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In this paper, we consider the alleviation of the boundary problem when the probability density function has bounded support. We apply Robbins-Monro's algorithm and Bernstein polynomials to construct a recursive density estimator. We study the asymptotic properties of the proposed recursive estimator. We then compare our proposed recursive estimator with many others estimators. Finally, we confirm our theoretical result through a simulation study and then using two real datasets.

INTRODUCTION

There has been a considerable development of methods for smooth estimation of density and distribution functions, following the introduction of several kernel smoothing by Rosenblatt [START_REF] Rosenblatt | Remarks on some nonparametric estimates of density functions[END_REF] and the further advances made on kernel method by Parzen [START_REF] Parzen | On estimation of probability density and mode[END_REF]. We advise the reader to see the paper of Härdle [START_REF] Härdle | Smoothing techniques with implementation in S[END_REF] for an introduction of several kernel smoothing techniques. However, these methods have difficulties at and near boundaries when curve estimation is attempted over a region with boundaries. Moreover, it is well known in nonparametric kernel density estimation that the bias of the standard kernel density estimator

f (x) = 1 nh n n i=1 K x -X i h n
is of a larger order near the boundary than that in the interior, where, K is a kernel (that is, a function satisfying R K (x) dx = 1), and (h n ) is a bandwidth (that is, a sequence of positive real numbers that goes to zero). We suppose for simplicity that there is a single known boundary to the support of the density function f which we might as well take to be at the origin, then we are dealing with positive data. For convenience, we consider a symmetric kernel (for instance, normal kernels). Away from the boundary, which means that at any x > h n , the usual asymptotic mean and variance expressions are applied. Let us now suppose that f has two continuous derivatives everywhere, and that as n → ∞, h = h n → 0 and nh → 0. Then,

E f (x) f (x) + 1 2 h 2 f (x) x 2 K(x)dx,
and

V ar f (x) (nh) -1 f (x) K 2 (x)dx.
Near the boundary, the expression of the mean and the variance are different. Let x = ph, we have

E f (x) f (x) p -∞ K(x)dx -f (x) p -∞ xK(x)dx + 1 2 h 2 f (x) p -∞
x 2 K(x)dx, and

V ar f (x) (nh) -1 f (x) p -∞ K 2 (x)dx.
These bias phenomena are called boundary bias. Many authors have suggested methods for reducing this phenomena such as data reflection (Schuster [START_REF] Schuster | Incorporating support constraints into nonparametric estimators of densities[END_REF]), boundary kernels (Müller [START_REF] Müller | Smooth optimum kernel estimators near endpoints[END_REF][START_REF] Müller | On the boundary kernel method for nonparametric curve estimation near endpoints[END_REF] and Müller and Wand [START_REF] Müller | Hazard rate estimation under random censoring with varying kernels and bandwidths[END_REF]), the local linear estimator (Lejeune and Sarda [START_REF] Lejeune | Smooth estimators of distribution and density functions[END_REF] and Jones [START_REF] Jones | Simple boundary correction for density estimation kernel[END_REF]), the use of beta and gamma kernels (Chen [START_REF] Chen | Beta kernel estimators for density functions[END_REF][START_REF] Chen | Probability density function estimation using gamma kernels[END_REF]). For a smooth estimate of a density function with finite known support, Vitale's method (Vitale [START_REF] Vitale | A bernstein polynomial approach to density function estimation[END_REF]) based on the Bernstein polynomials, illustrated below, also has been investigated in the literature (Ghosal [6], Babu et al. [START_REF] Babu | Application of Bernstein polynomials for smooth estimation of a distribution and density function[END_REF], Kakizawa [START_REF] Kakizawa | Bernstein polynomial probability density estimation[END_REF], Rao [START_REF] Rao | Estimation of distribution and density functions by generalized Bernstein polynomials[END_REF]) and more recently by Leblanc [START_REF] Leblanc | A bias-reduced approach to density estimation using Bernstein polynomials[END_REF] and Igarashi and Kakizawa [START_REF] Igarashi | On improving convergence rate of Bernstein polynomial density estimator[END_REF]). The idea comes from the Weierstrass's approximation theorem that for any continuous function u on the interval [0, 1], we have

m k=0 u k m b k (m, x) → u(x), uniformly in x ∈ [0, 1],
where b k (m, x) = m k x k (1x) m-k is the Bernstein polynomial of order m.

In the context of distribution function F with support [0, 1], Vitale [START_REF] Vitale | A bernstein polynomial approach to density function estimation[END_REF] proposed an estimator

F n (x) = m k=0 F n k m b k (m, x),
where F n is the empirical distribution based on a random sample X 1 , X 2 , . . . , X n . Hence, an estimator for the density f is given by

f n (x) = d dx F n (x) = m m-1 k=0 F n k + 1 m -F n k m b k (m -1, x). ( 1 
)
In this paper, we propose a recursive method to estimate the unknown density function f . The advantage of recursive estimators is that their update from a sample of size n to one of size n + 1, requires considerably less computations. This property is particularly important, since the number of points at which the function is estimated is usually very large.

Let X 1 , X 2 , . . . , X n be a sequence of i.i.d random variables having a common unknown distribution F with associated density f supported on [0, 1]. In order to construct a recursive method to estimate the unknown density f , we first follow Leblanc [START_REF] Leblanc | A bias-reduced approach to density estimation using Bernstein polynomials[END_REF] and we introduce T n,m as follows:

T n,m (x) = m m-1 k=0 I {Xn≤ k+1 m } -I {Xn≤ k m } b k (m -1, x) = m m-1 k=0 I k m < X n ≤ k + 1 m b k (m -1, x)
= mb kn (m -1, x).

Here, we let k n = [mX n ], where [x] denotes the largest integer smaller than x. Then, we use Robbins-Monro's scheme (Robbins and Monro [23]), and we set f 0 (x) ∈ R and for all n ∈ N * , we set

f n (x) = (1 -γ n )f n-1 (x) + γ n Z n (x) , (2) 
where (γ n ) is a sequence of real numbers, called a stepsize and Z n (x) = 2T n,m (x) -T n,m/2 (x). Then for simplicity, we suppose that f 0 (x) = 0 and Π n = n j=1 (1γ j ). Then, it follows from [START_REF] Bojanic | A unified theory of regularly varying sequences[END_REF], that one can estimate f recursively at the point x by

f n (x) = Π n n k=1 Π -1 k γ k Z k (x). (3) 
Our first aim in this paper is to compute the bias, the variance, the mean squared error (MSE) and the mean inte-grated squared error (MISE) of our proposed recursive estimators. It turns out that they heavily depend on the choice of the stepsize (γ n ). Moreover, we give the optimal order (m n ) which minimizes the MSE and the MISE of the proposed recursive estimators. Further, we show that using the stepsize (γ n ) = (n -1 ) and the optimal order (m n ), the proposed estimator f n can dominate Vitale's estimator f n in terms of MISE. Finally, we confirm our theoretical results from a simulation study.

The remainder of this paper is organized as follows. In Section 2, we list our notations and assumptions. In Section 3, we state the main theoretical results regarding bias, variance, MSE and MISE. Section 4 is devoted to some numerical studies: first by simulation (Subsection 4.1) and second using some real datasets (Subsection 4.2). We conclude the paper in Section 5. Appendix A gives the proof of our theoretical results.

ASSUMPTIONS AND NOTATIONS

Definition 2.1. Let γ ∈ R and (v n ) n≥1 be a nonrandom positive sequence. We say that (v n ) ∈ GS(γ) if lim n→+∞ n 1 - v n-1 v n = γ.
This condition was introduced by Galambos and Seneta [START_REF] Galambos | Regularly varying sequences[END_REF] to define regularly varying sequences (see also Bojanic and Seneta [START_REF] Bojanic | A unified theory of regularly varying sequences[END_REF]). Typical sequences in GS(γ) are, for b ∈ R, n γ (log n) b , n γ (log log n) b , and so on.

