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We apply the stochastic approximation method to construct a large class of recursive kernel
estimators of a probability density, including the one introduced by Hall and Patil [1994. On
the efficiency of on-line density estimators. IEEE Trans. Inform. Theory 40, 1504–1512]. We
study the properties of these estimators and compare them with Rosenblatt's nonrecursive
estimator. It turns out that, for pointwise estimation, it is preferable to use the nonrecursive
Rosenblatt's kernel estimator rather thanany recursive estimator. A contrario, for estimationby
confidence intervals, it is better to use a recursive estimator rather than Rosenblatt's estimator.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The advantage of recursive estimators on their nonrecursive version is that their update, from a sample of size n to one of size
n + 1, requires considerably less computations. This property is particularly important in the framework of density estimation,
since the number of points atwhich the function is estimated is usually very large. The first recursive version of Rosenblatt's kernel
density estimator—and the most famous one—was introduced by Wolverton and Wagner (1969), and was widely studied; see
among many others Yamato (1971), Davies (1973), Devroye (1979), Wegman and Davies (1979) and Roussas (1992). Competing
recursive estimators, which may be regarded as weighted versions of Wolwerton and Wagner's estimator, were introduced
and studied by Deheuvels (1973), Wegman and Davies (1979) and Duflo (1997). Recently, Hall and Patil (1994) defined a large
class of weighted recursive estimators, including all the previous recursive estimators. In this paper, we apply the stochastic
approximation method to define a class of recursive kernel density estimators, which includes the one introduced by Hall and
Patil (1994).

The most famous use of stochastic approximation algorithms in the framework of nonparametric statistics is the work of
Kiefer and Wolfowitz (1952), who build up an algorithm which allows the approximation of the maximizer of a regression
function. Their well-known algorithm was widely discussed and extended in many directions (see, among many others, Blum,
1954; Fabian, 1967; Kushner and Clark, 1978; Hall and Heyde, 1980; Ruppert, 1982; Chen, 1988; Spall, 1988, 1997; Polyak and
Tsybakov, 1990; Duflo, 1996; Dippon and Renz, 1997; Chen et al., 1999; Dippon, 2003, and Mokkadem and Pelletier, 2007a).
Stochastic approximation algorithms were also introduced by Révész (1973, 1977) to estimate a regression function, and by
Tsybakov (1990) to approximate the mode of a probability density.

Let us recall Robbins–Monro's scheme to construct approximation algorithms of search of the zero z∗ of an unknown function
h : R → R. First, Z0 ∈ R is arbitrarily chosen, and then the sequence (Zn) is recursively defined by setting

Zn = Zn−1 + �nWn,
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whereWn is an “observation” of the function h at the point Zn−1, andwhere the stepsize (�n) is a sequence of positive real numbers
that goes to zero.

Let X1, . . . ,Xn be independent, identically distributed Rd-valued random vectors, and let f denote the probability density of
X1. To construct a stochastic algorithm, which approximates the function f at a given point x, we define an algorithm of search of
the zero of the function h : y�f (x) − y. We thus proceed in the following way: (i) we set f0(x) ∈ R; (ii) for all n�1, we set

fn(x) = fn−1(x) + �nWn(x),

where Wn(x) is an “observation” of the function h at the point fn−1(x). To define Wn(x), we follow the approach of Révész (1973,
1977) and of Tsybakov (1990), and introduce a kernel K (that is, a function satisfying

∫
Rd K(x) dx=1) and a bandwidth (hn) (that is,

a sequence of positive real numbers that goes to zero), and setWn(x)= h−d
n K(h−1

n [x−Xn])− fn−1(x). The stochastic approximation
algorithm we introduce to recursively estimate the density f at the point x can thus be written as

fn(x) = (1 − �n)fn−1(x) + �nh
−d
n K
(
x − Xn

hn

)
. (1)

Let (wn) be a positive sequence such that
∑

wn = ∞. When the stepsize (�n) is chosen equal to (wn[
∑n

k=1wk]
−1), the estimator fn

defined by (1) can be rewritten as

fn(x) = 1∑n
k=1 wk

n∑
k=1

wk
1

hdk
K
(
x − Xk

hk

)
. (2)

The class of estimators defined by the stochastic approximation algorithm (1) thus includes the general class of recursive
estimators expressed as (2), and introduced in Hall and Patil (1994). In particular, the choice (wn) = 1 produces the estimator
proposed by Wolverton and Wagner (1969), the choice (wn) = (hd/2n ) yields the estimator considered by Wegman and Davies
(1979), and the choice (wn) = (hdn) gives the estimator considered by Deheuvels (1973) and Duflo (1997).

The aim of this paper is the study of the properties of the recursive estimator defined by the stochastic approximation
algorithm (1), and its comparison with the well-known nonrecursive kernel density estimator introduced by Rosenblatt (1956)
(see also Parzen, 1962), and defined as

f̃n(x) = 1

nhdn

n∑
k=1

K
(
x − Xk

hn

)
. (3)

We first compute the bias and the variance of the recursive estimator fn defined by (1). It turns out that they heavily depend on
the choice of the stepsize (�n). In particular, for a given bandwidth, there is a trade-off in the choice of (�n) between minimizing
either the bias or the variance of fn. To determine the optimal choice of stepsize, we consider two points of view: pointwise
estimation and estimation by confidence intervals.

From the pointwise estimation point of view, the criteria we consider to find the optimal stepsize is minimizing the mean
squared error (MSE) or the integrated mean squared error (MISE). We display a set of stepsizes (�n) minimizing the MSE or the
MISE of the estimator fn defined by (1); we show in particular that the sequence (�n) = (n−1) belongs to this set. The recursive
estimator introduced by Wolverton andWagner (1969) thus belongs to the subclass of recursive kernel estimators which have a
minimum MSE or MISE (thanks to an adequate choice of the bandwidth, see Section 2.2). Let us underline that these minimum
MSE andMISE are larger than those obtained for Rosenblatt's nonrecursive estimator f̃n. Thus, for pointwise estimation andwhen
rapid updating is not such important, it is preferable to use Rosenblatt's estimator rather than any recursive estimator defined by
the stochastic approximation algorithm (1). Let us also mention that Hall and Patil (1994) introduce a class of on-line estimators,
constructed from the class of the recursive estimators defined in (2); their on-line estimators are not recursive any more, but
updating them requires much less operations than updating Rosenblatt's estimator, and their MSE and MISE are smaller than
those of the recursive estimators (2).

Let us now consider the estimation from confidence interval point of view. Hall (1992) shows that, to minimize the coverage
error of probability density confidence intervals, avoiding bias estimation by a slight undersmoothing is more efficient than
explicit bias correction. In the framework of undersmoothing, minimizing the MSE comes down to minimizing the variance. We
thus display a set of stepsizes (�n) minimizing the variance of fn; we show in particular that, when the bandwidth (hn) varies
regularly with exponent −a, the sequence (�n) = ([1 − ad]n−1) belongs to this set. Let us underline that the variance of the
estimator fn defined with this stepsize is smaller than that of Rosenblatt's estimator. Consequently, even in the case when the
on-line aspect is not quite important, it is preferable to use recursive estimators to construct confidence intervals. The simulation
results given in Section 3 are corroborating these theoretical results.

To complete the study of the asymptotic properties of the recursive estimator fn, we give its pointwise strong convergence
rate; we compare it with that of Rosenblatt's estimator f̃n for which laws of the iterated logarithmwere established by Hall (1981)
in the case d = 1 and by Arcones (1997) in the multivariate framework.

The remainder of the paper is organized as follows. In Section 2, we state our main results: the bias and variance of fn are
given in Section 2.1, the pointwise estimation is considered in Section 2.2, the estimation by confidence intervals is developed
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in Section 2.3, and the strong convergence rate of fn is stated in Section 2.4. Section 3 is devoted to our simulation results, and
Section 4 to the proof of our theoretical results.

2. Assumptions and main results

We consider stepsizes and bandwidths, which belong to the following class of regularly varying sequences.

Definition 1. Let � ∈ R and (vn)n�1 be a nonrandom positive sequence. We say that (vn) ∈ GS(�) if

lim
n→+∞n

[
1 − vn−1

vn

]
= �. (4)

Condition (4) was introduced by Galambos and Seneta (1973) to define regularly varying sequences (see also Bojanic and Seneta,
1973), and by Mokkadem and Pelletier (2007a) in the context of stochastic approximation algorithms. Typical sequences in
GS(�) are, for b ∈ R, n�(logn)b, n�(log logn)b, and so on.

The assumptions to which we shall refer are the following.

(A1) K : Rd → R is a continuous, bounded function satisfying
∫

Rd K(z) dz = 1, and, for all j ∈ {1, . . . d}, ∫R zjK(z) dzj = 0 and∫
Rd z2j |K(z)|dz <∞.

(A2) (i) (�n) ∈ GS(−�) with � ∈]1/2, 1].
(ii) (hn) ∈ GS(−a) with a ∈]0,�/d[.
(iii) limn→∞ (n�n) ∈]min{2a, (1 − ad)/2},∞].

