz = 1, and lim z →∞ K (z) = 0. (L2) i) (h n ) = cn -a with a ∈ ]0, 1/d[ and c > 0. ii) (γ n ) = n -1 .
The following Theorem gives the pointwise LDP for f n in this case.

Theorem 1 (Pointwise LDP for Wolverton and Wagner estimator). Let Assumptions (L1) and (L2) hold and assume that f is continuous at x. Then, the sequence (f n (x) -f (x)) satisfies a LDP with speed nh d n and rate function defined by (2).

2.1.2. Choices of (γ n ) minimizing the variance of f n . It was shown in [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF] that to minimize the asymptotic variance of f n , the stepsize (γ n ) must be chosen in GS (-1) and must satisfy lim n→∞ nγ n = 1 -ad. The most simple example of stepsize belonging to GS (-1) and such that lim

n→∞ nγ n = 1 -ad is (γ n ) = (1 -ad) n -1 , an other stepsize satisfying this conditions is (γ n ) =   h d n n k=1 h d k -1   .
For this last choice of stepsize, the estimator f n defined by (1) produces the estimator considered by Deheuvels [START_REF] Deheuvels | Sur l'estimation séquentielle de la densité[END_REF] and Duflo [START_REF] Duflo | Random Iterative Models[END_REF].

To establish pointwise LDP for f n in this case, we assume that.

(L3) i) (h n ) ∈ GS (-a) with a ∈ ]0, 1/d[. ii) (γ n ) =   h d n n k=1 h d k -1   .
The following Theorem gives the pointwise LDP for f n in this case.

Theorem 2 (Pointwise LDP for Deheuvels estimator). Let Assumptions (L1) and (L3) hold and assume that f is continuous at x. Then, the sequence (f n (x) -f (x)) satisfies a LDP with speed nh d n and rate function defined by (3).

2.2.

Pointwise MDP for the density estimator defined by the stochastic approximation algorithm [START_REF] Bojanic | A unified theory of regularly varying sequences[END_REF]. Let (v n ) be a positive sequence; we assume that (M1) K : R d → R is a continuous, bounded function satisfying

R d K (z) dz = 1,
and, for all j ∈ {1, . . . d}, R z j K (z) dz j = 0 and

R d z 2 j |K (z) |dz < ∞. (M2) i) (γ n ) ∈ GS (-α) with α ∈ ]1/2, 1]. ii) (h n ) ∈ GS (-a) with a ∈ ]0, α/d[. iii) lim n→∞ (nγ n ) ∈] min{2a, (α -ad)/2}, ∞].
(M3) f is bounded, twice differentiable, and, for all i, j ∈ {1, . . . d}, ∂ 2 f /∂x i ∂x j is bounded.

(M4) lim n→∞ v n = ∞ and lim n→∞ γ n v 2 n /h d n = 0.
The following Theorem gives the pointwise MDP for f n .

Theorem 3 (Pointwise MDP for the recursive estimator defined by ( 1)). Let Assumptions (M 1) -(M 4) hold and assume that f is continuous at x. Then, the sequence (f n (x) -f (x)) satisfies a MDP with speed h d n / γ n v 2 n and rate function J a,α,x defined in (5).

2.3. Uniform LDP and MDP for the density estimator defined by the stochastic approximation algorithm (1). To establish uniform large deviations principles for the density estimator defined by the stochastic approximation algorithm (1) on a bounded set, we need the following assumptions:

(U1) i) For all j ∈ {1, . . . d}, R z j K (z) dz j = 0 and R d z 2 j |K (z) |dz < ∞. ii) K is Hölder continuous.
(U2) f is bounded, twice differentiable, and, sup

x∈R d D 2 f (x) < ∞. (U3) lim n→∞ γ n v 2 n log (1/h n ) h d n = 0 and lim n→∞ γ n v 2 n log v n h d n = 0.
Set U ⊆ R d ; in order to state in a compact form the uniform large and moderate deviations principles for the density estimator defined by the stochastic approximation algorithm (1) on U , we set:

g U (δ) =                f U,∞ I a 1 + δ f U,∞ when v n ≡ 1, (L1) and (L2) hold f U,∞ I 1 + δ f U,∞ when v n ≡ 1, (L1) and (L3) hold δ 2 (2 -(α -ad) ξ) 2 f U,∞ R d K 2 (z) dz when v n → ∞, (M 1) -(M 4) hold gU (δ) = min {g U (δ) , g U (-δ)} where f U,∞ = sup x∈U |f (x)|.
Remark 1. The functions g U (.) and gU (.) are non-negative, continuous, increasing on ]0, +∞[ and decreasing on ]-∞, 0[, with a unique global minimum in 0 (g U (0) = g U (0) = 0). They are thus good rate functions (and g U (.) is strictly convex).

Theorem 4 below states uniform LDP on U in the case U is bounded, and Theorem 5 in the case U is unbounded.

