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Abstract. Let (T,X) be independent identically distributed pairs of random vari-
ables and denote f (t|x) the conditional density of T given X = x, we consider
that the random variable T is subject to random censoring by another random
variable C. In this paper, we propose and investigate an adaptive recursive kernel
conditional density estimation under censored data, which allows us to circumvent
the weak performances of Kaplan-Meier estimator (1958). in the right-tail of the
distribution. The first aim of this paper is to study the properties of the proposed
adaptive recursive estimators and compare it with the non-recursive estimator of
f (t|x). It turns out that, with an adequate selected bandwidth and a special step-
size, the proposed recursive estimators often provides better results compared to the
non-recursive one in terms of estimation error and much better in terms of compu-
tational costs. We corroborated these theoretical results through some simulation
study.

1. Introduction

The subject of this paper concerns the recursive kernel estimation of the con-
ditional density function under censoring data when the covariates take values in
finite dimensional Rd. A general scheme of random censorship can be defined in the
following way. Consider a triple (T,C,X) of random variables defined in R×R×Rd.
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Here T is the variable of interest, C a censoring variable and X a concomitant vari-
able. Throughout, we work with a sample {(Ti, Ci, Xi)1≤i≤n} of independent and
identically distributed replicæ of (T,C,X), n ≥ 1. In fact, in the right censorship
model, the pairs (Ti, Ci), 1 ≤ i ≤ n, are not directly observed and the relevant in-
formation is given by Yi := min{Ti, Ci} and δi := 1{Ti ≤ Ci}, 1 ≤ i ≤ n. Survival
data in clinical trials or failure time data in reliability studies, are often subject to
such censoring. To be more specific, many statistical experiments result in incom-
plete samples, even under well-controlled conditions. For example, clinical data for
surviving most types of disease are usually censored by other competing risks to life
which result in death. In the sequel, we impose the following assumptions upon the
distribution of (X,T ). For −∞ < t < ∞, set F (t) = P(T ≤ t), G(t) = P(C ≤ t),
and L(t) = P(Y ≤ t), the right-continuous distribution functions of T , C and Y
respectively. In order to estimate uniquely the distribution function F from the
observed data (which ensures the identifiability of the model), we assume the in-
dependence between the T and C. Moreover, in this case the distribution function
L(t) = P (Y ≤ t) satisfies 1− L(t) = (1− F (t))(1−G(t)). For any x, we can write

the conditional density function f (t|x) as f(x,t)
f(x) , where f(·, ·) is the joint probability

density function of (X,T ) and f(·) is the marginal density of X with respect to the
Lebesgue measure. Studying the relationship between a response variable and an
explanatory variable is one of the most important statistical analysis. Usually, this
relationship is modeled with the regression function. However, it is well known,
this nonparametric model is not efficient in some pathological situations. For in-
stance, the multi-modal densities case, the case where the expected value might be
nowhere near a mode or for situations in which confidence intervals are preferred
to point estimates. In all these case the conditional density is a pertinent model
to explore this relationship. Conditional density estimation of a scalar response
given a scalar/multivariate covariate gained considerable interest in the statistical
literature. For completely observed data, many authors are interested in the esti-
mation of the conditional density and several nonparametric approaches have been
proposed. For example, Tjøstheim (1994) and Polonik and Yao (2000) estimated
the conditional density function indirectly. Hyndman et al. (1996) studied kernel
estimator of the conditional density and its bias-corrected version. Fan et al. (1996)
developed a direct estimation method via an innovative ’double-kernel’ local linear
approach. Bashtannyk and Hyndman (2001) and Hyndman and Yao (2002) pro-
posed several simple and useful rules for selecting bandwidths for the conditional
density estimation. Hall et al. (2004) applied the cross-validation technique to esti-
mate the conditional density. Fan and Yim (2004) proposed a consistent data-driven
bandwidth selection procedure in estimating the conditional density functions. Efro-
movich (2007) develops the theory of minimax estimation of the conditional density
for regression settings with fixed and random designs of predictors, bounded and
unbounded responses.