(A3) f is bounded, twice differentiable, and, for all i, j ∈ {1, . . . d}, �2f/�xi�xj is bounded.

Assumption (A2)(iii) on the limit of (n�n) as n goes to infinity is usual in the framework of stochastic approximation algorithms.
It implies in particular that the limit of ([n�n]

−1) is finite. Throughout this paper we will use the following notation:

� = lim
n→+∞(n�n)

−1,

�2
j =
∫

Rd
z2j K(z) dz,

f (2)ij (x) = �2f
�xi�xj

(x). (5)

2.1. Bias and variance

Our first result is the following proposition, which gives the bias and the variance of fn.

Proposition 1 (Bias and variance of fn). Let Assumptions (A1)–(A3) hold, and assume that, for all i, j ∈ {1, . . . d}, f (2)ij is continuous at x.

1. If a��/(d + 4), then

E(fn(x)) − f (x) = 1
2(1 − 2a�)

h2n

d∑
j=1

(�2
j f

(2)
jj (x)) + o(h2n). (6)

If a >�/(d + 4), then

E(fn(x)) − f (x) = o(
√

�nh
−d
n ). (7)

2. If a��/(d + 4), then

Var(fn(x)) = 1
2 − (1 − ad)�

�n
hdn

f (x)
∫

Rd
K2(z) dz + o

(
�n
hdn

)
. (8)

If a <�/(d + 4), then

Var(fn(x)) = o(h4n). (9)

3. If limn→∞ (n�n) >max{2a, (1 − ad)/2}, then (6) and (8) hold simultaneously.
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The bias and the variance of the estimator fn defined by the stochastic approximation algorithm (1) thus heavily depends on
the choice of the stepsize (�n). Let us recall that the bias and variance of Rosenblatt's estimator f̃n are given by

E(f̃n(x)) − f (x) = 1
2
h2n

d∑
j=1

(�2
j f

(2)
jj (x)) + o(h2n), (10)

Var(f̃n(x)) = 1

nhdn
f (x)
∫

Rd
K2(z) dz + o

(
1

nhdn

)
. (11)

To illustrate the results given by Proposition 1, we now give some examples of possible choices of (�n), and compare the bias and
variance of fn with those of f̃n.

Example 1 (Choices of (�n) minimizing the bias of fn). In view of (6), the asymptotic bias of fn(x) is minimum when � = 0, that is,
when (�n) is chosen such that limn→∞ (n�n) = ∞, and we then have

E[fn(x)] − f (x) = 1
2
h2n

d∑
j=1

(�2
j f

(2)
jj (x)) + o(h2n).

In view of (10), the order of the bias of the recursive estimator fn is thus always greater or equal to that of Rosenblatt's estimator.
Let us also mention that choosing the stepsize such that limn→∞ n�n = ∞ (in which case the bias of fn is equivalent to that of
Rosenblatt's estimator) is absolutely unadvised since we then have

lim
n→∞

Var(f̃n(x))
Var(fn(x))

= 0.

Example 2 (Choices of (�n)minimizing the variance of fn). As mentioned in the Introduction, it is advised to minimize the variance
of fn for interval estimation.

Corollary 1. Let the assumptions of Proposition 1 hold with f (x) >0. To minimize the asymptotic variance of fn, �must be chosen equal
to 1, (�n)must satisfy limn→∞ n�n = 1 − ad, and we then have

Var[fn(x)] = 1 − ad

nhdn
f (x)
∫

Rd
K2(z) dz + o

(
1

nhdn

)
.

It follows from Corollary 1 and (11) that, thanks to an adequate choice of (�n), the variance of the recursive estimator fn
can be smaller than that of Rosenblatt's estimator. To see better the comparison with Rosenblatt's estimator, let us set (hn) ∈
GS(−1/[d + 4]) (which is the choice leading in particular to the minimum MSE of Rosenblatt's estimator). When (�n) is chosen
in GS(−1) and such that limn→∞ n�n = 1 − d/[d + 4], we have

lim
n→∞

E(f̃n(x)) − f (x)
E(fn(x)) − f (x)

= 1
2
, lim

n→∞
Var(f̃n(x))
Var(fn(x))

= d + 4
4

. (12)

It is interesting to note that, whatever the dimension d is, the bias of the recursive estimator fn is equivalent to twice that of
Rosenblatt's estimator, whereas the ratio of the variances goes to infinity as the dimension d increases.

To conclude this example, let us mention that the most simple stepsize satisfying the conditions required in Corollary 1 is
(�n) = ([1 − ad]n−1).

Example 3 (The class of recursive estimators introduced by Hall and Patil, 1994). The following lemma ensures that Proposition 1
gives the bias and variance of the recursive estimators defined in (2) and introduced by Hall and Patil (1994) for a large choice of
weights (wn).

Lemma 1. Set (wn) ∈ GS(w∗) and (�n) = (wn[
∑n

k=1wk]
−1). If w∗ > − 1, then (�n) ∈ GS(−1) and limn→∞ n�n = 1 + w∗.
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Set (hn) ∈ GS(−a); we give explicitly here the bias and variance of three particular recursive estimators.

• When (wn) = 1, fn is the estimator introduced by Wolverton and Wagner (1969); in view of Lemma 1, Proposition 1 applies
with � = 1, and we have

E(fn(x)) − f (x) = 1
2(1 − 2a)

h2n

d∑
j=1

(�2
j f

(2)
jj (x)) + o(h2n),

Var(fn(x)) = 1
1 + ad

1

nhdn
f (x)
∫

Rd

K2(z) dz + o

(
�n
hdn

)
.

• When (wn) = (hd/2n ), fn is the estimator considered by Wegman and Davies (1979); in view of Lemma 1, Proposition 1 applies
with � = (1 − ad/2)−1, and we have

E(fn(x)) − f (x) = 2 − ad
2(2 − [4 + d]a)

h2n

d∑
j=1

(�2
j f

(2)
jj (x)) + o(h2n),

Var(fn(x)) = (2 − ad)2

4
1

nhdn
f (x)
∫

Rd
K2(z) dz + o

(
�n
hdn

)
.

• When (wn) = (hdn), fn is the estimator introduced by Deheuvels (1973) and whose convergence rate was established by Duflo
(1997); in view of Lemma 1, Proposition 1 applies with � = (1 − ad)−1, and we have

E(fn(x)) − f (x) = 1 − ad
2(1 − [2 + d]a)

h2n

d∑
j=1

(�2
j f

(2)
jj (x)) + o(h2n),

Var(fn(x)) = 1 − ad

nhdn
f (x)
∫

Rd
K2(z) dz + o

(
�n
hdn

)
.

Let us underline that the bias and variance of this estimator are equivalent to those of the estimator defined with the stepsize
(�n = ([1 − ad]n−1) (this choice minimizing the variance of fn, see Corollary 1), but its updating is less straightforward.

2.2. Choice of the optimal stepsize for point estimation

We first explicit the choices of (�n) and (hn), which minimize the MSE and MISE of the recursive estimator defined by the
stochastic approximation algorithm (1), and then provide a comparison with Rosenblatt's estimator.

2.2.1. Choices of (�n)minimizing the MSE of fn

Corollary 2. Let Assumptions (A1)–(A3) hold, assume that f (x) >0,
∑d

j=1(�
2
j f

(2)
jj (x))�0, and that, for all i, j ∈ {1, . . .d}, f (2)ij is continuous

at x. Tominimize theMSE of fn at the point x, the stepsize (�n)must be chosen inGS(−1) and such that limn→∞ n�n =1, the bandwidth
(hn)must equal

⎛
⎜⎝
⎡
⎣d(d + 2)
2(d + 4)

f (x)
∫

Rd K2(z) dz

(
∑d

j=1 �2
j f

(2)
jj (x))2

⎤
⎦
1/(d+4)

�1/(d+4)
n

⎞
⎟⎠ ,

and we then have

MSE = n−4/(d+4) (d + 4)(3d+8)/(d+4)

dd/(d+4)4(d+6)/(d+4)(d + 2)(2d+4)/(d+4)

⎡
⎣ d∑

j=1

�2
j f

(2)
jj (x)

⎤
⎦
2d/(d+4)[

f (x)
∫

Rd
K2(z) dz

]4/(d+4)

[1 + o(1)].

The most simple example of stepsize belonging to GS(−1) and such that limn→∞ n�n = 1 is (�n) = (n−1). For this choice of
stepsize, the estimator fn defined by (1) equals the recursive kernel estimator introduced byWolverton andWagner (1969). This
latest estimator thus belongs to the subclass of recursive kernel estimators, which, thanks to an adequate choice of the bandwidth,
have a minimum MSE.