Theorem 4 (Uniform deviations on a bounded set for the recursive estimator defined by ( 1)). Let (U 1) -(U 3) hold. Then for any bounded subset U of R d and for all δ > 0,

lim n→∞ γ n v 2 n h d n log P sup x∈U v n |f n (x) -f (x)| ≥ δ = -g U (δ) (7)
To establish uniform large deviations principles for the density estimator defined by the stochastic approximation algorithm (1) on an unbounded set, we need the following additionnal assumptions:

(U4) i) There exists β > 0 such that R d x β f (x) dx < ∞. ii) f is uniformly continuous. (U5) There exists τ > 0 such that z → z τ K (z) is a bounded function. (U6) i) There exists ζ > 0 such that R d z ζ |K (z)| dz < ∞ ii) There exists η > 0 such that z → z η f (z) is a bounded function.
Theorem 5 (Uniform deviations on an unbounded set for the recursive estimator defined by ( 1)). Let (U 1) -(U 6) hold. Then for any subset U of R d and for all δ > 0,

-g U (δ) ≤ lim inf n→∞ γ n v 2 n h d n log P sup x∈U v n |f n (x) -f (x)| ≥ δ ≤ lim sup n→∞ γ n v 2 n h d n log P sup x∈U v n |f n (x) -f (x)| ≥ δ ≤ - β β + d gU (δ)
The following corollary is a straightforward consequence of Theorem 5.

Corollary 1. Under the assumptions of Theorem 5, if

R d x ξ f (x) dx < ∞ for all ξ in R, then for any subset U of R d , lim n→∞ γ n v 2 n h d n log P sup x∈U v n |f n (x) -f (x)| ≥ δ = -g U (δ) (8) Comment. Since the sequence sup x∈U |f n (x) -f (x)| is positive and
since gU is continuous on [0, +∞[, increasing and goes to infinity as δ → ∞, the application of Lemma 5 in [START_REF] Worms | Moderate and large deviations of some dependent variables, Part II: Some kernel estimators[END_REF] allows to deduce from [START_REF] Mokkadem | Large and moderate deviations principles for kernel estimation of a multivariate density and its partial derivatives[END_REF] or ( 8) that sup

x∈U |f n (x) - f (x)| satisfies a LDP with speed γ -1
n h d n and good rate function gU on R + .

Proofs.

Throught this section we use the following notation:

Π n = n j=1 (1 -γ j ) , Z n (x) = h -d n Y n , Y n = K x -X n h n (9)
Throughout the proofs, we repeatedly apply Lemma 2 in [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF]. For the convenience of the reader, we state it now. α), and m > 0 such that m -v * ξ > 0 where ξ is defined in (4). We have

Lemma 1. Let (v n ) ∈ GS (v * ), (γ n ) ∈ GS (-
lim n→+∞ v n Π m n n k=1 Π -m k γ k v k = 1 m -v * ξ .
Moreover, for all positive sequence (α n ) such that lim n→+∞ α n = 0, and for all

δ ∈ R, lim n→+∞ v n Π m n n k=1 Π -m k γ k v k α k + δ = 0.
Noting that, in view of (1), we have

f n (x) -f (x) = (1 -γ n ) (f n-1 (x) -f (x)) + γ n (Z n (x) -f (x)) = n-1 k=1   n j=k+1 (1 -γ j )   γ k (Z k (x) -f (x)) + γ n (Z n (x) -f (x)) +   n j=1 (1 -γ j )   (f 0 (x) -f (x)) = Π n n k=1 Π -1 k γ k (Z k (x) -f (x)) + Π n (f 0 (x) -f (x)) .
It follows that

E [f n (x)] -f (x) = Π n n k=1 Π -1 k γ k (E [Z k (x)] -f (x)) + Π n (f 0 (x) -f (x)) .
Then, we can write that

f n (x) -E [f n (x)] = Π n n k=1 Π -1 k γ k (Z k (x) -E [Z k (x)]) = Π n n k=1 Π -1 k γ k h -d k (Y k -E [Y k ])
Let (Ψ n ) and (B n ) be the sequences defined as

Ψ n (x) = Π n n k=1 Π -1 k γ k h -d k (Y k -E [Y k ]) B n (x) = E [f n (x)] -f (x)
We have:

f n (x) -f (x) = Ψ n (x) + B n (x) (10)
Theorems 1, 2, 3, 4 and 5 are consequences of [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF] and the following propositions.

Proposition 1 (Pointwise LDP and MDP for (Ψ n )).

1. Under the assumptions (L1) and (L2), the sequence

(f n (x) -E (f n (x)))
satisfies a LDP with speed nh d n and rate function I a,x .

2. Under the assumptions (L1) and (L3), the sequence

(f n (x) -E (f n (x)))
satisfies a LDP with speed nh d n and rate function I x .

3. Under the assumptions (M 1) -(M 4), the sequence

(v n Ψ n (x)) satisfies a LDP with speed h d n / γ n v 2 n
and rate function J a,α,x .

Proposition 2 (Uniform LDP and MDP for (Ψ n )).