To study the estimator (3), we make the following assumptions:

(A1) f admits a continuous fourth-order derivative f (4) 

on [0, 1]. (A2) (γ n ) ∈ GS (-α), α ∈ ( 1 2 , 1]. (A3) (m n ) ∈ GS(a), a ∈ (0, 1). (A4) lim n→∞ (nγ n ) ∈ (min (2a, (2α -a)/4) , ∞).
• Assumption (A1) is standard in the framework of nonparametric estimation of probability density using Bernstein polynomials (see Leblanc [START_REF] Leblanc | A bias-reduced approach to density estimation using Bernstein polynomials[END_REF]). • Assumption (A2) on the stepsize is usual in the framework of the recursive estimation for density estimation (see Mokkadem et al. [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF] and Slaoui [START_REF] Slaoui | Large and moderate deviation principles for recursive kernel density estimators defined by stochastic approximation method[END_REF][START_REF] Slaoui | Bandwidth selection for recursive kernel density estimators defined by stochastic approximation method[END_REF][START_REF] Slaoui | The stochastic approximation method for the estimation of a distribution function[END_REF]). This assumption ensures that n≥1 γ n = ∞ and n≥1 γ 2 n < ∞, which are two classical assumptions for obtaining the convergence of Robbins-Monro's algorithm (see Duflo [START_REF] Duflo | Random iterative models[END_REF]).

• Assumption (A3) on (m n ) was introduced similarly to the assumption on the bandwidth used for the recursive kernel distribution estimator (see Slaoui [START_REF] Slaoui | Bandwidth selection for recursive kernel density estimators defined by stochastic approximation method[END_REF][START_REF] Slaoui | The stochastic approximation method for the estimation of a distribution function[END_REF]) to ensure the application of the technical lemma given in the appendix A.

• Assumption (A4) on the limit of (nγ n ) as n goes to infinity is usual in the framework of stochastic approximation algorithms. This condition ensures the application of the technical lemma given in the appendix A to obtain the asymptotic bias and variance respectively.

Remark 2.1. The intuition behind the use of such order (m n ) belonging to GS (a) is that the ratio m n-1 /m n is equal to 1a/n + o (1/n), then using such order and using the assumption on the stepsize, which ensures that γ n-1 /γ n is equal to 1 + α/n + o (1/n), the application of the technical lemma given in the appendix A ensures that the bias and the variance will depend only on m n and γ n and not on m 1 , . . . , m n and γ 1 , . . . , γ n , then the MISE will depend also only on m n and γ n , which will be helpful to deduce an optimal order and an optimal stepsize.

Throughout this paper we will use the following notations:

Δ 1 (x) = 1 2 [(1 -2x)f (x) + x(1 -x)f (x)] , ψ(x) = (4πx(1 -x)) -1/2 , ξ = lim n→∞ (nγ n ) -1 , Δ 2 (x) = 1 6 (1 -6x(1 -x))f (2) (x) + 5 12 x(1 -x)(1 -2x)f (3) (x) + 1 8 x 2 (1 -x) 2 f (4) (x), C 1 = 1 0 f (x)ψ(x)(x)dx, C 2 = 1 0 Δ 2 2 (x)dx, C 3 = 1 √ 2 + 4 1 - 2 3 , C 4 = 1 0 Δ 2 1 (x)dx, C 5 = 1 0 - Δ 2 1 (x) 2f (x) + Δ 2 (x) 2 dx, C 6 = 1 0 - Δ 2 1 (x) 2f (x) + Δ 2 (x) + f (x) 1 0 Δ 2 1 (y) 2f (y) dy 2 dx.

MAIN RESULTS

In this section we start by developing the bias, the variance and the MSE of the proposed recursive estimators using Bernstein estimator first in the boundary region and then at the edges.

Within the interval [0, 1]

The following proposition gives the bias, variance, and MSE of the proposed recursive estimator f n (x) for x ∈ (0, 1). Proposition 3.1. Let Assumptions (A1) -(A4) hold. For x ∈ (0, 1), we have 

1. If a ∈ 0, 2 9 α , then Bias [f n (x)] = -m -2 n 2 1 -2aξ Δ 2 (x) + o m -2 n . (4) If a ∈ 2 9 α, 1 , then Bias [f n (x)] = o γ n m 1/2 n . (5) 2. If a ∈ 2 9 α, 1 , then V ar[f n (x)] = C 3 γ n m 1/2 n 2 4 -(2α -a)ξ f (x)ψ(x) +o γ n m 1/2 n . (6) If a ∈ 0, 2 9 α , then V ar[f n (x)] = o m -4 n . (7) 3. If lim n→∞ (nγ n ) > max (2a, (2α -a)/4),
MSE [f n (x)] = Δ 2 2 (x)m -4 n 4 (1 -2aξ) 2 + o m -4 n . If a = 2 9 α, then MSE [f n (x)] = Δ 2 2 (x)m -4 n 4 (1 -2aξ) 2 +C 3 f (x)ψ(x)γ n m 1/2 n 2 4 -(2α -a)ξ +o m -4 n + γ n m 1/2 n . ( 8 
)
If a ∈ 2 9 α, 1 , then MSE [f n (x)] = C 3 f (x)ψ(x)γ n m 1/2 n 2 4 -(2α -a)ξ +o γ n m 1/2 n .
In order to choose the optimal order (m n ), we choose (m n ) such that

m n = arg min mn MSE [f n (x)] , for x ∈ (0, 1).
Then, it follows from [START_REF] Galambos | Regularly varying sequences[END_REF], that (m n ) must be equal to

2 2/9 1 - 4 9 ξ -2/9 32Δ 2 2 (x) C 3 f (x)ψ(x) 2/9 γ -2/9
n , and then the corresponding MSE is equal to n .

MSE [f n (x)] = 9(32C 8 3 ) 1/9 8 (Δ 2 (x)) 2/9 (f (x)ψ(x)) 8/9
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Moreover, since the optimal stepsize should be obtained by minimizing the MSE of our proposed estimators f n (x), then (γ n ) must be chosen in GS (-1). By considering the case when (γ n ) = γ 0 n -1 , we obtain

(m n ) = 2 2/9 (γ 0 -4/9) -2/9 32Δ 2 2 (x) C 3 f (x)ψ(x) 2/9 n 2/9 ,
and the corresponding MSE is equal to

MSE [f n (x)] = 9(32C 8 3 ) 1/9 (Δ 2 (x)) 2/9 (f (x)ψ(x)) 8/9 8 × γ 2 0 2 8/9 (γ 0 -4/9) 10/9 n -8/9
+o n -8/9 .