Efromovich (2010) write a conditional density as a sum of orthogonal projec-
tion on all possible subspaces of reduced dimensionality and then estimating each
projection via a shrinkage method. Bertin et al. (2016) consider the problem of
estimating the conditional density in the case of independent sample distributed in
the multivariate setting.

However, all these papers assume that the observations are complete. Noting
that the nonparametric modeling of censored data is intensively discussed in the
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recent statistical literature. It dates back to Beran (1981), who introduced a class
of nonparametric regression estimators for the conditional survival function in the
presence of right-censoring. Dabrowska (1987, 1989) studied the asymptotic proper-
ties of the distribution and quantiles functions estimators. Kohler and Pinter (2002)
gave a simpler proof in the randomly right-censoring case for the kernel, nearest
neighbor, least squares and penalized least squares estimates. Brunel et al. (2007)
provided an adaptive nonparametric strategy to estimate the conditional density in
the presence of censoring. Bouaziz and Lopez (2010) introduced a semi parametric
procedure to estimate the conditional density under censoring response. Liang and
Liu (2013) defined a kernel estimator of the conditional density for a left-truncated
and right-censored model based on the generalized product-limit estimator of the
conditional distributed function.

In this vast variety of papers, the authors use the Nadaraya-Watson techniques
as an estimation method which is a particular case of the recursive kernel estimator
considered in this work.
In recent years, data streams have become an increasingly important area of re-
search. Internet packet data, stock market activity, credit card transactions, and
Internet and phone usage. In those situations, the data arrive so rapidly that it is
impossible for the user to store them all in the disk (as a traditional database), and
then interact with them at the time of our choosing.

In such a large sample data context, building a recursive estimators which does
not require to store all the data in memory and can be updated easily in order to
deal with online data is of great interest. In this way, the recursive estimator can
be updated with each new observation. This iterative scheme saves computer time
in a practical case, whereas a non-recursive estimator needs to be recalculated com-
pletely when a new data set is observed. This propriety is particularly important in
the conditional density estimation since the number of points at which the function
is estimated is usually very large.

The Robbins-Monro procedure was originally proposed by Robbins and Monro
(1951) and further developed and investigated as well as applied in many dif-
ferent situations (see, among many others, Blum (1954), Fabian (1967); Kush-
ner and Clark (1978); Hall and Heyde (1980); Ruppert (1982); Chen (1988); Du-
flo (1996); Dippon and Renz (1997); Révész (1973, 1977); Dippon (2003), Mokka-
dem and Pelletier (2007)).

The first recursive version of Rosenblatt’s kernel density estimator and the most
famous one was introduced by Wolverton and Wagner (1969), and was widely stud-
ied; see among many others Yamatp (1971), Davies (1973), Devroye (1979), Weg-
man and Davies (1979) and Roussas and Tran (1992). Competing recursive es-
timators, which may be regarded as weighted versions of Wolverton and Wag-
ner’s estimator, were introduced and studied by Deheuvels (1973), Wegman and
Davies (1979) and Duflo (1997). Hall and Patil (1994) defined a large class of
weighted recursive estimators, including all the previous recursive estimators. Re-
cently, Slaoui (2013, 2014a, 2014b, 2015, 2016), studied the problem of the band-
width selection and derived some properties of the recursive kernel estimator of the
density function, distribution function and then of the regression function. Khardani
and Slaoui (2019) defined and studied a new estimator of the regression function
when the response random variable is subject to random right-censoring.
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The first aim of this paper is to propose an adaptive recursive kernel conditional
density estimation under censored data, and the second aim is to give the con-

ditions under which the recursive estimators f̂ (t|x) (defined below) is consistent.
The paper is organized as follows. In Section 2 we recall our kernel conditional
density estimator in the censorship model with some notations. In Section 3 the
assumptions and main results are given. Section 4 is devoted to our simulation
experiments. The proofs of the main results are relegated to Section 5 with some
auxiliary results with their proofs. We concluded the paper in Section 6.