1. Let (U 1) -(U 3) hold. Then for any bounded subset U of R d and for all δ > 0,

lim n→∞ γ n v 2 n h d n log P sup x∈U v n |Ψ n (x)| ≥ δ = -g U (δ)
2. Let (U 1) -(U 6) hold. Then for any subset U of R d and for all δ > 0,

-g U (δ) ≤ lim inf n→∞ γ n v 2 n h d n log P sup x∈U v n |Ψ n (x)| ≥ δ ≤ lim sup n→∞ γ n v 2 n h d n log P sup x∈U v n |Ψ n (x)| ≥ δ ≤ - ξ ξ + d gU (δ)
The proof of the following proposition is given [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF].

Proposition 3 (Pointwise and uniform convergence rate of (B n )). Let Assumptions (M 1) -(M 3) hold.

1. If for all i, j ∈ {1, . . . d}, ∂ 2 f /∂x i ∂x j is continuous at x. We have If a ≤ α/(d + 4), then B n (x) = O h 2 n .
If a > α/(d + 4), then

B n (x) = o γ n h -d n .
2. If (U 2) holds, then:

If a ≤ α/(d + 4), then sup x∈R d |B n (x)| = O h 2 n .
If a > α/(d + 4), then We now state a preliminary lemma, which will be used in the proof of Proposition 1.

sup x∈R d |B n (x)| = o γ n h -d n . Set x ∈ R d ;
For any u ∈ R, Set

Λ n,x (u) = γ n v 2 n h d n log E exp u h d n γ n v n Ψ n (x) Λ L,1 x (u) = f (x) (ψ a (u) -u) , Λ L,2 x (u) = f (x) (ψ (u) -u) , Λ M x (u) = u 2 2 (2 -(α -ad) ξ) f (x) R d K 2 (z) dz Lemma 2. (Convergence of Λ n,x ) 1. (Pointwise convergence) If f is continuous at x, then for all u ∈ R lim n→∞ Λ n,x (u) = Λ x (u) (11)
where Our proofs are now organized as follows: Lemma 2 is proved in Section 3.1, Proposition 1 in Section 3.4 and Proposition 2 in Section 3.3.

Λ x (u) =        Λ L,1 x (u) when v n ≡ 1, (L1) and (L2) hold Λ L,2 x (u) when v n ≡ 1, ( 
3.1. Proof of Lemma 2. Set u ∈ R, u n = u/v n and a n = h d n γ -1 n . We have: Λ n,x (u) = v 2 n a n log E [exp (u n a n Ψ n (x))] = v 2 n a n log E exp u n a n Π n n k=1 Π -1 k a -1 k (Y k -E [Y k ]) = v 2 n a n n k=1 log E exp u n a n Π n a k Π k Y k -uv n Π n n k=1 Π -1 k a -1 k E [Y k ]
By Taylor expansion, there exists c k,n between 1 and

E exp u n a n Π n a k Π k Y k such that log E exp u n a n Π n a k Π k Y k = E exp u n a n Π n a k Π k Y k -1 - 1 2c 2 k,n E exp u n a n Π n a k Π k Y k -1 2
and Λ n,x can be rewriten as

Λ n,x (u) = v 2 n a n n k=1 E exp u n a n Π n a k Π k Y k -1 - v 2 n 2a n n k=1 1 c 2 k,n E exp u n a n Π n a k Π k Y k -1 2 -uv n Π n n k=1 Π -1 k a -1 k E [Y k ] (12) First case: v n → ∞. A Taylor's expansion implies the existence of c ′ k,n between 0 and u n a n Π n a k Π k Y k such that E exp u n a n Π n a k Π k Y k -1 = u n a n Π n a k Π k E [Y k ] + 1 2 u n a n Π n a k Π k 2 E Y 2 k + 1 6 u n a n Π n a k Π k 3 E Y 3 k e c ′ k,n Therefore, Λ n,x (u) = 1 2 u 2 a n Π 2 n n k=1 Π -2 k a -2 k E Y 2 k + 1 6 u 2 u n a 2 n Π 3 n n k=1 Π -3 k a -3 k E Y 3 k e c ′ k,n - v 2 n 2a n n k=1 1 c 2 k,n E exp u n a n Π n a k Π k Y k -1 = 1 2 f (x) u 2 a n Π 2 n n k=1 Π -2 k a -1 k γ k R d K 2 (z) dz + R (1) n,x (u) + R (2) n,x (u) (13) with R (1) n,x (u) = 1 2 u 2 a n Π 2 n n k=1 Π -2 k a -1 k γ k R d K 2 (z) [f (x -zh k ) -f (x)] dz R (2) n,x (u) = 1 6 u 3 v n a 2 n Π 3 n n k=1 Π -3 k a -3 k E Y 3 k e c ′ k,n - v 2 n 2a n n k=1 1 c 2 k,n E exp u n a n Π n a k Π k Y k -1 2
Since f is continuous, we have lim k→∞ |f (x -zh k ) -f (x)| = 0, and thus, by the dominated convergence theorem, (M 1) implies that

lim k→∞ R d K 2 (z) |f (x -zh k ) -f (x)| dz = 0.
Since (a n ) ∈ GS (α -ad), and lim