Author's personal copy

2464 A. Mokkadem et al. / Journal of Statistical Planning and Inference 139 (2009) 2459 -- 2478

2.2.2. Choices of (�n)minimizing the MISE of fn
The following proposition gives the MISE of the estimator fn.

Proposition 2. Let Assumptions (A1)–(A3) hold, and assume that, for all i, j ∈ {1, . . . d}, f (2)ij is continuous and integrable.

1. If a <�/(d + 4), then

MISE = 1

4(1 − 2a�)2
h4n

∫
Rd

⎡
⎣ d∑

j=1

�2
j f

(2)
jj (x)

⎤
⎦
2

dx + o(h4n).

2. If a = �/(d + 4), then

MISE = 1

4(1 − 2a�)2
h4n

∫
Rd

⎡
⎣ d∑

j=1

�2
j f

(2)
jj (x)

⎤
⎦
2

dx + 1
2 − (1 − ad)�

�n
hdn

∫
Rd

K2(z) dz + o

(
h4n + �n

hdn

)
.

3. If a >�/(d + 4), then

MISE = 1
2 − (1 − ad)�

�n
hdn

∫
Rd

K2(z) dz + o

(
�n
hdn

)
.

The following corollary ensures that Wolwerton and Wagner's estimator also belongs to the subclass of kernel estimators
defined by the stochastic approximation algorithm (1), which, thanks to an adequate choice of the bandwidth, have a minimum
MISE.

Corollary 3. Let Assumptions (A1)–(A3) hold, and assume that, for all i, j ∈ {1, . . .d}, f (2)ij is continuous and integrable. To minimize the
MISE of fn, the stepsize (�n)must be chosen in GS(−1) and such that limn→∞ n�n = 1, the bandwidth (hn)must equal

⎛
⎜⎝
⎡
⎣d(d + 2)
2(d + 4)

∫
Rd K2(z) dz∫

Rd (
∑d

j=1 �2
j f

(2)
jj (x))2 dx

⎤
⎦
1/(d+4)

�1/(d+4)
n

⎞
⎟⎠ ,

and we then have

MISE = n−4/(d+4) (d + 4)(3d+8)/(d+4)

dd/(d+4)4(d+6)/(d+4)(d + 2)(2d+4)(d+4)

⎡
⎢⎣∫

Rd

⎛
⎝ d∑

j=1

�2
j f

(2)
jj (x)

⎞
⎠

2

dx

⎤
⎥⎦
d/(d+4)[∫

Rd
K2(z) dz

]4/(d+4)

[1 + o(1)].

2.2.3. Comparison with Rosenblatt's estimator
The ratio of the optimal MSE (or MISE) of Rosenblatt's estimator to that of Wolwerton and Wagner's estimator equals

�(d) =
[
24(d + 2)2d+4

(d + 4)2d+4

]1/(d+4)

.

This ratio is always less than one, it at first decreases, and then increases to one as the dimension d increases. This phenomenon is
similar to that observed by Hall and Patil (1994). The former authors consider the univariate framework, but look at the efficiency
of Wolwerton and Wagner's estimator of the sth-order derivative of f relative to Rosenblatt's one; the ratio �(s) varies in s in
the same way as �(d) does in d. According to pointwise estimation point of view, and when rapid updating is not too important,
it is thus preferable to use Rosenblatt's nonrecursive estimator rather than any recursive estimator defined by the stochastic
approximation algorithm (1). Let us mention that Hall and Patil (1994) introduce a class of on-line estimators, constructed from
the class of the recursive estimators defined in (2); their on-line estimators are not recursive any more, but updating them
requires much less operations than updating Rosenblatt's estimator, and their MSE and MISE are smaller than those of the
recursive estimators (2).

2.3. Choice of the optimal stepsize for interval estimation

Let us first state the following theorem, which gives the weak convergence rate of the estimator fn defined in (1).
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Theorem 1 (Weak pointwise convergence rate). Let Assumptions (A1)–(A3) hold, assume that f (x) >0 and that, for all i, j ∈ {1, . . .d},
f (2)ij is continuous at x.

1. If there exists c�0 such that �−1
n hd+4

n → c, then

√
�−1
n hdn(fn(x) − f (x)) D→N

⎛
⎝ c1/2

2(1 − 2a�)

d∑
j=1

(�2
j f

(2)
jj (x)),

1
2 − (1 − ad)�

f (x)
∫

Rd
K2(z) dz

⎞
⎠ .

2. If �−1
n hd+4

n → ∞, then

1
h2n

(fn(x) − f (x)) P→ 1
2(1 − 2a�)

d∑
j=1

(�2
j f

(2)
jj (x)),

where
D→ denotes the convergence in distribution,N the Gaussian-distribution and

P→ the convergence in probability.

As mentioned in the Introduction, Hall (1992) shows that, to minimize the coverage error of probability density confidence
intervals, avoiding bias estimation by a slight undersmoothing is more efficient than bias correction. Let us recall that, when the
bandwidth (hn) is chosen such that limn→∞ nhd+4

n = 0 (which corresponds to undersmoothing), Rosenblatt's estimator fulfils the
central limit theorem

√
nhdn(f̃n(x) − f (x)) D→N

(
0, f (x)

∫
Rd

K2(z) dz
)
. (13)

Now, let � denote the distribution function of theN(0, 1), let t�/2 be such that �(t�/2) = 1 − �/2 (where � ∈]0, 1[), and set

Ign (x) =
⎡
⎣gn(x) − t�/2C(gn)

√√√√gn(x)
∫

Rd K2(z) dz

nhdn
, gn(x) + t�/2C(gn)

√√√√gn(x)
∫

Rd K2(z) dz

nhdn

⎤
⎦ .

In view of (13), the asymptotic level of If̃n (x) equals 1 − � for C(f̃n) = 1. The following corollary gives the values of C(fn) for which
the asymptotic level of Ifn (x) equals 1 − � too.

Corollary 4. Let the assumptions of Theorem 1 hold with limn→∞ n�n = �0 ∈]0,∞[ and limn→∞ nhd+4
n = 0. The asymptotic level of

Ifn (x) equals 1 − � for

C(fn) =
√

�0[2 − (1 − ad)�−1
0 ]−1.

Moreover, the minimum of C(fn) is reached at �0 = 1 − ad and equals
√
1 − ad.

The optimal stepsizes for interval estimation are thus the sequences (�n) ∈ GS(−1) such that limn→∞ n�n = 1 − ad, the most
simple one being (�n) = ([1 − ad]n−1). Of course, these stepsizes are those which minimize the variance of fn (see Corollary 1).

2.4. Strong pointwise convergence rate

The following theorem gives the strong pointwise convergence rate of fn.

Theorem 2 (Strong pointwise convergence rate). Let Assumptions (A1)–(A3) hold, and assume that, for all i, j ∈ {1, . . . d}, f (2)ij is
continuous at x.

1. If there exists c1�0 such that �−1
n hd+4

n /(ln[
∑n

k=1�k]) → c1, then, with probability one, the sequence

⎛
⎝
√√√√ �−1

n hdn
2 ln[
∑n

k=1 �k]
(fn(x) − f (x))

⎞
⎠
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is relatively compact and its limit set is the interval

⎡
⎣ 1
2(1 − 2a�)

√
c1
2

d∑
j=1

(�2
j f

(2)
jj (x)) −

√
f (x)

2 − (1 − ad)�

∫
Rd

K2(z) dz,

1
2(1 − 2a�)

√
c1
2

d∑
j=1

(�2
j f

(2)
jj (x)) +

√
f (x)

2 − (1 − ad)�

∫
Rd

K2(z) dz

⎤
⎦ .

2. If �−1
n hd+4

n /(ln[
∑n

k=1�k]) → ∞, then, with probability one,

lim
n→∞

1
h2n

(fn(x) − f (x)) = 1
2(1 − 2a�)

d∑
j=1

(�2
j f

(2)
jj (x)).

Set (hn) such that limn→∞ nhd+4
n /ln ln n = 0. Arcones (1997) proves the following compact law of the iterated logarithm for

Rosenblatt's estimator: with probability one, the sequence (
√
nhdn(f̃n(x)− f (x))/

√
2 ln ln n) is relatively compact and its limit set is

the interval

J =
[
−
√
f (x)
∫

Rd
K2(z) dz,

√
f (x)
∫

Rd
K2(z) dz

]
.

Now, set (�n) such that limn→∞ n�n = �0 ∈]0,∞[. The first part of Theorem 2 ensures that, with probability one, the limit set of

the sequence (
√
nhdn(fn(x) − f (x))/

√
2 ln ln n) is the interval

J(�0) =
[
−A(�0)

√
f (x)
∫

Rd
K2(z) dz,A(�0)

√
f (x)
∫

Rd
K2(z) dz

]
with A(�0) =

√
�0

[2 − (1 − ad)�−1
0 ]

.

In particular, for Wolwerton and Wagner's estimator, A(�0) = 1/
√
1 + ad; for the estimator considered by Wegman and Davies

(1979), or when (�n) = ([1 − ad/2]n−1), A(�0) = 1 − ad/2; for the estimator considered by Deheuvels (1973) and Duflo (1997), or
when (�n)= ([1− ad]n−1), A(�0)= √

1 − ad. For all these recursive estimators, the length of the limit interval J(�0) is smaller than
that of J, which shows that they are more concentrated around f than Rosenblatt's estimator is.