2. Presentation of estimates

Given independent and identically distributed observations (X1, Y1, δ1), . . . (Xn, Yn, δn)
of (X,Y, δ), the kernel estimate of the conditional density f(t|x) denoted fn(t|x),
is defined for any x ∈ Rd and t ∈ R by

fn(t|x) =

∑n
i=1 h

−1
n δiG

−1
(Yi)K0

(
x−Xi

hn

)
K1

(
t−Yi

hn

)
∑n
i=1K0

(
x−Xi

hn

) , (2.1)

where K0, K1 are kernels and hn is a sequence of positive real numbers. This
estimator was introduced in Ould-Säıd (2006). In practice, the survival function
G(.) is unknown, hence it is not possible to use (2.1) as an estimator. One way to
overcome this difficulty is to replace G(.) by a modified Kaplan and Meier (1958)
estimate Gn(.) (see Lo et al. (1989)) defined as

Gn(t) =
∏
Y(i)≤t

(
n− i+ 1

n− i+ 2

)1−δ(i)
.

As mentioned in Brunel et al. (2007), Gn was proposed to satisfy the following
property: Gn (t) ≥ 1/ (n+ 1), for all t, and which it convergence to G was proven
in Brunel and Comte (2005). Y(1) < Y(2) < · < Y(n) are the order statistics of
(Y(i))1≤i≤n and δ(i) is the concomitant of Y(i).
Then, our proposal estimators to estimate recursively the conditional density f (t|x),
can be viewed as an adaptive recursive version of the previous kernel estimator and
defined as follows

f̂n(t|x) =

{
f̂n(x,t)

f̂n(x)
if f̂n(x) 6= 0

0 otherwise
, (2.2)

where for any x ∈ Rd and t ∈ R,

f̂n (x, t) : = (1− βn) f̂n−1 (x, t)

+βnh
−d−1
n δnG

−1
n (Yn)K0

(
x−Xn

hn

)
K1

(
t− Yn
hn

)
, (2.3)

and for any x ∈ Rd,

f̂n (x) := (1− γn) f̂n−1 (x) + γnh
−d
n K0

(
x−Xn

hn

)
, (2.4)
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with (βk) and (γk) sequences of positive real numbers there go to zero. We let

(Qn,Πn) = (
∏n
i=1(1− βi), (

∏n
i=1(1− γi)) and

(
f̂0 (x, t) , f̂0(x)

)
= (0, 0). Then, it

follows from (2.3), that for any x ∈ Rd and t ∈ R,

f̂n (x, t) := Qn

n∑
k=1

Q−1k βkh
−d−1
k δkG

−1
n (Yk)K0

(
x−Xk

hk

)
K1

(
t− Yk
hk

)
, (2.5)

and from (2.4), that for any x ∈ Rd,

f̂n (x) := Πn

n∑
k=1

Π−1k γkh
−d
k K0

(
x−Xk

hk

)
. (2.6)

This recursive property is particularly useful when the observation number increases

since f̂n(x, t) [resp. f̂n(x)] can be easily updated with each additional observation.
From a practical point of view, this arrangement provides important savings in
computational time which is a consequence of the fact that the estimate updating
is independent of the history of the data. The main drawback of the non-recursive
kernel estimator is the use of all data at each step of estimation. From a theoretical
point of view, the main advantage of the investigation of such recursive estimators
is that we can prove consistency with the same rate as the non-recursive one.

Remark 2.1.

• For simplification, the bandwidth parameter that controls the smoothness
of the estimation is chosen to be the same in the both considered kernels
K0 and K1.
• To limit the effect of censoring of the interest variable T in equation (2.1)

and (2.5) and to have a less biased estimator, we consider the function
G. Note that our proposed estimator is a generalization of the estimator
considered by Khardani and Semmar (2014), which is a special case of our
proposed estimator with a stepsize (βn) =

(
n−1

)
.