n→∞ (nγ n ) > (α -ad) /2. Lemma 1 then ensures that a n Π 2 n n k=1 Π -2 k a -1 k γ k = 1 (2 -(α -ad) ξ) + o (1) , (14) 
it follows that lim n→∞ R (1) n,x (u) = 0. Moreover, in view of (9), we have

|Y k | ≤ K ∞ , then c ′ k,n ≤ u n a n Π n a k Π k Y k ≤ |u n | K ∞ (15) Noting that E |Y k | 3 ≤ h d k f ∞ R d K 3 (z) dz.
Hence, using Lemma 1 and (15), there exists a positive constant c 1 such that, for n large enough, ( 16)

u 3 v n a 2 n Π 3 n n k=1 Π -3 k a -3 k E Y 3 k e c ′ k,n ≤ c 1 e |un| K ∞ u 3 v n f ∞ R d K 3 (z) dz which goes to 0 as n → ∞ since v n → ∞. Moreover, Lemma 1 ensures that v 2 n 2a n n k=1 1 c 2 k,n E exp u n a n Π n a k Π k Y k -1 2 ≤ v 2 n 2a n n k=1 E exp u n a n Π n a k Π k Y k -1 2 ≤ u 2 2 f 2 ∞ a n Π 2 n n k=1 Π -2 k a -1 k γ k h d k + o a n Π 2 n n k=1 Π -2 k a -1 k γ k h d k = o (1) (17) 
The combination of ( 16) and ( 17) ensures that lim n→∞ R (2) n,x (u) = 0. Then, we obtain from ( 13) and ( 14), lim

n→∞ Λ n,x (u) = Λ M x (u).
Second case:

(v n ) ≡ 1. It follows from (12) that Λ n,x (u) = 1 a n n k=1 E exp u a n Π n a k Π k Y k -1 - 1 2a n n k=1 1 c 2 k,n E exp u a n Π n a k Π k Y k -1 2 -uΠ n n k=1 Π -1 k a -1 k E [Y k ] = 1 a n n k=1 h d k R d exp u a n Π n a k Π k K (z) -1 f (x) dz -uΠ n n k=1 Π -1 k γ k R d K (z) f (x) dz -R (3) n,x (u) + R (4) n,x (u) = f (x) 1 a n n k=1 h d k R d (exp (uV n,k K (z)) -1) -uV n,k K (z) dz -R (3) n,x (u) + R (4) n,x (u) (18) with V n,k = a n Π n a k Π k R (3) n,x (u) = 1 2a n n k=1 1 c 2 k,n E exp u a n Π n a k Π k Y k -1 2 R (4) n,x (u) = 1 a n n k=1 h d k R d exp u a n Π n a k Π k K (z) -1 [f (x -zh k ) -f (x)] dz -uΠ n n k=1 Π -1 k γ k R d K (z) [f (x -zh k ) -f (x)] dz.
It follows from [START_REF] Wolverton | Asymptotically optimal discriminant functions for pattern classification[END_REF], that lim n→∞ R (3) n,x (u) = 0. Since e t -1 ≤ |t| e |t| , we have

R (4) n,x (u) ≤ 1 a n n k=1 h d k R d exp u a n Π n a k Π k K (z) -1 [f (x -zh k ) -f (x)] dz + |u| Π n n k=1 Π -1 k γ k R d |K (z)| |f (x -zh k ) -f (x)| dz ≤ |u| e |u| K ∞ Π n n k=1 Π -1 k γ k R d |K (z)| |f (x -zh k ) -f (x)| dz + |u| Π n n k=1 Π -1 k γ k R d |K (z)| |f (x -zh k ) -f (x)| dz ≤ |u| e |u| K ∞ + 1 Π n n k=1 Π -1 k γ k R d |K (z)| |f (x -zh k ) -f (x)| dz
In view of Lemma 1 the sequence Π n n k=1 Π -1 k γ k is bounded, then, the dominated convergence theorem ensures that lim n→∞ R (4) n,x (u) = 0. In the case f is uniformly continuous, set ε > 0 and let M > 0 such that

2 f ∞ z ≤M |K (z)| dz ≤ ε/2.
We need to prove that for n sufficiently large sup

x∈R d z ≤M |K (z)| |f (x -zh k ) -f (x)| dz ≤ ε/2
which is a straightforward consequence of the uniform continuity of f .

Then, it follows from [START_REF] Worms | Moderate and large deviations of some dependent variables, Part II: Some kernel estimators[END_REF], that

(19) lim n→∞ Λ n,x (u) = lim n→∞ f (x) γ n h d n n k=1 h d k R d [(exp (uV n,k K (z)) -1) -uV n,k K (z)] dz
In the case when (v n ) ≡ 1, (L1) and (L2) hold

Π n Π k = n j=k+1 (1 -γ j ) = k n , then, V n,k = a n Π n a k Π k = k n ad .
Consequently, it follows from (19) and from some analysis considerations that

lim n→∞ Λ n,x (u) = f (x) R d 1 0 s -ad exp us ad K (z) -1 -us ad K (z) dsdz = Λ L,1 x (u)
In the case when (v n ) ≡ 1, (L1) and (L3) hold. We have

Π n Π k = n j=k+1 (1 -γ j ) = n j=k+1 1 - h d j j l=1 h d l = n j=k+1 j-1 l=1 h d l j l=1 h d l = k l=1 h d l n l=1 h d l = k l=1 h d l h d k h d k h d n h d n n l=1 h d l = γ n γ k h d k h d n , then, V n,k = 1.
Consequently, it follows from (19) that

lim n→∞ Λ n,x (u) = f (x) R d [(exp (uK (z)) -1) -uK (z)] dz = Λ L,2 x (u)
and thus Lemma 1 is proved.