3. Simulations

The aim of our simulation studies is to compare the performance of Rosenblatt's estimator defined in (3) with that of the
recursive estimators, from confidence interval point of view. Of course, the recursive estimator we consider here is the optimal
one according to this criteria (see Corollary 4). We set

Ii,n =
⎡
⎣gn(x) − 1.96C(gn)

√√√√gn(x)
∫

Rd K2(z) dz

nhdn
, gn(x) + 1.96C(gn)

√√√√gn(x)
∫

Rd K2(z) dz

nhdn

⎤
⎦ ,

where:

• if i = 1, then gn = f̃n is Rosenblatt's estimator, and C(gn) = 1;
• if i = 2, then gn = fn is the optimal recursive estimator defined by the algorithm (1) with the stepsize (�n) = ([1 − ad]n−1), and
C(gn) = √

1 − ad.

According to the theoretical results given in Section 2.3, both confidence intervals I1,n and I2,n have the same asymptotic level
(equal to 95%), whereas I2,n has a smaller length than I1,n. In order to investigate their finite sample behaviours, we consider three
sample sizes: n= 50, 100, and 200. In each case, the number of simulations is N = 5000. Tables 1–4 give (for different values of d,
f , x, and (hn)):

• the empirical levels #{f (x) ∈ Ii,n}/N at each first line concerning Ii,n.
• the averaged lengths of the intervals Ii,n at each second line concerning Ii,n.

The case d= 1. In the univariate framework, we consider two densities f : the standard normalN(0, 1) distribution (see Table 1),
and the normal mixture 1

2N(− 1
2 , 1) + 1

2N( 12 , 1) distribution (see Table 2). The points at which f is estimated are: x = 0, 0.5, and
1. The bandwidth (hn) is set equal to (n−a) with a= 0.21 and 0.23 (the parameter a being chosen slightly larger than 1

5 to slightly
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Table 1
X�N(0, 1).

x = 0 x = 0.5 x = 1

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

a = 0.21
I1,n 96.74% 96.08% 95.74% 97.1% 96.74% 96.96% 97.72% 97.44% 97.7%

0.2681 0.2061 0.158 0.2538 0.1948 0.1493 0.2168 0.165 0.126
I2,n 99.36% 98% 96.18% 99.76% 98.96% 98.36% 98.86% 98.76% 98.78%

0.2436 0.184 0.140 0.2332 0.1755 0.1331 0.2068 0.1529 0.1146
a = 0.23

I1,n 96.58% 96.46% 96.78% 96.78% 97.06% 97.04% 97.32% 97.58% 96.96%
0.2796 0.2167 0.1674 0.2653 0.205 0.1579 0.225 0.1731 0.1328

I2,n 99.46% 98.58% 97.58% 99.6% 99.26% 98.72% 98.68% 98.32% 97.96%
0.2517 0.1915 0.1467 0.2415 0.1828 0.1393 0.2134 0.159 0.1197

I1,n is the Rosenblatt's interval, I2,n the recursive interval. Two values of a are considered. For each value of a and for each Ii,n , i=1, 2, the first line gives the empirical
level and the second one the averaged length of Ii,n .

Table 2
X� 1

2N(− 1
2 , 1) + 1

2N( 1
2 , 1).

x = 0 x = 0.5 x = 1

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

a = 0.21
I1,n 96.86% 96.96% 96.86% 96.96% 96.68% 96.8% 97.12% 97.04% 96.94%

0.2541 0.1949 0.1493 0.2436 0.1866 0.1427 0.2142 0.1642 0.1251
I2,n 99.76% 99.04% 98.2% 99.62% 99.28% 98.72% 99.14% 98.94% 98.4%

0.2334 0.1755 0.1331 0.2257 0.1692 0.1278 0.2045 0.1518 0.1136

a = 0.23
I1,n 96.92% 97.04% 96.84% 96.56% 96.66% 97.14% 97.02% 97.12% 96.76%

0.2654 0.2049 0.1579 0.254 0.196 0.151 0.2233 0.1717 0.1321
I2,n 99.9% 99.18% 98.76% 99.74% 99.3% 98.92% 98.78% 98.76% 98.2%

0.2416 0.1826 0.1393 0.2334 0.176 0.1338 0.2116 0.1575 0.1187

I1,n is the Rosenblatt's interval, I2,n the recursive interval. Two values of a are considered. For each value of a and for each Ii,n , i=1, 2, the first line gives the empirical
level and the second one the averaged length of Ii,n .

Table 3
X = AY with Y�N(0, I2).

x = (0, 0) x = (0.5, 0.5) x = (1, 1)

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

a = 0.17
I1,n 93.82% 94.98% 96.9% 91.06% 92.82% 94.0% 89.48% 86.88% 85.82%

0.1159 0.0934 0.0757 0.1059 0.0854 0.0686 0.0811 0.0645 0.0515
I2,n 97.54% 95.12% 94.34% 96.74% 94.62% 92.86% 97.2% 94.32% 91.16%

0.0979 0.0765 0.061 0.091 0.0707 0.0558 0.0736 0.0557 0.0432

a = 0.19
I1,n 95.64% 97.08% 97.28% 93.46% 94.84% 95.82% 91.58% 91.06% 89.04%

0.1271 0.1042 0.0851 0.1158 0.0946 0.077 0.0883 0.0713 0.0574
I2,n 97.5% 97.26% 96.64% 97.22% 96.5% 95.42% 96.74% 95.66% 92.24%

0.1045 0.0829 0.0666 0.0969 0.0763 0.0609 0.0783 0.0599 0.0469

a = 0.21
I1,n 96.68% 97.62% 98.24% 95.16% 96.48% 97.16% 92.76% 91.2% 91.04%

0.1392 0.1157 0.0957 0.1267 0.105 0.0863 0.0962 0.0783 0.0641
I2,n 97.16% 97.48% 97.56% 96.96% 96.84% 96.7% 96.72% 96.58% 94.2%

0.1111 0.0893 0.0726 0.1031 0.0822 0.0662 0.0832 0.0642 0.0509

I1,n is the Rosenblatt's interval, I2,n the recursive interval. Three values of a are considered. For each value of a and for each Ii,n , i = 1, 2, the first line gives the
empirical level and the second one the averaged length of Ii,n . Note that the recursive interval I2,n computed with a=0.21 has a larger empirical level and a smaller
length than the Rosenblatt's interval I1,n computed with a = 0.17.

undersmooth). Both tables show that the recursive estimator performs better than Rosenblatt's one: the empirical levels of the
intervals I2,n are greater than those of I1,n, whereas their averaged lengths are smaller. Moreover, it can be seen that increasing
the undersmoothing (that is, increasing a) has the effect to increase the level, but also to increase the length of the intervals.
However, it appears (in view of Tables 1 and 2) that the length of the recursive interval increases less than that of the Rosenblatt's
interval; this is expected since the factor C(gn) = √

1 − a, which appears in the definition of the recursive interval, decreases as a
increases.
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Table 4
X = AY with Y� 1

2N(−B, I2) + 1
2N(B, I2).

x = (0, 0) x = (0.5, 0.5) x = (1, 1)

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

a = 0.17
I1,n 91.84% 91.28% 92.4% 90.06% 89.42% 87.86% 83.24% 80.46% 78.88%

0.105 0.0847 0.068 0.0976 0.0785 0.063 0.0787 0.0631 0.050
I2,n 96.8% 93.76% 91.34% 95.9% 92.32% 86.96% 95.52% 87.6% 82.12%

0.0903 0.0702 0.0553 0.0851 0.0657 0.0516 0.0716 0.0544 0.0419

a = 0.19
I1,n 93.54% 93.94% 95.44% 90.72% 91.38% 92.12% 85.46% 84.24% 82.24%

0.1151 0.094 0.0764 0.1158 0.1069 0.0706 0.0857 0.0692 0.0457
I2,n 97.42% 95.92% 94.38% 97.22% 97.06% 91.74% 96.18% 91.26% 86.88%

0.0964 0.0757 0.0604 0.0969 0.0908 0.0562 0.0762 0.0582 0.0469

a = 0.21
I1,n 94.82% 96.12% 97.44% 93.14% 93.46% 94.16% 88.72% 86.24% 83.54%

0.1259 0.1037 0.0858 0.1163 0.0962 0.0793 0.0935 0.0764 0.0624
I2,n 97.1% 97.48% 96.96% 96.82% 96.04% 93.96% 96.76% 93.52% 88.24%

0.1025 0.0813 0.0659 0.0963 0.0762 0.0613 0.0811 0.0627 0.0495

a = 0.24
I1,n 96.26% 97.48% 98.38% 94.36% 96.16% 96.7% 91.04% 91.08% 89.42%

0.1435 0.1208 0.1017 0.1325 0.1117 0.0937 0.1058 0.0885 0.0736
I2,n 96.18% 97.54% 98.04% 96.68% 97.38% 96.6% 96.98% 95.96% 91.3%

0.1117 0.0903 0.0743 0.1049 0.0845 0.0691 0.0883 0.0695 0.0558

I1,n is the Rosenblatt's interval, I2,n the recursive interval. Four values of a are considered. For each value of a and for each Ii,n , i = 1, 2, the first line gives the
empirical level and the second one the averaged length of Ii,n . Note that the recursive intervals I2,n computed with a = 0.21 and a = 0.24 have a larger empirical
level and a smaller length than the Rosenblatt's intervals I1,n computed with a = 0.17 and 0.19.