• The joint probability density function f(.) is not affected by censoring and

is therefore consistently estimated by f̂n(.).
• Many authors investigated the problems caused by the bad behavior of

Kaplan-Meier estimators in the tail of the distribution, we refer the read-
ers to Marron and Padgett (1987), Brunel and Comte (2005), Brunel et
al. (2007) and Bouaziz and Lopez (2010).

3. Assumptions and main results

We define the following class of regularly varying sequences.

Definition 3.1. Let γ ∈ R and (vn)n≥1 be a nonrandom positive sequence. We

say that (vn) ∈ GS (γ) if

lim
n→+∞

n

[
1− vn−1

vn

]
= γ. (3.1)

For any distribution function L let τL = sup{t, L(t) < 1} be its support’s right
endpoint.

Further, we will denote by F (·) (resp. G(·)) the distribution function of T (resp.
of C) and by τF (resp. τG) the upper endpoints of the survival function F (resp.
of G).
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To formulate our results, we make use of the following assumptions gathered here
for easy reference.

A1: The joint density f(·, ·) of (X,T ) is bounded and continuously differentiable
up to order 2.

A2: The sequence (X,T ) and C are independent.

A3 : The density f(·) is twice continuously differentiable.

A4: (i) K0 : Rd → R is a continuous, bounded function satisfying
∫
Rd K0 (z) dz = 1,

and, for all j ∈ {1, . . . , d},
∫
R zjK0 (z) dzj = 0 and

∫
Rd z

2
j |K0 (z)| dz < ∞, where

z = (z1, . . . , zd) ∈ Rd.
(ii) K1 : R → R is a continuous, bounded function satisfying

∫
RK1 (z) dz = 1,∫

R zK1 (z) dz = 0 and
∫
R z

2|K1 (z) |dz <∞.

A5: (i) (hn) ∈ GS (−a) with a ∈]0, 1].

(ii) (βn) ∈ GS (−β) with β ∈]1/2, 1].

(iii) (γn) ∈ GS (−α) with α ∈]1/2, 1], such that limn→+∞
γnhn

βn
= 0.

(iv) limn−→∞(nβn) ∈] min{2a, β−(d+1)a
2 },∞].

(v) limn−→∞(nγn) ∈] min{2a, α−ad2 },∞].

A6: τF <∞, G(τF ) > 0 and τ < τF < τG.

Discussion of the assumptions.

• A2 is specific to the model: the independence between (Cn)n and (Xn, Yn)n
may seem to be strong and one can think of replacing it by a classical con-
ditional independence assumption between (Cn)n and (Yn)n given (Xn)n.
• Assumptions A1, A3 and A4 are classical in nonparametric estimation.
• Assumptions A5(i)−A5(iii) gives conditions for the bandwidth which al-

lows getting the bias and variance of our estimators.
• Assumptions A5(iv) and A5(v) on the limit of (nβn) and on the limit of

(nγn) as n goes to infinity are usual in the framework of stochastic approx-

imation algorithms. They implies in particular that the limit of
(

[nβn]
−1
)

and
(

[nγn]
−1
)

are finite.

• Condition ( 3.1) was introduced by Galambos and Seneta (1973) to de-
fine regularly varying sequences (see also Bojanic and Seneta (1973)) and
by Mokkadem and Pelletier (2007) in the context of stochastic approx-
imation algorithms. Noting that the acronym GS stand for (Galambos

and Seneta). Typical sequences in GS (γ) are, for b ∈ R, nγ (log n)
b
,

nγ (log log n)
b
, and so on.

Throughout this paper we will use the following notations:

ε1 = lim
n→∞

(nγn)
−1

(3.2)

ε2 = lim
n→∞

(nβn)
−1

(3.3)
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µ2
i =

∫
Rd

x2iK0(x)dx, f
(2)
j,j (x, t) =

∂2f

∂xj∂xj
(x, t), f (2)(x, t) =

∂2f

∂t∂t
(x, t),

I2 =

∫
R
t2K1(t)dt, S1 =

d∑
j=1

µ2
jf

(2)
j,j (x, t) , S2 = I2f

(2)(x, t),

S3 =

d∑
j=1

µ2
jf

(2)
j,j (x) , E1 =

[
S1 + S2

(1− 2aε2)
− f (t|x)S3

(1− 2aε1)

]2
,

E2 =
1

(2− (β − (d+ 1) a) ε2)

f(x, t)

G(t)

∫
Rd

∫
R
K2

0 (z)K2
1 (y)dzdy.