Proof of Proposition 1.

To prove Proposition 1, we apply Proposition 1 in [START_REF] Mokkadem | Large and moderate deviations principles for recursive kernel estimation of a multivariate density and its partial derivatives[END_REF], Lemma 2 and the following result (see [START_REF] Puhalskii | The method of stochastic exponentials for large deviations[END_REF]). Lemma 3. Let (Z n ) be a sequence of real random variables, (ν n ) a positive sequence satisfying lim n→∞ ν n = +∞, and suppose that there exists some convex non-negative function Γ defined on R such that

∀u ∈ R, lim n→∞ 1 ν n log E [exp (uν n Z n )] = Γ (u) .
If the Legendre function Γ * of Γ is a strictly convex function, then the sequence (Z n ) satisfies a LDP of speed (ν n ) and good rate fonction Γ * . In our framework, when v n ≡ 1 and γ n = n -1 , we take

Z n = f n (x) - E (f n (x)), ν n = nh d n with h n = cn -a where a ∈ ]0, 1/d[ and Γ = Λ L,1 x . In this case, the Legendre transform of Γ = Λ L,1 x is the rate function I a,x : t → f (x) I a t f (x)
+ 1 which is strictly convex by Proposition 1 in [START_REF] Mokkadem | Large and moderate deviations principles for recursive kernel estimation of a multivariate density and its partial derivatives[END_REF]. Farther,

when v n ≡ 1 and γ n = h d n n k=1 h d k -1
, we take

Z n = f n (x)-E (f n (x)), ν n = nh d n with h n ∈ GS (-a) where a ∈ ]0, 1/d[ and Γ = Λ L,2
x . In this case, the Legendre

transform of Γ = Λ L,2
x is the rate function

I x : t → f (x) I t f (x)
+ 1 which is strictly convex by Proposition 1 in [START_REF] Mokkadem | Large and moderate deviations principles for kernel estimation of a multivariate density and its partial derivatives[END_REF]. Otherwise, when, v n → ∞, we take

Z n = v n (f n (x) -E (f n (x))), ν n = h d n / γ n v 2
n and Γ = Λ M x ; Γ * is then the quadratic rate function J a,α,x defined in [START_REF] Gao | Moderate deviations and large deviations for kernel density estimators[END_REF] and thus Proposition 1 follows.

Proof of Proposition 2.

In order to prove Proposition 2, we first establish some lemmas. Lemma 4. Let φ : R + → R be the function defined for δ > 0 as

φ (δ) =                ψ ′ a -1 1 + δ f U,∞ when v n ≡ 1, (L1) and (L2) hold ψ ′ -1 1 + δ f U,∞ when v n ≡ 1, (L1) and (L3) hold δ (2 -(α -ad) ξ) f U,∞ R d K 2 (z) dz when v n → ∞, (M 1) -(M 4) hold 1. sup u∈R uδ -sup x∈U Λ x (u) equals g U (δ) and is achieved for u = φ (δ) > 0. 2. sup u∈R -uδ -sup x∈U Λ x (u) equals g U (δ) and is achieved for u = φ (-δ) < 0. P r o o f o f L e m m a 4.
We just prove the first part, the prrof of the second part one being similar.

• First case : v n ≡ 1, (L1) and (L2) hold.

Since e t ≥ 1 + t, for all t, we have ψ a (u) ≥ u and therefore,

uδ -sup x∈U Λ x (u) = uδ -f U,∞ (ψ a (u) -u) = f U,∞ u 1 + δ f U,∞ -ψ a (u)
The function u → uδ -sup x∈U Λ x (u) has second derivative -f U,∞ ψ ′′ a (u) < 0 and thus it has a unique maximum achieved for

u 0 = ψ ′ a -1 1 + δ f U,∞ Now, since ψ ′
a is increasing and since ψ ′ a (0) = 1, we deduce that u 0 > 0.

• Second case : v n ≡ 1, (L1) and (L3) hold. Since e t ≥ 1 + t, for all t, we have ψ (u) ≥ u and therefore,

uδ -sup x∈U Λ x (u) = uδ -f U,∞ (ψ (u) -u) = f U,∞ u 1 + δ f U,∞ -ψ (u)
The function u → uδ -

sup x∈U Λ x (u) has second derivative -f U,∞ ψ ′′ (u) < 0
and thus it has a unique maximum achieved for

u 0 = ψ ′ -1 1 + δ f U,∞
Now, since ψ ′ is increasing and since ψ ′ (0) = 1, we deduce that u 0 > 0.