The case d = 2. In the case when d = 2, we estimate the density f of the random vector X defined as X = AY with

A =
(

1 0
0.5 1

)
,

and where the distribution of the random vector Y is:

• the normal standard distributionN(0, I2) (see Table 3);
• the normal mixture 1

2N(−B, I2) + 1
2N(B, I2) with B = ( 0.50.5 ) (see Table 4).

The points at which f is estimated are: x = (0, 0), (0.5, 0.5), and (1, 1). The bandwidth (hn) is set equal to (n−a). To slightly
undersmooth, the parameter amust be chosen slightly larger than 1

6 ; we first chose a = 0.17 and 0.19. Tables 3 and 4 show that,
for these given values of the parameter a, the recursive estimator performs better for the sample sizes n = 50 and 100, whereas,
at first glance, Rosenblatt's estimator performs better in the case when n = 200. This is explained by the fact that, for this latest
sample size, the length of I2,n becomes too small.We have thus added other choices of the parameter a (a=0.21 in Table 3; a=0.21
and 0.24 in Table 4). The larger a is, the larger the length of the intervals Ii,n are, and the larger the empirical levels are. Now,
Tables 3 and 4 also show that, for the sample size n= 200, the intervals I2,n computed with a= 0.21 or 0.24 have a smaller length
and a higher level than the intervals I1,n computed with a = 0.17 or 0.19, so that we can say again that the recursive estimator
performs better than Rosenblatt's one.

This simulation study shows the good performance of the recursive estimator defined by the algorithm (1) with the stepsize
(�n)=([1−ad]n−1) for interval estimation. Themain questionwhich remains open is how to choose the bandwidth (hn) inGS(−a),
and, in particular, how to determine the parameter a. This problem is not particular to the framework of recursive estimation; in
the case when Rosenblatt's estimator is used, Hall (1992) enlightens that criteria to determine the “good undersmoothing” are
not easy to determine empirically.

4. Proofs

Throughout this section we use the following notation:

�n =
n∏

j=1

(1 − �j),

sn =
n∑

k=1

�k,

Zn(x) = 1

hdn
K
(
x − Xn

hn

)
. (14)

Let us first state the following technical lemma.



Author's personal copy

A. Mokkadem et al. / Journal of Statistical Planning and Inference 139 (2009) 2459 -- 2478 2469

Lemma 2. Let (vn) ∈ GS(v∗), (�n) ∈ GS(−�), andm>0 such that m − v∗� >0 where � is defined in (5). We have

lim
n→+∞vn�m

n

n∑
k=1

�−m
k

�k
vk

= 1
m − v∗�

. (15)

Moreover, for all positive sequence (�n) such that limn→+∞ �n = 0, and all 	 ∈ R,

lim
n→+∞vn�m

n

⎡
⎣ n∑
k=1

�−m
k

�k
vk

�k + 	

⎤
⎦= 0. (16)

Lemma 2 is widely applied throughout the proofs. Let us underline that it is its application, which requires Assumption
(A2)(iii) on the limit of (n�n) as n goes to infinity. Let us mention that, in particular, to prove (8), Lemma 2 is applied with
m = 2 and (vn) = (�−1

n hdn) (and thus v∗ = � − ad); the stepsize (�n) must thus fulfil the condition limn→∞ (n�n) > (� − ad)/2.
Now, since limn→∞ (n�n) <∞ only if � = 1, the condition limn→∞ (n�n) ∈]min{2a, (1 − ad)/2},∞] in (A2)(iii) is equivalent to the
condition limn→∞ (n�n) ∈]min{2a, (� − ad)/2},∞], which appears throughout our proofs. Similarly, since ��0 only if � = 1, the
limit [2 − (� − ad)�]−1 given by the application of Lemma 2 for suchm and (vn) equals the factor [2 − (1 − ad)�]−1 that stands in
the statement of our main results.

Our proofs are now organized as follows. Lemmas 1 and 2 are proved in Section 4.1, Propositions 1 and 2 in Sections 4.2 and
4.3, respectively, Theorems 1 and 2 in Sections 4.4 and 4.5, respectively, and Corollaries 1–4 in Section 4.6.

4.1. Proof of Lemmas 1 and 2

We first prove Lemma 1. Since (wn) ∈ GS(w∗) with w∗ > − 1, we have

lim
n→∞

nwn∑n
k=1 wk

= 1 + w∗, (17)

which guarantees that limn→∞ n�n = 1 + w∗. Moreover, applying (17), we note that

∑n−1
k=1 wk∑n
k=1 wk

= 1 − wn∑n
k=1 wk

= 1 − 1 + w∗

n
+ o
(
1
n

)
,

so that

lim
n→∞n

[
1 −
∑n−1

k=1 wk∑n
k=1 wk

]
= 1 + w∗.

It follows that (
∑n

k=1wk) ∈ GS(1 + w∗), and thus that (�n) ∈ GS(−1), which concludes the proof of Lemma 1.
To prove Lemma 2, we first establish (16). Set

Qn = vn�m
n

⎡
⎣ n∑
k=1

�−m
k �kv

−1
k �k + 	

⎤
⎦ .

We have

Qn = vn
vn−1

(1 − �n)
mQn−1 + �n�n

with, since (vn) ∈ GS(v∗) and in view of (5),

vn
vn−1

(1 − �n)
m =
(
1 + v∗

n
+ o
(
1
n

))
(1 − m�n + o(�n))

= (1 + v∗��n + o(�n))(1 − m�n + o(�n))

= 1 − (m − v∗�)�n + o(�n). (18)

Set A ∈]0,m − v∗�[; for n large enough, we obtain

Qn� (1 − A�n)Qn−1 + �n�n
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and (16) follows straightforwardly from the application of Lemma 4.I.1 in Duflo (1996) . Now, let C denote a positive generic
constant that may vary from line to line; we have

vn�m
n

n∑
k=1

�−m
k �kv

−1
k − (m − v∗�)−1 = vn�m

n

⎡
⎣ n∑
k=1

�−m
k �kv

−1
k − (m − v∗�)−1Pn

⎤
⎦

with, in view of (18),

Pn = v−1
n �−m

n

=
n∑

k=2

(v−1
k �−m

k − v−1
k−1�

−m
k−1) + C

=
n∑

k=2

v−1
k �−m

k

[
1 − vk

vk−1
(1 − �k)

m
]

+ C

=
n∑

k=2

v−1
k �−m

k [(m − v∗�)�k + o(�k)] + C.

It follows that

vn�m
n

n∑
k=1

�−m
k �kv

−1
k − (m − v∗�)−1 = vn�m

n

⎡
⎣ n∑
k=1

�−m
k v−1

k o(�k) + C

⎤
⎦ ,

and (15) follows from the application of (16), which concludes the proof of Lemma 2.

4.2. Proof of Proposition 1

In view of (1) and (14), we have

fn(x) − f (x) = (1 − �n)(fn−1(x) − f (x)) + �n(Zn(x) − f (x))

=
n−1∑
k=1

⎡
⎣ n∏
j=k+1

(1 − �j)

⎤
⎦ �k(Zk(x) − f (x)) + �n(Zn(x) − f (x)) +

⎡
⎣ n∏
j=1

(1 − �j)

⎤
⎦ (f0(x) − f (x))

= �n

n∑
k=1

�−1
k �k(Zk(x) − f (x)) + �n(f0(x) − f (x)). (19)

It follows that

E(fn(x)) − f (x) = �n

n∑
k=1

�−1
k �k(E(Zk(x)) − f (x)) + �n(f0(x) − f (x)).