Our first result is the following proposition, which gives the bias and variance of

f̂n (t|x).

Proposition 3.2. (Bias and variance of f̂n (t|x))
Under Assumptions A1−A6, for t ∈ A ( [0, τ ] and assuming that f (2) (x, t) is

continuous at (x, t) and that f (2) (x) is continuous at x.
If a ∈ [0, β/(d+ 5)], then

E
[
f̂n (t|x)

]
− f(t|x) =

1

2f(x)
E

1/2
1 h2n + o(h2n). (3.4)

If a ∈]β/(d+ 5), 1[, then

E
[
f̂n (t|x)

]
− f(t|x) = o

(√
βn/h

d+1
n

)
. (3.5)

If a ∈ [0, β/(d+ 5)[, then

V ar
[
f̂n (t|x)

]
= o(h4n). (3.6)

If a ∈ [β/(d+ 5), 1[, then

V ar
[
f̂n (t|x)

]
=

1

f2 (x)
E2

βn

hd+1
n

+ o

(
βn

hd+1
n

)
. (3.7)

Let us now state the following theorem, which gives the weak convergence rate

of f̂n (t|x) defined in (2.2). Below, we write Z
D
= N (µ, σ2) whenever the random

variable Z follows a normal law with expectation µ and variance σ2,
D→ denotes the

convergence in distribution and
P→ the convergence in probability.

Theorem 3.3 (Weak pointwise convergence rate). Under Assumptions A1−A6,
for t ∈ A ( [0, τ ] and assuming that f (2) (x, t) is continuous at (x, t) and that
f (2) (x) is continuous at x.

(1) If there exists c ≥ 0 such that β−1n hd+5
n → c, then√

β−1n hd+1
n

(
f̂n (t|x)− f (t|x)

)
D→ N

( √
c

2f(x)E
1/2
1 , E2

f2(x)

)
.

(2) If β−1n hd+5
n →∞, then

1

h2n

(
f̂n (t|x)− f (t|x)

)
P→ E

1/2
1

2f (x)
.
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Remark 3.4.

The variance of the considered estimator is of order O
(

βn

hd+1
n

)
and not O

(
βn

hd
n

)
and consequently the rate of convergence is of order O

(√
β−1n hd+1

n

)
and not

O

(√
β−1n hdn

)
as usual obtained in density estimation and regression estimation.

It is due to the presence of the kernel K0.

In order to measure the quality of our recursive estimator (2.2), we use the Mean
Squared Error (MSE).

Proposition 3.5 (MSE of f̂n (t|x)). Under Assumptions A1 −A6, for t ∈ A (
[0, τ ] and assuming that f (2) (x, t) is continuous at (x, t) and that f (2) (x) is con-
tinuous at x.

(1) If a ∈ (0, β/ (d+ 5), then

MSE
[
f̂n (t|x)

]
=

E1

4f2 (x)
h4n + o

(
h4n
)
.

(2) If a = β/ (d+ 5), then

MSE
[
f̂n (t|x)

]
=

E1

4f2 (x)
h4n +

E2

f2 (x)

βn

hd+1
n

+ o

(
h4n +

βn

hd+1
n

)
.

(3) If a ∈ (β/ (d+ 5) , 1), then

MSE
[
f̂n (t|x)

]
=

E2

f2 (x)

βn

hd+1
n

+ o

(
βn

hd+1
n

)
.

The following Corollary ensures that the bandwidth which minimizes the MSE
depend on the stepsizes (γn) and (βn) and then the corresponding MSE depend
also on the stepsizes (γn) and (βn).