• Third case v n → ∞ and (M 2) holds. In this case, we have

uδ -sup x∈U Λ x (u) = uδ - u 2 2 (2 -(α -ad) ξ) f U,∞ R d K 2 (z) dz.
In view of the assumption (M 2), we have

ξ -1 > (α -ad) /2, then the function u → uδ -sup x∈U Λ x (u) has second derivative - 1 (2 -(α -ad) ξ) f U,∞ R d K 2 (z) dz < 0
and thus it has a unique maximum achieved for

u 0 = δ (2 -(α -ad) ξ) f U,∞ R d K 2 (z) dz > 0 2 
Lemma 5.

• In the case when (v n ) ≡ 1 and (γ n ) = n -1 , let (L1) and (L2) hold;

• In the case when

(v n ) ≡ 1 and (γ n ) =   h d n n k=1 h d k -1   , let (L1) and • In the case when v n → ∞, let (M 1) -(M 4) hold.
Then for any δ > 0,

lim n→∞ γ n v 2 n h d n log sup x∈U P [v n Ψ n (x) ≥ δ] = -g U (δ) lim n→∞ γ n v 2 n h d n log sup x∈U P [v n Ψ n (x) ≤ -δ] = -g U (-δ) lim n→∞ γ n v 2 n h d n log sup x∈U P [v n |Ψ n (x)| ≤ -δ] = -g U (-δ) P r o o f o f L e m m a 5.
The proof of Lemma 5 is similar to the proof of Lemma 4 in [START_REF] Mokkadem | Large and moderate deviations principles for recursive kernel estimation of a multivariate density and its partial derivatives[END_REF]. Lemma 6. Assumptions (U 1) -(U 3) hold and assume that either

(v n ) ≡ 1 or (U 4) holds.
1. If U is a bounded set, then for any δ > 0, we have 

lim n→∞ γ n v 2 n h d n log P sup x∈U v n |Ψ n (x)| ≤ -g U (δ)
R n = ρ 2 K H v n Π n n k=1 Π -1 k γ k h -(d+β) k 1 β
We begin with the proof of the second part of Lemma 6. There exist

N ′ (n) points of R d , y (n) 1 , y (n) 2 , . . . , y (n) 
N ′ (n) such that the ball x ∈ R d ; x ≤ w n can covered by the N ′ (n) balls B (n) i = x ∈ R d ; x -y (n) i ≤ R n and such that N ′ (n) ≤ 2 2w n R n d
. Considering only the N (n) balls that intersect {x ∈ U ; x ≤ w n }, we can write

{x ∈ U ; x ≤ w n } ⊂ ∪ N (n) i=1 B (n) i .
For each i ∈ {1, . . . , N (n)}, set x

(n) i ∈ B (n) i ∩ U .
We then have:

P sup x∈U, x ≤wn v n |Ψ n (x)| ≥ δ ≤ N (n) i=1 P   sup x∈B (n) i v n |Ψ n (x)| ≥ δ   ≤ N (n) max 1≤i≤N (n) P   sup x∈B (n) i v n |Ψ n (x)| ≥ δ   .
Now, for any i ∈ {1, . . . , N (n)} and any x ∈ B

(n) i , v n |Ψ n | ≤ v n Ψ n x (n) i +v n Π n n k=1 Π -1 k γ k h -d k K x -X k h k -K x (n) i -X k h k +v n Π n n k=1 Π -1 k γ k h -d k E K x -X k h k -K x (n) i -X k h k ≤ v n Ψ n x (n) i + 2v n K H Π n n k=1 Π -1 k γ k h -d k x -x (n) i h k β ≤ v n Ψ n x (n) i + 2v n K H Π n n k=1 Π -1 k γ k h -(d+β) k R β n ≤ v n Ψ n x (n) i + ρ
Hence, we deduce that

P sup x∈U, x ≤wn v n |Ψ n (x)| ≥ δ ≤ N (n) max 1≤i≤N (n) P v n Ψ n x (n) i ≥ δ -ρ ≤ N (n) sup x∈U P v n Ψ n x (n) i ≥ δ -ρ
Further, by definition of N (n) and w n , we have

log N (n) ≤ log N ′ (n) ≤ db h d n γ n v 2 n + (d + 1) log 2 -d log R n and γ n v 2 n h d n log R n = γ n v 2 n βh d n log ρ -log (2 K H ) -log v n -log Π n n k=1 Π -1 k γ k h -(d+β) k . Moreover, we have h (d+β) n ∈ GS (-a (d + β)). Lemma 1 ensures that Π n n k=1 Π -1 k γ k h -(d+β) k = O h -(d+β) n ,
then, in view of (U 3), we have lim sup

n→∞ γ n v 2 n h d n log N (n) ≤ db (20)
The application of Lemma 5 then yiels lim sup

n→∞ γ n v 2 n h d n log P sup x∈U, x ≤wn v n |Ψ n (x)| ≥ δ ≤ lim sup n→∞ γ n v 2 n h d n log N (n) -gU (δ -ρ) ≤ db -gU (δ -ρ) .
Since the inequality holds for any ρ ∈ ]0, δ[, part 2 of Lemma 6 thus follows from the continuity of gU .