The edges of the interval [0, 1]

For the cases x ∈ {0, 1}, we need the following additional assumption:

(A 4) lim n→∞ (nγ n ) ∈ (min (2a, (α -a)/2) , ∞).
The following proposition gives bias, variance and MSE of f n (x), for x ∈ {0, 1}. Proposition 3.2. Let Assumptions (A1) -(A3) and (A 4) hold, for x ∈ {0, 1}, we have [START_REF] Härdle | Smoothing techniques with implementation in S[END_REF] and [START_REF] Igarashi | On improving convergence rate of Bernstein polynomial density estimator[END_REF] hold simultaneously. 4. If a ∈ 0, α 5 , then

1. If a ∈ 0, α 5 , then (9) Bias [f n (x)] = -m -2 n 2 1 -2aξ Δ 2 (x) + o m -2 n . If a ∈ α 5 , 1 , then (10) Bias [f n (x)] = o ( √ γ n m n ) . 2. If a ∈ α 5 , 1 , then V ar[f n (x)] = 5 2 γ n m n 1 2 -(α -a)ξ f (x) + o (γ n m n ) . ( 11 
)
If a ∈ 0, α 5 , then (12) V ar[f n (x)] = o m -4 n . 3. If lim n→∞ (nγ n ) > max (2a, (α -a)/2), that implies lim n→∞ (nγ n ) > 2a and lim n→∞ (nγ n ) > (α -a)/2 then 1 -2aξ > 0 and 2 -(α -a)ξ > 0, then,
MSE [f n (x)] = Δ 2 2 (x)m -4 n 4 (1 -2aξ) 2 + o m -4 n . If a = α 5 , then MSE [f n (x)] = Δ 2 2 (x)m -4 n 4 (1 -2aξ) 2 + 5 2 f (x)γ n m n 1 2 -(α -a)ξ +o m -4 n + γ n m n . (13) If a ∈ α 5 , 1 , then MSE [f n (x)] = 5 2 f (x)γ n m n 1 2 -(α -a)ξ +o (γ n m n ) .
In order to choose the optimal order (m n ), we choose (m n ) such that

m n = arg min mn MSE [f n (x)] , for x = 0, 1
Then, it follows from [START_REF] Kakizawa | Bernstein polynomial probability density estimation[END_REF], that (m n ) must be equal to

2 1/5 1 - 2 5 ξ -1/5 32Δ 2 2 (x) 5f (x) 1/5 γ -1/5 n ,
and then the corresponding MSE is equal to

MSE [f n (x)] = 5 8/5 32 1/5 8 (Δ 2 (x)) 2/5 (f (x)) 4/5 2 4/5 1 -2 5 ξ 6/5 γ 4/5 n +o γ 4/5 n .
Moreover, since the optimal stepsize should be obtained by minimizing the MSE of our proposed estimators f n (x), then (γ n ) must be chosen in GS (-1). By considering the case when (γ n ) = γ 0 n -1 , we obtain

2 1/5 (γ 0 -2/5) -1/5 32Δ 2 2 (x) 5f (x) 1/5 n 1/5 ,
and then the corresponding MSE is equal to

MSE [f n (x)] = 5 8/5 32 1/5 (Δ 2 (x)) 2/5 (f (x)) 4/5 8 γ 2 0 2 4/5 (γ 0 -2/5) 6/5 n -4/5 + o n -4/5 .
In the next subsection we give the MISE of the proposed recursive estimator f n introduced in (2) for x ∈ (0, 1).

M ISE of the recursive estimator f n

The following proposition gives the MISE of the proposed recursive estimator f n .

Proposition 3.3. Let Assumptions (A1) -(A4) hold. We have 1. If a ∈ 0, 2 9 α , then MISE [f n ] = C 2 m -4 n 4 (1 -2aξ) 2 + o m -4 n . 2. If a = 2 9 α, then MISE [f n ] = C 2 m -4 n 4 (1 -2aξ) 2 +C 1 C 3 γ n m 1/2 n 2 4 -(2α -a)ξ +o m -4 n + γ n m 1/2 n . 3. If a ∈ 2 9 α, 1 , then MISE [f n ] = C 1 C 3 γ n m 1/2 n 2 4 -(2α -a)ξ +o γ n m 1/2 n .
The following result is a consequence of the previous proposition which gives the optimal order (m n ) of the estimator (3) and the corresponding MISE.

Corollary 3.1. Let Assumptions (A1)-(A4) hold. To min- imize the MISE of f n , the stepsize (γ n ) must be chosen in GS(-1) and (m n ) must be in GS(2/9) such that 2 2/9 1 - 4 9 ξ -2/9 32C 2 C 1 C 3 2/9 γ -2/9
n , and then the corresponding MISE is equal to n .

MISE [f n ] = 9(32C 8 1 C 8 3 C 2 ) 1/
Moreover, in the case when (γ n ) = γ 0 n -1 , the optimal order (m n ) must be equal to

2 2/9 (γ 0 -4/9) -2/9 32C 2 C 1 C 3 2/9 n 2/9 , ( 14 
)
and the corresponding MISE is given by

MISE [f n ] = 9 8C 8 1 C 8 3 C 2 1/9 8 γ 2 0 2 6/9 (γ 0 -4/9) 10/9 n -8/9
+o n -8/9 . (15) Remark 3.1. The minimum of γ 2 0 (γ0-4/9) 10/9 is reached for γ 0 = 1. Moreover, to minimize the variance of f n , we should choose γ 0 = 1 -a 2 , with a = 2/9 for x ∈ (0, 1) and γ 0 = 1a with a = 1/5 for x ∈ {0, 1}. Therefore, in the application section, we will consider the following stepsizes

(γ n ) = (n -1 ), (γ n ) = 8 9 n -1 and (γ n ) = 4 5 n -1 .
Let us now state the following theorem, which gives the weak convergence rate of the estimator f n defined in (3). Theorem 3.1 (Weak pointwise convergence rate). Let Assumption (A1) -(A4) hold. For x ∈ (0, 1), we have

1. If γ -1/2 n m -9/4 n → c for some constant c ≥ 0, then γ -1/2 n m -1/4 n (f n (x) -f (x)) D → N - 2c 1 -2aξ Δ 2 (x), 2 4 -(2α -a)ξ C 3 f (x)ψ(x) . 2. If γ -1/2 n m -9/4 n → ∞, then m -2 n (f n (x) -f (x)) P → - 2 1 -2aξ Δ 2 (x),
where D → denotes the convergence in distribution, N the Gaussian-distribution and P → the convergence in probability.

Remark 3.2. When the bandwidth

(h n ) is chosen such that lim n→∞ γ -1/2 n m -9/4 n
= 0 and the stepsize such that lim n→∞ nγ n = γ 0 , the proposed recursive estimators fulfills the following central limit theorem

n 1/2 m -1/4 n (f n (x) -f (x)) D → N 0, γ 2 0 2γ 0 -8/9 C 3 f (x)ψ(x) .

Results on some classical Bernstein density estimator

In the next paragraph, we recall some results on Vitale's Bernstein density estimator f n given in (1).

Vitale's Bernstein density estimator f n

Under some classical assumption on the density, such as f is continuous and admits two continuous and bounded derivatives, for x ∈ [0, 1], we have

Bias f n (x) = Δ 1 (x) m + o m -1 , uniformly in x ∈ [0, 1]. V ar[ f n (x)] = ⎧ ⎨ ⎩ m 1/2 n f (x)ψ(x) + o x m 1/2 n for x ∈ (0, 1), m n f (x) + o x m n for x = 0, 1.
Moreover, we have

MISE f n = m 1/2 C 1 n + C 4 m 2 + o m 1/2 n -1 + o m -2 .
To minimize the MISE of f n , the order (m n ) must equal to

4C 4 C 1 2/5 n 2/5 , ( 16 
)
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MISE MISE f n = 5 C 4 1 C 4 1/5 4 n -4/5 + o n -4/5 . Remark 3.3. If we let h = m -1 be the bandwidth of the Vi- tale's estimator f n , it is clear that the bias of f n is O h -1
which is larger than the classical kernel density estimators which is O(h 2 ) except near the boundaries. To reduce this bias, Leblanc [START_REF] Leblanc | A bias-reduced approach to density estimation using Bernstein polynomials[END_REF] suggest a new Bernstein estimator using the method of bias correction. This methodology was used first by Politis and Romano [START_REF] Politis | Bias-corrected nonparametric spectral estimation[END_REF] in the context of spectral density estimation and is linked with the work of Schucany, Gray and Owen [START_REF] Schucany | On bias reduction in estimation[END_REF] and Schucany and Sommers [START_REF] Schucany | Improvement of kernel type density estimators[END_REF] on bias reduction in estimation.