Taylor's expansion with integral remainder ensures that

E[Zk(x)] − f (x) =
∫

Rd
K(z)[f (x − zhk) − f (x)] dz

= h2k
2

d∑
j=1

(�2
j f

(2)
jj (x)) + h2k	k(x) (20)

with

	k(x) =
∑

1� i,j�d

∫
Rd

∫ 1

0
(1 − s)zizjK(z)[f

(2)
ij (x − zhks) − f (2)ij (x)] dsdz,
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and, since f (2)ij is bounded and continuous at x for all i, j ∈ {1, . . . ,d}, we have limk→∞ 	k(x) = 0. In the case a��/(d + 4), we have
limn→∞ (n�n) >2a; the application of Lemma 2 then gives

E[fn(x)] − f (x) = 1
2

d∑
j=1

(�2
j f

(2)
jj (x))�n

n∑
k=1

�−1
k �kh

2
k[1 + o(1)] + �n(f0(x) − f (x))

= 1
2(1 − 2a�)

d∑
j=1

(�2
j f

(2)
jj (x))[h2n + o(1)],

and (6) follows. In the case a >�/(d + 4), we have h2n = o(
√

�nh
−d
n ); since limn→∞ (n�n) > (� − ad)/2, Lemma 2 then ensures that

E[fn(x)] − f (x) = �n

n∑
k=1

�−1
k �ko

(√
�kh

−d
k

)
+ O(�n)

= o
(√

�nh
−d
n

)
,

which gives (7). Now, we have

Var[fn(x)] = �2
n

n∑
k=1

�−2
k �2kVar[Zk(x)]

= �2
n

n∑
k=1

�−2
k �2k
hdk

[∫
Rd

K2(z)f (x − zhk) dz − hdk

(∫
Rd

K(z)f (x − zhk) dz
)2]

= �2
n

n∑
k=1

�−2
k �2k
hdk

[
f (x)
∫

Rd
K2(z) dz + 
k(x) − hdk 
̃k(x)

]

with


k(x) =
∫

Rd
K2(z)[f (x − zhk) − f (x)] dz,


̃k(x) =
(∫

Rd
K(z)f (x − zhk) dz

)2
.

Since f is bounded and continuous, we have limk→∞ 
k(x) = 0 and limk→∞ hdk 
̃k(x) = 0. In the case a��/(d + 4), we have
limn→∞ (n�n) > (� − ad)/2, and the application of Lemma 2 gives

Var[fn(x)] = �2
n

n∑
k=1

�−2
k �2k
hdk

[
f (x)
∫

Rd
K2(z) dz + o(1)

]

= 1
2 − (� − ad)�

�n
hdn

[
f (x)
∫

Rd
K2(z) dz + o(1)

]
,

which proves (8). In the case a <�/(d + 4), we have �nh
−d
n = o(h4n); since limn→∞ (n�n) >2a, Lemma 2 then ensures that

Var[fn(x)] = �2
n

n∑
k=1

�−2
k �ko(h

4
k)

= o(h4n),

which gives (9).
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4.3. Proof of Proposition 2

Let us first note that, in view of (20), we have

∫
Rd

⎧⎨
⎩�n

n∑
k=1

�−1
k �k[E(Zk(x)) − f (x)]

⎫⎬
⎭

2

dx

= 1
4

∫
Rd

⎡
⎣ d∑

j=1

�2
j f

(2)
jj (x)

⎤
⎦
2

dx

⎡
⎣�n

n∑
k=1

�−1
k �kh

2
k

⎤
⎦
2

+
∫

Rd

⎡
⎣�n

n∑
k=1

�−1
k �kh

2
k	k(x)

⎤
⎦
2

dx

+
⎛
⎝�n

n∑
k=1

�−1
k �kh

2
k

⎞
⎠
⎛
⎝�n

n∑
k=1

�−1
k �kh

2
k

∫
Rd

⎡
⎣ d∑

j=1

�2
j f

(2)
jj (x)

⎤
⎦	k(x) dx

⎞
⎠ .

Since f (2)ij is continuous, bounded, and integrable for all i, j ∈ {1, . . . d}, the application of Lebesgue's convergence theorem ensures

that limk→+∞
∫

Rd 	2
k(x) dx = 0 and limk→+∞

∫
Rd [
∑d

j=1 �2
j f

(2)
jj (x)]	k(x) dx = 0. Moreover, Jensen's inequality gives

∫
Rd

⎡
⎣�n

n∑
k=1

�−1
k �kh

2
k	k(x)

⎤
⎦
2

dx�

⎛
⎝�n

n∑
k=1

�−1
k �kh

2
k

⎞
⎠
⎛
⎝�n

n∑
k=1

�−1
k �kh

2
k

∫
Rd

	2
k(x) dx

⎞
⎠

�

⎛
⎝�n

n∑
k=1

�−1
k �kh

2
k

⎞
⎠
⎛
⎝�n

n∑
k=1

�−1
k �ko(h

2
k)

⎞
⎠ ,

so that we get

∫
Rd

⎧⎨
⎩�n

n∑
k=1

�−1
k �k[E(Zk(x)) − f (x)]

⎫⎬
⎭

2

dx

= 1
4

∫
Rd

⎡
⎣ d∑

j=1

�2
j f

(2)
jj (x)

⎤
⎦
2

dx

⎡
⎣�n

n∑
k=1

�−1
k �kh

2
k

⎤
⎦
2

+ O

⎛
⎝
⎡
⎣�n

n∑
k=1

�−1
k �kh

2
k

⎤
⎦
⎡
⎣�n

n∑
k=1

�−1
k �ko(h

2
k)

⎤
⎦
⎞
⎠ .

• Let us first consider the case a��/(d + 4). In this case, limn→∞ (n�n) >2a, and the application of Lemma 2 gives

∫
Rd

⎧⎨
⎩�n

n∑
k=1

�−1
k �k[E(Zk(x)) − f (x)]

⎫⎬
⎭

2

dx = 1

4(1 − 2a�)2
h4n

∫
Rd

⎡
⎣ d∑

j=1

�2
j f

(2)
jj (x)

⎤
⎦
2

dx + o(h4n),

and ensures that �2
n = o(h4n). In view of (19), we then deduce that

∫
Rd

{E(fn(x)) − f (x)}2 dx = 1

4(1 − 2a�)2
h4n

∫
Rd

⎡
⎣ d∑

j=1

�2
j f

(2)
jj (x)

⎤
⎦
2

dx + o(h4n). (21)

• Let us now consider the case a >�/(d + 4). In this case, we have h2k = o(
√

�kh
−d
k ) and limn→∞ (n�n) > (� − ad)/2. The application

of Lemma 2 then gives

∫
Rd

⎧⎨
⎩�n

n∑
k=1

�−1
k �k[E(Zk(x)) − f (x)]

⎫⎬
⎭

2

dx = O

⎛
⎜⎝
⎡
⎣�n

n∑
k=1

�−1
k �ko(

√
�kh

−d
k )

⎤
⎦
2
⎞
⎟⎠

= o(�nh
−d
n ),

and ensures that �2
n = o(�nh

−d
n ). In view of (19), we then deduce that

∫
Rd

{E(fn(x)) − f (x)}2 dx = o(�nh
−d
n ). (22)
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On the other hand, we note that

∫
Rd

Var[fn(x)] dx = �2
n

n∑
k=1

�−2
k �2k

∫
Rd

Var[Zk(x)] dx

= �2
n

n∑
k=1

�−2
k �2k

[
1

hdk

∫
Rd

∫
Rd

K2(z)f (x − zhk) dzdx −
∫

Rd

(∫
Rd

K(z)f (x − zhk) dz
)2

dx

]

with ∫
Rd

∫
Rd

K2(z)f (x − zhk) dzdx =
∫

Rd
K2(z)
(∫

Rd
f (x − zhk) dx

)
dz

=
∫

Rd
K2(z) dz

and

∫
Rd

(∫
Rd

K(z)f (x − zhk) dz
)2

dx =
∫

R3d
K(z)K(z′)f (x − zhk)f (x − z′hk) dzdz′ dx

� ‖f‖∞‖K‖21.

• In the case a��/(d + 4), we have limn→∞ (n�n) > (� − ad)/2, and Lemma 2 ensures that

∫
Rd

Var[fn(x)] dx = �2
n

n∑
k=1

�−2
k �2k
hdk

[∫
Rd

K2(z) dz + o(1)
]

= �n
hdn

1
(2 − (� − ad)�)

∫
Rd

K2(z) dz + o

(
�n
hdn

)
. (23)

• In the case a <�/(d + 4), we have �nh
−d
n = o(h4n) and limn→∞ (n�n) >2a, so that Lemma 2 gives

∫
Rd

Var[fn(x)] dx = �2
n

n∑
k=1

�−2
k �ko(h

4
k)

= o(h4n). (24)

Part 1 of Proposition 2 follows from the combination of (21) and (24), Part 2 from that of (21) and (23), and Part 3 from that of
(22) and (23).

4.4. Proof of Theorem 1

Let us at first assume that, if a��/(d + 4), then
√

�−1
n hdn(fn(x) − E[fn(x)])

D→N

(
0,

1
2 − (� − ad)�

f (x)
∫

Rd
K2(z) dz

)
. (25)

In the case when a >�/(d + 4), Part 1 of Theorem 1 follows from the combination of (7) and (25). In the case when a = �/(d + 4),
Parts 1 and 2 of Theorem 1 follow from the combination of (6) and (25). In the case a <�/(d + 4), (9) implies that

h−2
n (fn(x) − E(fn(x)))

P→0,

and the application of (6) gives Part 2 of Theorem 1.
We now prove (25). In view of (1), we have

fn(x) − E[fn(x)] = (1 − �n)(fn−1(x) − E[fn−1(x)]) + �n(Zn(x) − E[Zn(x)])

= �n

n∑
k=1

�−1
k �k(Zk(x) − E[Zk(x)]).