Corollary 3.6. Let Assumptions A1−A5 hold. To minimize the MSE of f̂n (t|x),
the stepsize (βn) must be chosen in GS (−1) and the stepsize (γn) must be chosen
in GS (−1), the bandwidth (hn) must equal({

(d+ 1)
E2

E1

}1/(d+5)

β1/(d+5)
n

)
.

Then, we have

MSE
[
f̂n (t|x)

]
=

1

4f2 (x)

(d+ 5)

(d+ 1)
(d+1)/(d+5)

E
(d+1)/(d+5)
1 E

4/(d+5)
2 β4/(d+5)

n

+o
(
β4/(d+5)
n

)
.

The following Corollary shows that a special choice of the stepsizes ((βn) , (γn)) =((
γ0n
−1) , (β0n−1)) ensures that the bandwidth which minimizes the MSE depend

on the stepsizes (βn) and (γn), which fulfilled that limn→∞ nγn = γ0, limn→∞ nβn =
β0 and that (γn) ∈ GS (−1) and (βn) ∈ GS (−1), then the optimal value for hn
depend on γ0 and β0 and the corresponding MSE depend also on γ0 and β0.
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Corollary 3.7. Let Assumptions A1−A5 hold. To minimize the MSE of f̂n (t|x),
the stepsize (βn) must be chosen in GS (−1), limn→∞ nβn = β0 and the stepsize
(γn) must be chosen in GS (−1), limn→∞ nγn = γ0 the bandwidth (hn) must equal({

(d+ 1)
E′2
E′1

}1/(d+5)

β
1/(d+5)
0 n−1/(d+5)

)
. (3.8)

Then, we have

MSE
[
f̂n (t|x)

]
=

1

4f2 (x)

(d+ 5)

(d+ 1)
(d+1)/(d+5)

E
′(d+1)/(d+5)
1 E

′4/(d+5)
2 β

4/(d+5)
0 n−4/(d+5)

+o
(
n−4/(d+5)

)
,

with

E′1 =

[
β0

S1 + S2

(β0 − 2a)
− γ0

f (t|x)S3

(γ0 − 2a)

]2
,

E′2 =
β0

(2β0 − (β − (d+ 1) a))

f(x, t)

G(t)

∫
Rd

∫
R
K2

0 (z)K2
1 (y)dydz.

3.1. Computational cost. The advantage of recursive estimators over their nonre-
cursive counterparts is that their update, from a sample of size n to one of size
n+1, requires fewer computations. This property can be generalized, if we suppose
that we receive separately two sets of data, the first one of cardinal n1 smaller or
equal to n − 1 and the second set of cardinal n2 = n − n1. First, we approximate

the sequence
(
f̂n

)
by the unobservable sequence

(
f̃n

)
recursively defined by

f̃n (x, t) = (1− βn) f̃n−1 (x, t)

+βnh
−d−1
n δnG

−1
(Yn)K0

(
x−Xn

hn

)
K1

(
t− Yn
hn

)
. (3.9)

We can check that it follows from (3.9) that

f̃n (x, t) =

n∏
j=n1+1

(1− βj) f̃n1 (x, t)

+

n−1∑
k=n1

 n∏
j=k+1

(1− βj)

 βk

hd+1
k

δkG
−1

(Yk)K0

(
x−Xk

hk

)
K1

(
t− Yk
hk

)

+
βn

hd+1
n

δnG
−1

(Yn)K0

(
x−Xn

hn

)
K1

(
t− Yn
hn

)
= α1f̃n1

(x, t) +

n−1∑
k=n1

ζk
βk

hd+1
k

δkG
−1

(Yk)K0

(
x−Xk

hk

)
K1

(
t− Yk
hk

)
+

βn

hd+1
n

δnG
−1

(Yn)K0

(
x−Xn

hn

)
K1

(
t− Yn
hn

)
,

where α1 =
∏n
j=n1+1 (1− βj) and ζk =

∏n
j=k+1 (1− βj). In order to highlight the

performance of our proposed estimator in terms of computational cost, and since
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Gn converge to G (see Lemma 5.4), we can consider the following estimator as a
consistent estimator of (2.3)

f̂n (x, t) =

n∏
j=n1+1

(1− βj) f̂n1
(x, t)