Bias correction for Bernstein density f n,m,m/2

The bias correction for Bernstein density proposed by Leblanc Leblanc [START_REF] Leblanc | A bias-reduced approach to density estimation using Bernstein polynomials[END_REF] is defined by

f n,m,m/2 (x) = 2 f n,m (x) -f n,m/2 (x), x ∈ [0, 1] (17)
where f n,m and f n,m/2 are the Bernstein density estimators introduced by Vitale with order m and m/2 respectively which defined in [START_REF] Babu | Application of Bernstein polynomials for smooth estimation of a distribution and density function[END_REF]. Let us now recall the characteristics of the estimator f n,m,m/2 . Under the Assumption (A1), we have uniformly in, x ∈ [0, 1]

Bias[ f n,m,m/2 (x)] = -2 Δ 2 (x) m 2 + o m -2 .
For x ∈ (0, 1), we have

V ar[ f n,m,m/2 (x)] = C 3 m 1/2 n f (x)ψ(x) + o x m 1/2 n .
For x ∈ {0, 1}, we have

V ar[ f n,m,m/2 (x)] = 5 2 m n f (x) + o x m n and then MISE f n,m,m/2 = C 1 C 3 m 1/2 n + 4C 2 m 4 +o m 1/2 n -1 + m -4 .
To minimize the MISE of f n,m,m/2 , the order (m n ) must equal to

32C 2 C 1 C 3 2/9 n 2/9 , ( 18 
)
and then the corresponding

MISE MISE f n,m,m/2 = 9 32C 8 1 C 2 C 8 3 1/9 8 n -8/9 + o n -8/9 .
Igarashi and Kakizawa [START_REF] Igarashi | On improving convergence rate of Bernstein polynomial density estimator[END_REF] have generalized the estimator proposed by Leblanc f n,m,m/2 and defined in ( 17)

f n,m,m/b (x) = b b -1 f n,m (x) - 1 b -1 f n,m/b (x), x ∈ [0, 1] (19)
where b = 2, 3, . . . and f n,m and f n,m/b are the Vitale's density estimators defined in [START_REF] Babu | Application of Bernstein polynomials for smooth estimation of a distribution and density function[END_REF] with order m and m/b respectively. Under the Assumption (A1), we have uniformly in, x ∈ [0, 1].

Bias[ f n,m,m/b (x)] -f (x) = - b m 2 Δ 2 (x) + o m -2 ,
For x ∈ (0, 1), we have

V ar[ f n,m,m/b (x)] = λ 1 (b) m 1/2 n f (x)ψ(x) + o x m 1/2 n .
For x ∈ {0, 1}, we have

V ar[ f n,m,m/b (x)] = λ 2 (b) m n f (x) + o x m n . λ 1 (b) = 1 (1 -b) 2 b 2 + b -1/2 -2b 2 b + 1 1/2 , λ 2 (b) = 1 (1 -b) 2 b 2 + b -1 -2 .

Moreover, we have

MISE f n,m,m/b = λ 1 (b)C 1 m 1/2 n + b 2 C 2 m 4 +o m 1/2 n -1 + m -4 .
To minimize the MISE of f n,m,m/b , the order (m n ) must equal to [START_REF] Parzen | On estimation of probability density and mode[END_REF] and then the corresponding

b 2 λ 1 (b) 8C 2 C 1 2/9 n 2/9 ,
MISE MISE f n,m,m/b = bλ 4 1 (b) 2/9 9 8C 8 1 C 2 1/9 8 n -8/9
+o n -8/9 . (21) Remark 3.4. The equation [START_REF] Politis | Bias-corrected nonparametric spectral estimation[END_REF] indicates that the choice b = 2 is the best choice in terms of the MISE for the estimator f n,m,m/b , since the factor bλ 4 1 (b) 2/9 is increasing in b = 2, 3, . . .. This method of bias correction reduces the bias of Bernstein estimator from O(m -1 ) to O(m -2 ), but it loses the non-negativity. As an additive bias correction to the logarithm of estimator, Terrell and Scott [START_REF] Terrell | On improving convergence rates for nonnegative kernel density estimators[END_REF] originally developed a multiplicative bias correction that enables keeping the non-negativity. This method was adopted by Hirukawa [START_REF] Hirukawa | Nonparametric multiplicative bias correction for kernel-type density estimation on the unit Interval[END_REF] for the beta kernel estimator introduced by Chen [START_REF] Chen | Beta kernel estimators for density functions[END_REF].

Multiplicative bias-correction Bernstein density estimator f n,m,b,ε

This estimator was considered by Igarashi and Kakizawa [START_REF] Igarashi | On improving convergence rate of Bernstein polynomial density estimator[END_REF] by applying a multiplicative bias correction method to the Bernstein estimator, for x ∈ [0, 1]

f n,m,b,ε (x) = f b n,m (x) f n,m/b (x) + ε 1/(b-1)
, [START_REF] Rao | Estimation of distribution and density functions by generalized Bernstein polynomials[END_REF] for some ε = ε(m) > 0, converting to zero at a suitable rate. Under the Assumption (A1), for x ∈ [0, 1] such as f (x) > 0, with m = O (n η ) and ε ≈ m τ where η ∈ (0, 1) and τ > 2 we have

E[ f n,m,b,ε (x)] -f (x) = - b m 2 - Δ 2 1 (x) 2f (x) + Δ 2 (x) +O V ar[ f n,m (x)] + V ar[ f n,m/b (x)] + o m -2 ,
and

V ar[ f n,m,b,ε (x)] = V ar[ f n,m,m/b (x)] +o V ar[ f n,m (x)] + V ar[ f n,m/b (x)] + m -4 .
Moreover, we have

MISE f n,m,b,ε = λ 1 (b)C 1 m 1/2 n + b 2 C 5 m 4 +o m 1/2 n + m -4 .
To minimize the MISE of f n,m,b,ε , the order (m n ) must equal to

b 2 λ 1 (b) 8C 5 C 1 2/9 n 2/9 , ( 23 
)
and the corresponding MISE is equal to

MISE f n,m,b,ε = bλ 4 1 (b) 2/9 9 8C 8 1 C 5 1/9 8 n -8/9
+o n -8/9 .

Remark 3.5. Note that the estimator f n,m,b,ε retains nonnegativity, but it is not a genuine density. In fact, f n,m,b,ε

does not generally integrate to unity. To solve this problem, Igarashi and Kakizawa [START_REF] Igarashi | On improving convergence rate of Bernstein polynomial density estimator[END_REF] proposed the normalized biascorrected Bernstein estimator.

Normalized bias-corrected Bernstein estimator f N n,m,b,ε

The normalized bias-corrected Bernstein estimator is given by:

f N n,m,b,ε (x) = f n,m,b,ε (x) 1 0 f n,m,b,ε (y)dy , x ∈ [0, 1]. ( 24 
)
Under the Assumption (A1), for x ∈ [0, 1] such as f (x) > 0, with m = O (n η ) and ε ≈ m τ where η ∈ (0, 1) and τ > 2 we have

E[ f N n,m,b,ε (x)] -f (x) = - b m 2 - Δ 2 1 (x) 2f (x) + Δ 2 (x) + f (x) 1 0 Δ 2 1 (y) 2f (y) dy +O V ar[ f n,m (x)] + V ar[ f n,m/b (x)] + n -1 m 1/2 +o m -2 ,
and

V ar[ f N n,m,b,ε (x)] = V ar[ f n,m,m/b (x)] +o V ar[ f n,m (x)] + V ar[ f n,m/b (x)] + n -1 m 1/2 + m -4 ,
and then, we have

MISE f N n,m,b,ε = λ 1 (b)C 1 m 1/2 n + b 2 C 6 m 4 + o m 1/2 n -1 + m -4 .
To minimize the MISE of f N n,m,b,ε , the order (m n ) must equal to

b 2 λ 1 (b) 8C 6 C 1 2/9 n 2/9 , ( 25 
)
and the corresponding MISE is equal to

MISE f N n,m,b,ε = bλ 4 1 (b) 2/9 9 8C 8 1 C 6 1/9 8 n -8/9
+ o n -8/9 .