Let us now consider part 1 of Lemma 6. This part is proved by following the same steps as for part 2, except that the number N (n) of balls covering U is at most the integer part of (∆/R n ) d , where ∆ denotes the diameter of U . Relation (20) then becomes lim sup

n→∞ γ n v 2 n h d n log R n ≤ 0
and Lemma 6 is proved. 

v n Π n n k=1 Π -1 k γ k h -d k E K x -X k h k ≤ ρ P r o o f o f L e m m a 7. We have (21) v n Π n n k=1 Π -1 k γ k h -d k E K x -X k h k = v n Π n n k=1 Π -1 k γ k R d K (z) f (x -zh k ) dz. First, Lemma 1, ensures that Π n n k=1 Π -1 k γ k = 1 + o (1) . (22) Set ρ > 0. In the case (v n ) ≡ 1, we set M such that f ∞ z >M |K (z)| dz ≤ ρ/2; it follows from (22) that v n Π n n k=1 Π -1 k γ k h -d k E K x -X k h k ≤ ρ 2 + f (x) z ≤M |K (z)| dz +Π n n k=1 Π -1 k γ k z >M |K (z)| |f (x -zh k ) -f (x)| dz.
Lemma 7 then follows from the fact that f fulfills (U 6) ii). As matter of fact, this conditions implies that lim

x →∞,x∈U f (x) = 0 and that the third term in the right-hand-side of the previous inequality goes to 0 as n → ∞ (by the dominated convergence).

Let us now assume that lim n→∞ v n = ∞; relation (21) can be rewritten as

v n Π n n k=1 Π -1 k γ k h -d k E K x -X k h k = v n Π n n k=1 Π -1 k γ k z ≤wn/2 K (z) f (x -zh k ) dz +v n Π n n k=1 Π -1 k γ k z ≥wn/2 K (z) f (x -zh k ) dz.
First, since x ≥ w n and z ≤ w n /2, we have

x -zh k ≥ w n (1 -h i /2) ≥ w n /2 for n large enough.
Moreover, in view of assumptions (U 3), for all ξ > 0,

lim n→∞ v n w ξ n = lim n→∞ exp -ξb h d n γ n v 2 n 1 - v 2 n log v n ξbh d n = 0. (23) Set M f = sup x∈R d
x η f (x). Assumption (U 6) ii) and equations ( 22), (23) implie that, for n sufficiently large, sup

x ≥wn v n Π n n k=1 Π -1 k γ k z ≤wn/2 |K (z) f (x -zh k )| dz ≤ M f sup x ≥wn v n Π n n k=1 Π -1 k γ k z ≤wn/2 |K (z)| x -zh k -η dz ≤ 2 η M f v n w η n R d |K (z)| dz ≤ ρ 2 .
Moreover, in view of (U 3), (U 6) i) and ( 22), (23), for n sufficiently large, sup

x ≥wn v n Π n n k=1 Π -1 k γ k z >wn/2 |K (z) f (x -zh k )| dz ≤ 2 ζ M f v n w ζ n z >wn/2 z ζ |K (z)| dz ≤ ρ 2 .
This concludes the proof of Lemma 7. Since K is a bounded function that vanishes at infinity, we have lim

x →∞

|Ψ n (x)| = 0 for every n ≥ 1. Moreover, since K is assumed to be continuous, Ψ n is continuous, and this ensures the existence of a random variable s n such that 

|Ψ n (s n )| = sup x∈U |Ψ n (x)| . 2 
s n ≥ w n and v n |Ψ n (s n )| ≥ δ ⇒ s n ≥ w n and v n Π n n k=1 Π -1 k γ k h -d k K s n -X k h k +v n E Π n n k=1 Π -1 k γ k h -d k K s n -X k h k ≥ δ ⇒ s n ≥ w n and v n Π n n k=1 Π -1 k γ k h -d k K s n -X k h k - sup x ≥wn,x∈U v n Π n n k=1 Π -1 k γ k h -d k E K s n -X k h k ≥ δ.
Set ρ ∈ ]0, δ[; the application of Lemma 7 ensures that, for n large enough,

s n ≥ w n and v n |Ψ n (s n )| ≥ δ ⇒ s n ≥ w n and v n Π n n k=1 Π -1 k γ k h -d k K s n -X k h k ≥ δ -ρ.
Set κ = sup and assumption (U 3) ensure that lim n→∞ u n,k = 0, it then follows that 1 -u n,k > 0 for n sufficiently large; therefore we can deduce that (see Assumption (U 4) i)):

P [ s n ≥ w n and v n |Ψ n (s n )| ≥ δ] ≤ n i=1 P X k β ≥ w β n (1 -u n,k ) β ≤ n i=1 E X k β w -β n (1 -u n,k ) -β ≤ nE X 1 β w -β n max 1≤k≤n (1 -u n,k ) -β .
Consequently, 

γ n v 2

n→∞ ν n = ∞; 2 .