Set

Yk(x) = �−1
k �k(Zk(x) − E(Zk(x))). (26)
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The application of Lemma 2 ensures that

v2n =
n∑

k=1

Var(Yk(x))

=
n∑

k=1

�−2
k �2kVar(Zk(x))

=
n∑

k=1

�−2
k �2k
hdk

[
f (x)
∫

Rd
K2(z) dz + o(1)

]

= 1

�2
n

�n
hdn

[
1

2 − (� − ad)�
f (x)
∫

Rd
K2(z) dz + o(1)

]
. (27)

On the other hand, we have, for all p >0,

E[|Zk(x)|2+p] = O

⎛
⎝ 1

hd(1+p)
k

⎞
⎠ , (28)

and, since limn→∞ (n�n) > (� − ad)/2, there exists p >0 such that limn→∞ (n�n) > ((1+p)/(2+p))(� − ad). Applying Lemma 2, we get

n∑
k=1

E[|Yk(x)|2+p] = O

⎛
⎝ n∑

k=1

�−2−p
k �2+p

k E[|Zk(x)|2+p]

⎞
⎠

= O

⎛
⎝ n∑

k=1

�−2−p
k �2+p

k

hd(1+p)
k

⎞
⎠

= O

(
�1+p
n

�2+p
n hd(1+p)

n

)
,

and we thus obtain

1

v2+p
n

n∑
k=1

E[|Yk(x)|2+p] = O([�nh
−d
n ]p/2) = o(1).

The convergence in (25) then follows from the application of Lyapounov's Theorem.

4.5. Proof of Theorem 2

Set

Sn(x) =
n∑

k=1

Yk(x),

where Yk is defined in (26), and set �0 = h0 = 1.

• Let us first consider the case a��/(d + 4) (in which case limn→∞ (n�n) > (� − ad)/2). We set H2
n = �2

n�
−1
n hdn, and note that, since

(�−1
n hdn) ∈ GS(� − ad), we have

ln(H−2
n ) = − 2 ln(�n) + ln

⎛
⎝ n∏

k=1

�−1
k−1h

d
k−1

�−1
k hdk

⎞
⎠

= − 2
n∑

k=1

ln(1 − �k) +
n∑

k=1

ln
(
1 − � − ad

k
+ o
(
1
k

))

=
n∑

k=1

(2�k + o(�k)) −
n∑

k=1

((� − ad)��k + o(�k))

= (2 − �(� − ad))sn + o(sn). (29)
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Since 2− �(� − ad) >0, it follows in particular that limn→+∞ H−2
n = ∞. Moreover, we clearly have limn→+∞ H2

n/H
2
n−1 = 1, and by

(27)

lim
n→+∞H2

n

n∑
k=1

Var[Yk(x)] = 1
2 − (� − ad)�

f (x)
∫

Rd
K2(z) dz.

Now, in view of (28), E[|Yk(x)|3] = O(�−3
k �3kh

−2d
k ) and, since limn→∞ (n�n) > (� − ad)/2, the application of Lemma 2 and of (29)

gives

1
n
√
n

n∑
k=1

E(|HnYk(x)|3) = O

⎛
⎝ H3

n

n
√
n

n∑
k=1

�−3
k �3kh

−2d
k

⎞
⎠

= O

⎛
⎝ H3

n

n
√
n

n∑
k=1

�−3
k �ko([�kh

−d
k ]3/2)

⎞
⎠

= o

(
H3
n

n
√
n
�−3

n [�nh
−d
n ]3/2

)

= o
(

1
n
√
n

)

= o([ln(H−2
n )]−1).

The application of Theorem 1 in Mokkadem and Pelletier (2007b) then ensures that, with probability one, the sequence

⎛
⎝ HnSn(x)√

2 ln ln(H−2
n )

⎞
⎠=
⎛
⎝
√

�−1
n hdn(fn(x) − E(fn(x)))√

2 ln ln(H−2
n )

⎞
⎠

is relatively compact and its limit set is the interval

⎡
⎣−
√

f (x)
2 − (� − ad)�

∫
Rd

K2(z) dz,

√
f (x)

2 − (� − ad)�

∫
Rd

K2(z) dz

⎤
⎦ . (30)

In view of (29), we have limn→∞ ln ln(H−2
n )/ln sn = 1. It follows that, with probability one, the sequence

(
√

�−1
n hdn(fn(x) − E(fn(x)))/

√
2 ln sn)

is relatively compact, and its limit set is the interval given in (30). The application of (6) (respectively (7)) concludes the proof
of Theorem 2 in the case a = �/(d + 4) (respectively, a >�/(d + 4)).

• Let us now consider the case a <�/(d + 4) (in which case limn→∞ (n�n) >2a). Set H
−2
n = �−2

n h4n(ln ln(�−2
n h4n))

−1, and note that,
since (h−4

n ) ∈ GS(4a), we have

ln(�−2
n h4n) = − 2 ln(�n) + ln

⎛
⎝ n∏

k=1

h−4
k−1

h−4
k

⎞
⎠

= − 2
n∑

k=1

ln(1 − �k) +
n∑

k=1

ln
(
1 − 4a

k
+ o
(
1
k

))

=
n∑

k=1

(2�k + o(�k)) −
n∑

k=1

(4a��k + o(�k))

= (2 − 4a�)sn + o(sn). (31)

Since 2 − 4a� >0, it follows in particular that limn→∞ �−2
n h4n = ∞, and thus limn→∞ H−2

n = ∞. Moreover, we clearly have
limn→∞ H2

n/H
2
n−1 = 1. Set � ∈]0,� − (d + 4)a[ such that limn→∞ (n�n) >2a + �/2; in view of (27), and applying Lemma 2,
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we get

H2
n

n∑
k=1

Var[Yk(x)] = O

⎛
⎝�2

nh
−4
n ln ln(�−2

n h4n)
n∑

k=1

�−2
k �2k
hdk

⎞
⎠

= O

⎛
⎝�2

nh
−4
n ln ln(�−2

n h4n)
n∑

k=1

�−2
k �ko(h

4
kk

−�)

⎞
⎠

= o(ln ln(�−2
n h4n)n

−�)

= o(1).

Moreover, applying (28), Lemma 2, and (31), we obtain

1
n
√
n

n∑
k=1

E(|HnYk(x)|3) = O

⎛
⎝�3

nh
−6
n

n
√
n

[ln ln(�−2
n h4n)]

3/2

⎛
⎝ n∑

k=1

�−3
k �3kh

−2d
k

⎞
⎠
⎞
⎠

= O

⎛
⎝�3

nh
−6
n

n
√
n

[ln ln(�−2
n h4n)]

3/2

⎛
⎝ n∑

k=1

�−3
k �ko(h

6
k)

⎞
⎠
⎞
⎠

= o

(
�3

nh
−6
n

n
√
n

�−3
n h6n[ln ln(�−2

n h4n)]
3/2

)

= o([ln(H−2
n )]−1).

The application of Theorem 1 in Mokkadem and Pelletier (2007b) then ensures that, with probability one,

lim
n→∞

HnSn(x)√
2 ln ln(H−2

n )
= lim

n→∞h−2
n

√
ln ln(�−2

n h4n)√
2 ln ln(H−2

n )
(fn(x) − E(fn(x))) = 0.

Noting that (31) ensures that limn→∞ ln ln(H−2
n )/ln ln(�−2

n h4n) = 1, we deduce that

lim
n→∞h−2

n [Tn(x) − E(Tn(x))] = 0 a.s.,

and Theorem 2 in the case a <�/(d + 4) follows from (6).

4.6. Proof of Corollaries 1–4

In view of (8), to minimize the variance of fn, the stepsize (�n) must belong to GS(−1) and satisfy limn→∞ n�n = �0 ∈]0,∞[.
For such a choice, � = �−1

0 , so that (8) can be rewritten as

Var(fn(x)) = �0
2 − (1 − ad)�−1

0

1

nhdn
f (x)
∫

Rd
K2(z) dz + o

(
1

nhdn

)
.

The function �0��0[2 − (1 − ad)�−1
0 ]−1 reaching its minimum at the point �0 = 1 − ad, Corollary 1 follows.

Let us now prove Corollary 4. When limn→∞ n�n = �0 >0 and limn→∞ nhdn = 0, the first part of Theorem 1 ensures that

√
nhdn(fn(x) − f (x)) D→N

(
0,

�20
2�0 − (1 − ad)

f (x)
∫

Rd
K2(z) dz

)
.