APPLICATIONS

When using the Bernstein polynomials, we must consider a density on [0, 1]. For this purpose, we need to make some suitable transformations in different cases (we list below): 

f n of X f n (x) = 1 b -a g n x -a b -a .
2. For the densities functions concentrated on the interval (-∞, +∞), we can use the transformed sample Y i = 1 2 + 1 π arctan(X i ) which transforms the range to the interval (0, 1). Hence

f n (x) = 1 π(1 + x 2 ) g n 1 2 + 1 π arctan(x) .
3. For the support [0, ∞), we can use the transformed sample Y i = Xi Xi+1 which transforms the range to the interval (0, 1). Hence

f n (x) = 1 (1 + x) 2 g n x 1 + x .
4.0.4.1. Computational cost As mentioned in the introduction, the advantage of the proposed recursive estimators on their non-recursive version is that their update, from a sample of size n to one of size n + 1, require less computations. This property can be generalized, one can check that it follows from ( 2) that for all n 1 ∈ [0, n -1],

f n (x) = n j=n1+1 (1 -γ j ) f n-1 (x) + n-1 k=n1 n j=k+1 (1 -γ j ) γ k Z k (x) + γ n Z n (x) , = α 1 f n-1 (x) + n-1 k=n1 β k Z k (x) + γ n Z n (x) ,
where

α 1 = n j=n1+1 (1 -γ j ) and β k = γ k n j=k+1 (1 -γ j ).
It is clear, that the proposed estimators can be viewed as a linear combination of two estimators, which improve considerably the computational cost. Moreover, in order to give some comparative elements with Vitale's estimator defined in (1), including computational coasts, we consider 500 samples of size 500 generated from the beta distribution B (3, 5); moreover, we suppose that we receive an additional 500 samples of size 500 generated also from the beta distribution B [START_REF] Chen | Empirical likelihood confidence intervals for nonparametric density estimation[END_REF][START_REF] Chen | Probability density function estimation using gamma kernels[END_REF]. Performing the two methods, the running time using our proposed recursive estimator defined by algorithm (2) with stepsize (γ n ) = n -1 and the order (m n ) according to the minimization of Least Squares Cross-Validation (LSCV) described below was roughly 25 minutes on the author's workstation, while the running time using the non-recursive estimator (1) was roughly more than 4 hours on the author's workstation.

The aim of this paragraph is to compare the performance of Vitale's estimator f n defined in (1), Leblanc's estimator f n,m,m/2 given in [START_REF] Müller | Smooth optimum kernel estimators near endpoints[END_REF], the generalized estimator f n,m,m/b , defined in [START_REF] Müller | Hazard rate estimation under random censoring with varying kernels and bandwidths[END_REF], the multiplicative bias corrected Bernstein estimator f n,m,b,ε given in [START_REF] Rao | Estimation of distribution and density functions by generalized Bernstein polynomials[END_REF] and the normalized estimator f N n,m,b,ε given in [START_REF] Rosenblatt | Remarks on some nonparametric estimates of density functions[END_REF] with that of the proposed estimator (3).

(1) When applying f n , one needs to choose two quantities:

• The stepsize (γ n ) is chosen to be equal to νn -1 , with ν ∈ 4 5 , 8 9 , 1 . • The order (m n ) is chosen to be equal to [START_REF] Leblanc | A bias-reduced approach to density estimation using Bernstein polynomials[END_REF].

(2) When applying f n , one needs to choose the order (m n ) to be equal to ( 16). (3) When applying f n,m,m/2 , one needs to choose the order (m n ) to be equal to [START_REF] Müller | On the boundary kernel method for nonparametric curve estimation near endpoints[END_REF]. 

Simulations

We consider the following ten density functions:

(a) the beta density B [START_REF] Chen | Empirical likelihood confidence intervals for nonparametric density estimation[END_REF][START_REF] Chen | Probability density function estimation using gamma kernels[END_REF] 1) , (d) the beta mixture density 1/2B(3, 9)+1/2B(9, 3), f (x) = 0.5 x 2 (1-x) 8 B(3,9) + 0.5 x 8 (1-x) 2 B(9,3) , (e) the beta mixture density 1/2B(3, 1) + 1/2B(10, 10), f (x) = 0.5 x 2 B(3,1) + 0.5 x 9 (1-x) 9 B(10,10) , (f) the beta mixture density 1/2B(1, 6)+1/2B(3, 5), f (x) = 0.5 (1-x) 5 B(1,6) + 0.5 x 2 (1-x) 4 B(3,5) , (g) the beta mixture density 1/2B(2, 1)+1/2B(1, 4), f (x) = 0.5 x B(2,1) + 0.5

, f (x) = x 2 (1-x) 4 B(3,5) , (b) the beta density B(1, 6), f (x) = (1-x) 5 B(1,6) , (c) the beta density B(3, 1), f (x) = x 2 B(3,
(1-x) 3 B(1,4) , (h) the truncated exponential density E [0,1] (1/0.8), f (x) = exp(-x/0.8) 0.8{1-exp(-1/0.8)} , (i) the truncated normal density N [0,1] (0, 1), f (x) = exp(-x 2 /2) 1 0 exp(-t 2 /2)dt , (j) the truncated normal mixture density 1/4N [0,1] (2, 1) + 3/4N [0,1] (-3, 1), f (x) = 0.25 exp(-(x -2) 2 /2) 1 0 exp(-(t -2) 2 /2)dt +0.75 exp(-(x + 3) 2 /2) 1 0 exp(-(t + 3) 2 /2)dt .
Table 1. The average integrated squared error (ISE) of Vitale's estimator f n and the three recursive estimators; recursive 1 correspond to the estimator f n with the choice (γ n ) = (n -1 ), recursive 2 correspond to the estimator f n with the choice (γ n ) = 1 -a 2 n -1 (a = 2/9) and recursive 3 correspond to the estimator f n with the choice 

(γ n ) = [1 -a] n -1 (a = 1/5)
ISE[ f ] = 1 0 f (x) -f (x) 2 dx.
From Table 1 and 2 we conclude that:

• In all the considered cases, the average ISE of our density estimator ( 3) is smaller than that of Vitale's estimator defined in (1), except the cases (e) and (f ) of the Beta mixture and the cases (a), (d), (g) and (h) for the small sample size n = 50 and in the case (i) for the size n = 50 and n = 200. • In all the cases, the average ISE of our recursive density estimator (3) is slightly larger then that of Leblanc's estimator f n,m,m/2 given in [START_REF] Müller | Smooth optimum kernel estimators near endpoints[END_REF]. • In all the cases, the average ISE of our density estimator ( 3) is smaller than that of the generalized estimator f n,m,m/b , with b = 4 (see [START_REF] Müller | Hazard rate estimation under random censoring with varying kernels and bandwidths[END_REF]).

• In all the cases, the average ISE of our density estimator (3) is smaller than that of the multiplicative bias corrected Bernstein estimator f n,m,b,ε given in [START_REF] Rao | Estimation of distribution and density functions by generalized Bernstein polynomials[END_REF] and the normalized estimator f N n,m,b,ε given in [START_REF] Rosenblatt | Remarks on some nonparametric estimates of density functions[END_REF], except the cases (g) and (h).

• The average ISE of the generalized estimator f n,m,m/b , [START_REF] Müller | Hazard rate estimation under random censoring with varying kernels and bandwidths[END_REF] increase when b increase, then the optimal choice is b = 2 which corresponds to Leblanc's estimator f n,m,m/2 given in ( 17).