 2 I : R m → [0, ∞] has compact level sets;3. for every borel setB ⊂ R m , -inf x∈ • B I (x) ≤ lim inf n→∞ ν -1 n log P [Z n ∈ B] ≤ lim sup n→∞ ν -1 n log P [Z n ∈ B] ≤ -inf x∈B I (x) ,where •

  since the assumptions of Theorems 1 and 2 guarantee that lim n→∞ B n (x) = 0, Theorem 1 (respectively Theorem 2) is a straightforward consequence of the application of Part 1 (respectively of Part 2) of Proposition 1. Moreover, under the assumptions of Theorem 3, we have by application of Propostion 3, lim n→∞ v n B n (x) = 0; Theorem 3 thus straightfully follows from the application of Part 3 of Proposition 1. Finaly, Theorem 4 and 5 follows from Proposition 2 and the second part of Proposition 3.

  L1) and (L3) hold Λ M x (u) when v n → ∞, (M 1) -(M 4) hold 2. (Uniform convergence) If f is uniformly continuous, then the convergence (11) holds uniformly in x ∈ U .

2 .where w n = exp bh d n γ n v 2 n.

 22 If U is an unbounded set, then, for any b > 0 and δ > 0v n |Ψ n (x)| ≤ db -gU (δ) P r o o f o f L e m m a 6. Set ρ ∈ ]0, δ[, let β denote the Hölder order of K, and K H its corresponding Hölder norm. Set w n = exp bh d n γ n v 2 n and

Lemma 7 .d n γ n v 2 n

 72 Let (U 1) i), (M 2) and (U 6) i) hold. Assume that either (v n ) ≡ 1 or (U 3) and (U 6) ii) hold. Moreover assume that f is continuous. For any b > 0 if we set w n = exp bh then, for any ρ > 0, we have, for n large enough, sup x∈U, x ≥wn

Lemma 8 .

 8 Let Assumptions (U 1) -(U 3), (U 4) ii) and (U 5) hold. Suppose either (v n ) ≡ 1 or (H6) hold. For any b > 0, set w n = exp b h log P [ s n ≥ w n and |Ψ n (s n )| ≥ δ] ≤ -bβ (24) P r o o f o f L e m m a 8. We first note that s n ∈ U and therefore

-ρ 1 γ

 1 x∈R dx γ |K (x)| (see Assumption (U 5)). We obtain, for n sufficiently large,s n ≥ w n and v n |Ψ n (s n )| ≥ δ ⇒ s n ≥ w n and ∃k ∈ {1, . . . , n} such that v n h d k K s n -X k h k ≥ δ -ρ ⇒ s n ≥ w n and ∃k ∈ {1, . . . , n} such that κh γ k ≥ h d k v n s n -X k γ (δ -ρ) ⇒ s n ≥ w n and ∃k ∈ {1, . . . , n} such that | s n -X k | ≤ κv n h γ-d k δ -ρ 1 γ ⇒ s n ≥ w n and ∃k ∈ {1, . . . , n} such that X k ≤ s n -κv n h γ-d k δ ⇒ s n ≥ w n and ∃k ∈ {1, . . . , n} such that X k ≤ w n (1 -u n,k ) withu n,k = w can write u n,k as u n,k = exp -b

≤ γ n v 2 n h d n log n + log E X 1 β -bβ h d n γ n v 2 n-β log max 1≤k≤n ( 1 - 3 . 4 .d n γ n v 2 n.

 21≤k≤n1342 s n ≥ w n and v n |Ψ n (s n )| ≥ δ] u n,k ) ,and, thanks to assumptions (U 3), it follows that s n ≥ w n andv n |Ψ n (s n )| ≥ δ] ≤ -bβ,which concludes the proof of Lemma 8. Proof of Proposition 2. Let us at first note that the lower boundlim inf n→∞ γ n v 2 n h d n log P sup x∈U v n |Ψ n (x)| ≥ δ ≥ -g U (δ) (25)follows from the application of Proposition 1 at a pointx 0 ∈ U such that f (x 0 ) = f U,∞ .In the case U is bounded, Proposition 2 is thus a straightforward consequence of (25) and the first part of Lemma 6. Let us now consider the case U is unbounded.Set δ > 0 and, for any b > 0 set w n = exp b h Since, by definition of s n ,P sup x∈U v n |Ψ n (x)| ≥ δ ≤ P sup x∈U, x ≤wn v n |Ψ n (x)| ≥ δ + P [ s n ≥ w n and v n |Ψ n (x)| ≥ δ] , x∈U v n |Ψ n (x)| ≥ δ ≤ max {-bβ; db -gU (δx∈U v n |Ψ n (x)| ≥ δ ≤ inf b>0 max {-bβ; db -gU (δ)} .Since the infimum in the right-hand-side of the previous bound is achieved for b = gU (δ) / (β + b) and equals -βg U / (β + d), we obtain the upper bound