Proposition 1 ensuring the consistency of fn, Corollary 4 follows.
We now show how Corollary 2 can be deduced from Proposition 1. Corollary 3 is deduced from Proposition 2 exactly in the

same way, so that its proof is omitted. Set

C1(�) = 1

4(1 − 2a�)2

⎛
⎝ d∑

j=1

�2
j f

(2)
jj (x)

⎞
⎠

2

,

C2(�) = 1
2 − (1 − ad)�

f (x)
∫

Rd
K2(z) dz.
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The application of Proposition 1 ensures that

MSE =

⎧⎪⎨
⎪⎩
C1(�)h4n + o(h4n) if a <�/(d + 4),

C1(�)h4n + C2(�)�nh
−d
n + o(h4n + �nh

−d
n ) if a = �/(d + 4),

C2(�)�nh
−d
n + o(�nh

−d
n ) if a >�/(d + 4).

(32)

Set � ∈]1/2, 1]. If a=�/(d+4), (C1(�)h4n +C2(�)�nh
−d
n ) ∈ GS(−4�/(d+4)). If a <�/(d+4), (h4n) ∈ GS(−4a) with −4a >−4�/(d+4),

and, if a >�/(d + 4), (�nh
−d
n ) ∈ GS(−� + ad) with −� + ad > − 4�/(d + 4). It follows that, for a given �, to minimize the MSE of fn,

the parameter amust be chosen equal to �/(d+4). Moreover, in view of (32), the parameter � must be chosen equal to 1. In other
words, to minimize the MSE of fn, the stepsize (�n) must be chosen in GS(−1), the bandwidth (hn) in GS(−1/(d + 4)) (and, in
view of (A2)(iii), the condition limn→∞ n�n >2/(d + 4) must be fulfilled). For this choice of stepsize and bandwidth, setLn = n�n
and L̃n = n1/(d+4)hn. The MSE of fn can then be rewritten as

MSE = n−4/(d+4)[C1(�)L̃
4
n + C2(�)LnL̃

−d
n ][1 + o(1)].

Now, setLn. Since the function

x�C1(�)x4 + C2(�)Lnx−d

reaches itsminimumat thepoint (dC2(�)Ln/[4C1(�)])
1/(d+4), tominimize theMSEof fn,L̃nmustbechosenequal to (dC2(�)Ln/[4C1(�)])

1/(d+4

that is, (hn) must equal (dC2(�)/[4C1(�)]�n)
1/(d+4). For such a choice, the MSE of fn can be rewritten as

MSE = n−4/(d+4)L4/(d+4)
n

(
d
4

)−d/(d+4) d + 4
4

[C1(�)]
d/(d+4)[C2(�)]

4/(d+4)[1 + o(1)].

It follows that to minimize the MSE of fn, the limit of Ln (that is, of n�n) must be finite (and larger than 2/(d + 4)). Now, set
�0 >2/(d + 4) andLn = �0	n with limn→∞ 	n = 1 (so that limn→∞ n�n = �0). In this case, we have � = �−1

0 ,

C1(�) = �20

4
(
�0 − 2

d + 4

)2 c1, c1 =
⎛
⎝ d∑

j=1

�2
j f

(2)
jj (x)

⎞
⎠

2

,

C2(�) = �0

2
(
�0 − 2

d + 4

) c2, c2 = f (x)
∫

Rd
K2(z) dz,

`

and the MSE of fn can be rewritten as

MSE = n−4/(d+4)	4/(d+4)
n

d + 4
dd/(d+4)4(d+6)/(d+4)

�20(
�0 − 2

d + 4

)(2d+4)/(d+4)
cd/(d+4)
1 c4/(d+4)

2 [1 + o(1)].

The function x�x2/(x−2/(d+4))(2d+4)/(d+4) reaching its minimum at the point x=1, tominimize theMSE of fn, �0 must be chosen
equal to 1. Corollary 2 follows.

Acknowledgements

We are grateful to two referees and an Associate Editor for their helpful comments, which have led to this substantially
improved version of the paper.

References

Arcones, M.A., 1997. The law of the iterated logarithm for a triangular array of empirical processes. Electron. J. Probab. 2, 1–39.
Blum, J.R., 1954. Multidimensional stochastic approximation methods. Ann. Math. Statist. 25, 737–744.
Bojanic, R., Seneta, E., 1973. A unified theory of regularly varying sequences. Math. Z. 134, 91–106.
Chen, H., 1988. Lower rate of convergence for locating a maximum of a function. Ann. Statist. 16, 1330–1334.
Chen, H.F., Duncan, T.E., Pasik-Duncan, B., 1999. A Kiefer–Wolfowitz algorithm with randomized differences. IEEE Trans. Automat. Control 44, 442–453.
Davies, H.L., 1973. Strong consistency of a sequential estimator of a probability density function. Bull. Math. Statist. 15, 49–54.
Deheuvels, P., 1973. Sur l'estimation séquentielle de la densité. C.R. Acad. Sci. Paris Ser. A-B 276, 1119–1121.



Author's personal copy

2478 A. Mokkadem et al. / Journal of Statistical Planning and Inference 139 (2009) 2459 -- 2478

Devroye, L., 1979. On the pointwise and integral convergence of recursive kernel estimates of probability densities. Utilitas Math. 15, 113–128.
Dippon, J., 2003. Accelerated randomized stochastic optimization. Ann. Statist. 31, 1260–1281.
Dippon, J., Renz, J., 1997. Weighted means in stochastic approximation of minima. SIAM J. Control Optim. 35, 1811–1827.
Duflo, M., 1996. Algorithmes stochastiques. Collection Applications of Mathematics. Springer, Berlin.
Duflo, M., 1997. Random iterative models. Collection Applications of Mathematics. Springer, Berlin.
Fabian, V., 1967. Stochastic approximation of minima with improved asymptotic speed. Ann. Math. Statist. 38, 191–200.
Galambos, J., Seneta, E., 1973. Regularly varying sequences. Proc. Amer. Math. Soc. 41, 110–116.
Hall, P., 1981. Laws of the iterated logarithm for nonparametric density estimators. Z. Warsch. Verw. Gebiete 56, 47–61.
Hall, P., 1992. Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density. Ann. Statist. 20, 675–694.
Hall, P., Heyde, C.C., 1980. Martingale Limit Theory and its Application. Academic Press, Inc., New York, London.
Hall, P., Patil, P., 1994. On the efficiency of on-line density estimators. IEEE Trans. Inform. Theory 40, 1504–1512.
Kiefer, J., Wolfowitz, J., 1952. Stochastic approximation of the maximum of a regression functions. Ann. Math. Statist. 23, 462–466.
Kushner, H.J., Clark, D.S., 1978. Stochastic Approximation Methods for Constrained and Unconstrained Systems. Springer, New York.
Mokkadem, A., Pelletier, M., 2007a. A companion for the Kiefer–Wolfowitz–Blum stochastic approximation algorithm. Ann. Statist. 35 (4), 1749–1772.
Mokkadem, A., Pelletier, M., 2007b. Compact law of the iterated logarithm for matrix-normalized sums of random vectors. Teor. Veroyatn. Primen. 52.
Parzen, E., 1962. On estimation of a probability density and mode. Ann. Math. Statist. 33, 1065–1076.
Polyak, B.T., Tsybakov, A.B., 1990. Optimal orders of accuracy for search algorithms of stochastic optimization. Problems Inform. Transmission 26, 126–133.
Révész, P., 1973. Robbins–Monro procedure in a Hilbert space and its application in the theory of learning processes I. Studia Sci. Math. Hung. 8, 391–398.
Révész, P., 1977. How to apply themethod of stochastic approximation in the non-parametric estimation of a regression function. Math. Operationsforsch. Statist.

Ser. Statist. 8, 119–126.
Rosenblatt, M., 1956. Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27, 832–837.
Roussas, G., 1992. Exact rates of almost sure convergence of a recursive kernel estimate of a probability density function: application to regression and hazard

rate estimate. J. Nonparam. Statist. 3, 171–195.
Ruppert, D., 1982. Almost sure approximations to the Robbins–Monro and Kiefer–Wolfowitz processes with dependent noise. Ann. Probab. 10, 178–187.
Spall, J.C., 1988. A stochastic approximation algorithm for large-dimensional systems in the Kiefer–Wolfowitz setting. In: Proceedings of the Conference on

Decision and Control. IEEE, New York, pp. 1544–1548.
Spall, J.C., 1997. A one-measurement form of simultaneous perturbation stochastic approximation. Automat. J. IFAC 33, 109–112.
Tsybakov, A.B., 1990. Recurrent estimation of the mode of a multidimensional distribution. Problems Inform. Transmission 26, 31–37.
Wegman, E.J., Davies, H.I., 1979. Remarks on some recursive estimators of a probability density. Ann. Statist. 7, 316–327.
Wolverton, C.T., Wagner, T.J., 1969. Asymptotically optimal discriminant functions for pattern classification. IEEE Trans. Inform. Theory 15, 258–265.
Yamato, H., 1971. Sequential estimation of a continuous probability density function and mode. Bull. Math. Statist. 14, 1–12.