• The average ISE of the multiplicative bias corrected

Bernstein estimator f n,m,b,ε given in ( 22) and the normalized estimator f N n,m,b,ε defined in [START_REF] Rosenblatt | Remarks on some nonparametric estimates of density functions[END_REF] increase when b increase • The average ISE of the multiplicative bias corrected Bernstein estimator f n,m,b,ε given in [START_REF] Rao | Estimation of distribution and density functions by generalized Bernstein polynomials[END_REF] and the normalized estimator f N n,m,b,ε given in [START_REF] Rosenblatt | Remarks on some nonparametric estimates of density functions[END_REF] are smaller than that of the estimator f n,m,m/b defined in [START_REF] Müller | Hazard rate estimation under random censoring with varying kernels and bandwidths[END_REF], in the cases (g) and (h) and are larger in the other cases.

• The average ISE of the multiplicative bias corrected

Bernstein estimator f n,m,b,ε [START_REF] Rao | Estimation of distribution and density functions by generalized Bernstein polynomials[END_REF] is larger than that of the normalized estimator f N n,m,b,ε given in [START_REF] Rosenblatt | Remarks on some nonparametric estimates of density functions[END_REF] in the cases (a), (g), (h), (i) and (j) and is smaller in the other cases.

f n,m,b f n,m,b,ε , ε = 0.00001 f N n,m,b,ε , ε = 0.00001 n f n,m,m/2 b = 3 b = 4 b = 2 b = 3 b = 4 b = 2 b = 3 b = 4 (a
• The average ISE decreases as the sample size increases.

From figure 1, we can observe that:

• The proposed recursive estimator f n given in (3) using the stepsize (γ n ) = n -1 is closer to the true density function compared to Vitale's estimator f n given in (1), the generalized estimator f n,m,m/4 given in [START_REF] Müller | Hazard rate estimation under random censoring with varying kernels and bandwidths[END_REF], Kakizwa's estimator f n,m,b,ε defined in [START_REF] Rao | Estimation of distribution and density functions by generalized Bernstein polynomials[END_REF] and the normalized estimator f N n,m,b,ε defined in [START_REF] Rosenblatt | Remarks on some nonparametric estimates of density functions[END_REF] with b = 2 and ε = 0.00001.

• Within the interval [0, 1], our density estimator (3) using the stepsize (γ n ) = n -1 is closer to the true density function compared to Leblanc's estimator f n,m,m/2 defined in [START_REF] Müller | Smooth optimum kernel estimators near endpoints[END_REF]. • When the sample size increases, we get closer estimation of the true density function.

Real dataset

In any practical situation, to estimate an unknown density function f , it is essential to specify the order m to be used for the estimator. One way is to use least squares crossvalidation (LSCV ) method to obtain a data-driven choice of m.

Order selection method

First, we recall that the LSCV method is based on minimizing the integrated square error between the estimated density function f and the true density function f

1 0 f (x) -f (x) 2 dx = 1 0 f 2 (x)dx -2 1 0 f (x)f (x)dx + 1 0 f 2 (x)dx.
From this, Silverman [START_REF] Silverman | Density estimation for statistics and data analysis[END_REF] derived the score function

LSCV f (m) = 1 0 f 2 (x)dx - 2 n n i=1 f-i (X i ), (26) 
Figure 1. Qualitative comparison between the proposed density estimator f n given in [START_REF] Chen | Empirical likelihood confidence intervals for nonparametric density estimation[END_REF] with stepsize (γ n ) = (n -1 ) (solid line), the Vitale's estimator f n defined in (1) (dashed line), Leblanc's estimator f n,m,m/2 defined in [START_REF] Müller | Smooth optimum kernel estimators near endpoints[END_REF] (dotted line), the generalized estimator f n,m,m/4 defined in [START_REF] Müller | Hazard rate estimation under random censoring with varying kernels and bandwidths[END_REF] (dot-dashed line), Kakizwa's estimator f n,m,b,ε defined in [START_REF] Rao | Estimation of distribution and density functions by generalized Bernstein polynomials[END_REF] (long-dashed) and the normalized estimator f N n,m,b,ε defined in [START_REF] Rosenblatt | Remarks on some nonparametric estimates of density functions[END_REF] (two-dashed line) with b = 2 and ε = 0.00001 for 500 samples respectively of size 50 (left panel) and of size 250 (right panel) of the beta density B [START_REF] Chen | Empirical likelihood confidence intervals for nonparametric density estimation[END_REF][START_REF] Chen | Probability density function estimation using gamma kernels[END_REF].

where f-i is the density estimate without the data point X i . The smoothing parameter is chosen by minimizing LSCV (m) (m = arg min m LSCV (m)).

For our proposed recursive estimator f n given in (3), we make the following choice of (γ n ) = (n -1 ), and then we choice the order m in order to minimize the following criterion:

LSCV fn (m) = 1 0 f 2 n (x)dx - 2 n n i=1 f n,-i (X i ).

We define integer sequences p

i = [m i X i ] and q i = [m i X i /2],
we then have

X i ∈ pi mi , pi+1 mi and X i ∈ 2qi mi , 2(qi+1) mi . Then we obtain f n,-i (x) = n n -1 f n (x) - 1 n -1 n i=1 2m i b pi (m i -1, x) - m i 2 b qi m i 2 -1, x ,
then we conclude that

LSCV fn (m) = 1 0 f 2 n (x)dx - 2 n -1 n i=1 f n (X i ) + 4 n (n -1) n i=1 m i b pi (m i -1, X i ) - 1 n (n -1) m i b qi m i 2 -1, X i .
Note that, the LSCV function for Vitale's estimator [START_REF] Babu | Application of Bernstein polynomials for smooth estimation of a distribution and density function[END_REF], is written as

LSCV fn (m) = 1 0 f n (x) 2 dx - 2 n n i=1 f n,-i (X i ).
We define integer sequences

k i = [mX i ], we then have X i ∈ ki m , ki+1 m , consequently f n,-i (x) = 1 n -1 f n (x) -mb ki (m -1, x) ,
then we conclude

LSCV fn (m) = 1 0 f n (x) 2 dx - 2 n -1 n i=1 f n (X i ) - m n n i=1 b ki (m -1, X i ) .
Recursive density estimators using Bernstein polynomials 449 The LSCV function for the estimator f n,m,m/b defined in [START_REF] Müller | Hazard rate estimation under random censoring with varying kernels and bandwidths[END_REF] with b = 2, 3, 4,..., is written as

LSCV f n,m,m/b (m) = 1 0 f n,m,m/b (x) 2 dx - 2 n n i=1 f n,m,m/b,-i (X i ).
We define integer sequences k i = [mX i ] and

r i = [mX i /b], we then have X i ∈ ki m , ki+1 m and X i ∈ bri m , b(ri+1) m . Then we obtain LSCV f n,m,m/b (m) = 1 0 f n,m,m/b (x) 2 dx - 2 n -1 n i=1 f n,m,m/b (X i ) - 1 n n i=1 b b -1 mb ki (m -1, X i ) + 1 n n i=1 1 b -1 m b b ri m b -1, X i .
Using the Kakizawa's estimators f n,m,b,ε defined in [START_REF] Rao | Estimation of distribution and density functions by generalized Bernstein polynomials[END_REF] and f N n,m,b,ε defined in [START_REF] Rosenblatt | Remarks on some nonparametric estimates of density functions[END_REF], the LSCV function is written as in (26).

Old faithful data

In this subsection, we consider the well known Old Faithful data given in Tab.2.2 of Silverman [START_REF] Silverman | Density estimation for statistics and data analysis[END_REF]. These data consist of the eruption lengths (in minutes) of 107 eruptions of the Old Faithful geyser in Yellowstone National Park, U.S.A. The data are such that min i (x i ) = 1.67 and max i (x i ) = 4.93, then it is convenient to assume that the density of eruption times is defined on the interval [1.5, 5] and transform the data into the unit interval.

The LSCV procedure was performed and resulted in m = 104 for Vitale's estimator f n defined in (1), (m n ) = (n 0.987 ) for our proposed estimator f n defined in (3), m = 66 for Leblanc's estimator f n,m,m/2 defined in [START_REF] Müller | Smooth optimum kernel estimators near endpoints[END_REF], m = 52 for the estimator f n,m,m/4 defined in [START_REF] Müller | Hazard rate estimation under random censoring with varying kernels and bandwidths[END_REF], m = 66 for the multiplicative bias corrected Bernstein estimator f n,m,2,0.00001 defined in [START_REF] Rao | Estimation of distribution and density functions by generalized Bernstein polynomials[END_REF] and m = 66 for the normalized estimator f N n,m,2,0.00001 defined in [START_REF] Rosenblatt | Remarks on some nonparametric estimates of density functions[END_REF]. These estimators are shown in Figure 2 along with an histogram of the data and a Gaussian kernel density estimate using the LSCV -based bandwidth h = 0.3677. All the estimators are smooth and seem to capture the pattern highlighted by the histogram. We observe that our recursive estimator outperformed the others estimators near x = 1.5.

Tuna data

Our last example concerne the tuna data given in Chen [START_REF] Chen | Empirical likelihood confidence intervals for nonparametric density estimation[END_REF]. The data come from an aerial line transect survey of Southern Bluefin Tuna in the Great Australian Bight. An aircraft with two spotters on board flies randomly allocated line transects. The data are the perpendicular sighting distances (in miles) of 64 detected tuna schools to the transect lines. The survey was conducted in summer when tuna tend to stay on the surface. We analyzed the transformed data divided by w = 18 (the data are such that min i (x i ) = 0.19 and min i (x i ) = 16.26).

The LSCV procedure was performed and resulted in m = 14 for Vitale's estimator f n defined in (1), (m n ) = (n 0.633 ) for our proposed estimator f n defined in (3), m = 4 for Leblanc's estimator f n,m,m/2 defined in [START_REF] Müller | Smooth optimum kernel estimators near endpoints[END_REF], m = 4 for the estimator f n,m,m/4 defined in [START_REF] Müller | Hazard rate estimation under random censoring with varying kernels and bandwidths[END_REF], m = 8 for the multiplicative bias corrected Bernstein estimator f n,m,2,0.00001 defined in [START_REF] Rao | Estimation of distribution and density functions by generalized Bernstein polynomials[END_REF] and m = 4 for the normalized estimator f N n,m,2,0.00001 defined in [START_REF] Rosenblatt | Remarks on some nonparametric estimates of density functions[END_REF]. These estimators are shown in Figure 3 along with an histogram of the data and a Gaussian kernel density estimate using the LSCV -based bandwidth h = 1.291. All the estimators are smooth and seem to capture the pattern highlighted by the histogram. We can observe that our proposed recursive estimator outperformed the other estimators near the boundaries.

CONCLUSION

In this paper, we propose a recursive estimator of a density function based on a stochastic algorithm derived from Robbins-Monro's scheme and using Bernstein polynomials. We first study its asymptotic properties. We show that our proposed estimator of density function have a good boundary properties. Moreover, the bias rate of the proposed esti-Recursive density estimators using Bernstein polynomials 451 mator is of m -2 , which is better than the Vitale's estimator with a bias rate of m -1 . For almost all the cases, the average ISE of the proposed estimator (3) with a stepsize (γ n ) = n -1 and the corresponding order (m n ) is smaller than that of Vitale's estimator and than that of the multiplicative bias-corrected estimator defined by Kakizawa. Furthermore, our proposed recursive density estimator has a slightly larger average ISE compared to Leblanc's estimator. In addition, a major advantage of our proposal is that its update, when new sample points are available, require less computational cost than the non recursive estimators. Our proposed estimator always integrates to unity, but is not necessarily non negative. However, we found that truncation and renormalisation may solve this issue. Finally, through simple real-life examples (Old Faithful data and tuna data) and a simulation study, we demonstrated how the recursive Bernstein polynomial density estimators can lead to very satisfactory estimates. In conclusion, using the proposed recursive estimator f n , we can obtain better results compared to those given by Vitale's estimator, Leblanc's estimator and the multiplicative bias-corrected estimator defined by Kakizawa especially near the boundaries.

APPENDIX A. PROOFS

In this section, we present proofs for the results presented in Section 3. We need the following technical lemma, which is proved in Mokkadem et al. [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF].

Lemma A.1. Let (v n ) ∈ GS(v * ), (γ n ) ∈ GS(-α), and l > 0 such that l -v * ξ > 0. We have lim n→∞ v n Π l n n k=1 Π -l k γ k v k = 1 l -v * ξ .
Moreover, for all positive sequence (α n ) such that lim n→∞ α n = 0, and all δ ∈ R, we have

lim n→∞ v n Π l n n k=1 Π -l k γ k v k α k + δ = 0.
Lemma A.1 is widely applied throughout the proofs. Let us underline that it is its application, which requires Assumption (A4) on the limit of (nγ n ) as n goes to infinity. Let us mention that, lim n→∞ (nγ n ) < ∞ only if α = 1, the condition lim n→∞ (nγ n ) ∈ (min (a, (2α + a)/4) , ∞] in (A4), which appears throughout our proofs, is equivalent to the condition lim n→∞ (nγ n ) ∈ (min (a, (2 + a)/4) , ∞]. Similarly, since ξ = 0 only if α = 1, we can consider α = 1 in all the results given in this paper.

A.1 Proof of Proposition 3.1 and Proposition 3.2

In view of (3), we have

E [f n (x)] -f (x) = Π n n k=1 Π -1 k γ k (E [Z k (x)] -f (x)) . ( 27 
)
Leblanc showed that, for x ∈ [0, 1], we have (see Theorem 6 in Leblanc [START_REF] Leblanc | A bias-reduced approach to density estimation using Bernstein polynomials[END_REF])

E [Z n (x)] -f (x) = -2 Δ 2 (x) m 2 n + o(m 2 n ).
Substituting this result into (27) leads to for x ∈ [0, 1]

E [f n (x)] -f (x) = Π n n k=1 Π -1 k γ k -2Δ 2 (x) m 2 k (1 + o(1) .
For x ∈ (0, 1), we obtain

• In the case a ∈ 0, 2 9 α , we have lim n→∞ (nγ n ) > 2a. Then the application of lemma A.1 gives (4).

• In the case a ∈ Leblanc derived that (see Theorem 6 in Leblanc [START_REF] Leblanc | A bias-reduced approach to density estimation using Bernstein polynomials[END_REF]).

i) For x ∈ (0, 1)

V ar [Z n (x)] = 1 √ 2 + 4 1 - 2 3 m 1/2 n f (x)ψ(x) +o x (m 1/2 n ).
ii) For x ∈ {0, 1}

V ar

[Z n (x)] = 5 2 m n f (x) + o(m n ).
It follows that i) For x ∈ (0, 1)

V ar [f n (x)] = C 3 f (x)ψ(x)Π 2 n n k=1 Π -2 k γ 2 k m 1/2 k ×(1 + o x (1)).
for a given α, to minimize the MISE [f n ], the parameter a must be chosen equal to 2 9 α. Moreover, in view of (( 32), ( 33) and (34) ) the parameter α must be equal to 1. We conclude that to minimize the MISE [f n ], the stepsize (γ n ) must be chosen in GS(-1) and the order (m n ) in GS(2/9).

Since the function x → K 2 (ξ)x -4 + K 1 (ξ)γ n x 1/2 attains its minimum at the point

8K2(ξ) γnK1(ξ) 2/9
, to minimize MISE [f n ], the order (m n ) must be equal to Now, we assume that (γ n ) = γ 0 n -1 for some γ 0 ∈ (0, ∞).

In this case, note that ξ = lim n→∞ (nγ n ) -1 = γ -1 0 . Then, (14) (hence [START_REF] Lejeune | Smooth estimators of distribution and density functions[END_REF]) is a consequence of the standard trade-off argument.

A.4 Proof of Theorem 3.1

To prove theorem 3.1, we will use the fact that if x ∈ (0, 1) and a ∈ 2 9 α, 1 , then

γ -1/2 n m -1/4 n (f n (x) -E[f n (x)]) D → N 0, 2 4 -(2α -a)ξ C 3 f (x)ψ(x) , (35) 
which will be proved later. In the case a ∈ 0, 2 9 α , we have → ∞ and a ∈ 0, 2 9 α , we have

m 2 n (f n (x) -f (x)) = m 2 n (f n (x) -E[f n (x)]) + m 2 n (E[f n (x)] -f (x)) = m 2 n (f n (x) -E[f n (x)] - 2 1 -aξ Δ 2 (x)[1 + o(1)].
Noting that the equation ( 7) implies

m 2 n (f n (x) -E [f n (x)]) P → 0,
then, we obtain Part 2 of Theorem 3.1. We now prove (35).

We have

f n (x) -E[f n (x)] = (1 -γ n )(f n-1 (x) -E[f n-1 (x)]) +γ n (Z n (x) -E[Z n (x)]) = Π n n k=1 Π -1 k γ k (Z k (x) -E[Z k (x)]).
We set

Y k (x) = Π -1 k γ k (Z k (x) -E[Z k (x)]).
The application of Lemma A. On the other hand, for all p > 0, we have

E[|Z k (x)| 2+p ] = O(m 2+p n ),
and, since lim n→∞ (nγ n ) > (α -a 2 )/2 = (2αa)/4, there existe p > 0 such that lim n→∞ (nγ n ) > 1+p 2+p (α - .

Then the convergence in (35) follows from the application of Lyapounov's Theorem.

1 .

 1 Suppose that X is concentrated on a finite support [a, b]. Then we work with the sample values Y 1 , . . . , Y n where Y i = Xi-a b-a . Denoting by g n (x) the estimated density function of Y 1 , . . . , Y n , we compute the estimated density

( 3 )

 3 When applying f n,m,m/b , one needs to choose the order (m n ) to be equal to[START_REF] Parzen | On estimation of probability density and mode[END_REF] and b = 3, 4. (4) When applying f n,m,b,ε , one needs to choose the order (m n ) to be equal to (23), b = 2, 3, 4 and ε = 0.00001. (5) When applying f N n,m,b,ε , one needs to choose the order (m n ) to be equal to (25), b = 2, 3, 4 and ε = 0.00001.

Figure 2 .

 2 Figure 2. Density estimates for the Old Faithful data: recursive estimator f n defined in (3) (solid line), Vitale's estimator f n defined in (1) (dashed line), Leblanc's estimator defined in f n,m,m/2 defined in (17) (dotted line), the generalized estimator f n,m,m/4 defined in (19) (dot-dashed line), Kakizwa's estimator f n,m,b,ε defined in (22) (long-dashed) and the normalized estimator f N n,m,b,ε defined in (24) (two-dashed line) with b = 2 and ε = 0.00001 (left panel) and Gaussian kernel density estimate using the LSCV -based bandwidth h = 0.3677 (right panel).

Figure 3 .

 3 Figure 3. Density estimates for the tuna data: recursive estimator f n defined in (3) (solid line), Vitale's estimator f n defined in (1) (dashed line), Leblanc's estimator f n,m,m/2 defined in (17) (dotted line), the generalized estimator f n,m,m/4 defined in (19) (dot-dashed line), Kakizwa's estimator f n,m,b,ε defined in (22) (long-dashed) and the normalized estimator f N n,m,b,ε defined in (24) (two-dashed line) with b = 2 and ε = 0.00001 (left panel) and Gaussian kernel density estimate using the LSCV -based bandwidth h = 1.291 (right panel).

2 9 α, 1 ,k γ 2 k

 12 we have m -2 n = o γ n m 1/2 n , since 2a > (2αa)/4. Then the application of Lemma A.1 gives (5).For x = 0, 1, we obtain• In the case a ∈ 0, α 5 , we have lim n→∞ (nγ n ) > 2a. Then the application of Lemma A.1 gives[START_REF] Härdle | Smoothing techniques with implementation in S[END_REF].• In the case a ∈ α 5 , 1 , we have m -2 n = o √ γ n m n and 2a > (αa)/2.Then the application of Lemma A.1 gives[START_REF] Hirukawa | Nonparametric multiplicative bias correction for kernel-type density estimation on the unit Interval[END_REF].On the other hand, we haveV ar[f n (x)] = Π 2 V ar[Z k (x)].

. 8 8 1 / 9 K 1

 8191 For such a choice, the MISE of f n becomesMISE [f n ] = 9 (ξ) 8/9 K 2 (ξ)1/9 γ 8/9 n [1 + o(1)].

γ - 1 2 nm - 1 / 4 n→

 1214 f n (x)]f (x)) = γ -1/(f n (x) -E[f n (x)]) c, for some c ≥ 0, Part 1 of theorem 3.1 follows from (35). In the case when a = 2 9 α, Parts 1 and 2 of Theorem 3.1 follow from the combination of (4) and (35). In the case a ∈ 2 9 α, 1 , Part 1 of Theorem 3.1 follows from the combination of (5) and (35). Now in the case γ

k 4 -

 4 [C 3 f (x)ψ(x) + o(1)] (2αa)ξ C 3 f (x)ψ(x) + o(1) .

n m 3 4

 3 k (x)| 2+p ] = O k (x)| 2+p ] = O γ p/2 (2+p) n

Table 2 .

 2 The average integrated squared error (ISE) of Leblanc estimator's f n,m,m/2 and the three estimators introduced by Kakizawa: f n,m,m/b with b = 3, 4, f n,m,b,ε and f N n,m,b,ε with b = 2, 3, 4 and ε = 0.00001
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Now, using this result, for x ∈ (0, 1), we obtain

• In the case a ∈ 2 9 α, 1 , we have lim n→∞ (nγ n ) > (2αa)/4, the application of Lemma A.1 then gives

and (6) follows. • In the case a ∈ 0, 2 9 α , we have 2a < (2αa)/4 and γ n m

n , the application of Lemma A.1 ensures that

which gives [START_REF] Duflo | Random iterative models[END_REF].

Similarly, for x ∈ {0, 1}, we have

n , the application of Lemma A.1 gives [START_REF] Jones | Simple boundary correction for density estimation kernel[END_REF].

A.2 Proof of Proposition 3.3 Proposition 3.1 ensures that

• In the case a ∈ 0, 2 9 α , we have

• In the case a ∈ 2 9 α, 1 , we have

Moreover, we note that

Since we have (see the proof of Theorem 7 in Leblanc [START_REF] Leblanc | A bias-reduced approach to density estimation using Bernstein polynomials[END_REF])

then we get

• In the case a ∈ 2 9 α, 1 , we have lim n→+∞ (nγ n ) > (2αa)/4. Then the application of Lemma A.1 gives

• In the case a ∈ 0, 2 9 α , we have γ n m

n and lim n→+∞ (nγ n ) > 2a. Then the application of Lemma A.1 gives

Part 1 of Proposition 3.3 follows from the combination of ( 28) and ( 31), Part 2 from that of ( 28) and ( 30), Part 3 from ( 29) and [START_REF] Slaoui | Bandwidth selection for recursive kernel density estimators defined by stochastic approximation method[END_REF].

A.3 Proof Corollary 3.1

Set

It follows from Proposition 3.3 that i) For a ∈ 0, 2 9 α

∈ GS -8 9 α with