+

n−1∑
k=n1

 n∏
j=k+1

(1− βj)

 βk

hd+1
k

δkG
−1
n2

(Yk)K0

(
x−Xk

hk

)
K1

(
t− Yk
hk

)

+
βn

hd+1
n

δnG
−1
n (Yn)K0

(
x−Xn

hn

)
K1

(
t− Yn
hn

)
= α1f̂n1

(x, t) +

n−1∑
k=n1

ζk
βk

hd+1
k

δkG
−1
n2

(Yk)K0

(
x−Xk

hk

)
K1

(
t− Yk
hk

)
+

βn

hd+1
n

δnG
−1
n (Yn)K0

(
x−Xn

hn

)
K1

(
t− Yn
hn

)
.

Further, it follows from (2.4), that

f̂n (x) =

n∏
j=n1+1

(1− γj) f̂n1
(x) +

n−1∑
k=n1

 n∏
j=k+1

(1− γj)

 γk
hk
K0

(
x−Xk

hk

)

+
γn
hn
δnG

−1
n (Yn)K0

(
x−Xn

hn

)
= α̃1f̂n1

(x, t) +

n−1∑
k=n1

ζ̃k
γk
hk
K0

(
x−Xk

hk

)
+
γn
hn
K0

(
x−Xn

hn

)
,

where α̃1 =
∏n
j=n1+1 (1− γj) and ζ̃k =

∏n
j=k+1 (1− γj). It is clear, that we can

use a data-driven procedure to construct an optimal bandwidth based on the first
sample of size n1 and separately an optimal bandwidth based on the second sample
of size n−n1. Then the proposed estimator can be viewed as a linear combination
of two estimators, which improve the computational cost significantly.

4. Simulation experiments

In our simulation study, we consider three sample size, n = 100, n = 200 and
n = 300 and the three models used in Khardani and Semmar (2014) : 1- sinus case
: Y = sin (1.5X) + ε, 2- parabolic case : Y = 1 +X2 + ε, 3- exponential cas : Y =
exp (X − 0.2)+ε. In the three considered models, kernels K0 and K1 are considered

to be the standard normal distributions K0 (z) = 1√
2π

exp
(
− z

2

2

)
, K1 (z1, . . . , zd) =

(2π)
−d/2

exp
(
− 1

2

∑d
i=1 z

2
i

)
, X and ε are i.i.d. and follow respectively the normal

distribution N (0, Id) and N (0, 0.1Id), with d ∈ {1, 2}. For each considered model
and sample size n, we use various proportions of censoring levels, with the minimum
equal to 0% and the maximum equal to 40% and we approximate the average MSE
of the estimator and the standard deviations of the average MSE using N = 500
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trials of sample size n;

MSE =
1

N

N∑
k=1

{
f̂ [k] (Y |X)− f (Y |X)

}2

and

sdMSE =

√√√√ 1

N

N∑
k=1

{{
f̂ [k] (Y |X)− f (Y |X)

}2

−MSE

}2

,

where f̂ [k] (.) is the estimator computed from the kth sample. In order to assess
the impact of the censoring in the efficiency of the considered estimators we variate
the rate of censoring for each models by generating the censoring variables C by
an exponential distribution E (λ1) shifted by λ2 (for the exponential model), by a
normal distribution N (0, σ1) (for sinus case) and by N (0, σ2) (for parabolic case).
Thus, the behavior of the considered estimators is evaluated over a several parame-
ters, such as the sample size n, the rate of censoring τ controlled by (λ1, λ2, σ1, σ2)
and the dimension d.

Remark 4.1.
Since the optimal bandwidth (hn) given in (3.8) belongs to GS (−1/ (d+ 5)), then
according to the assumption A5(i), a = 1/ (d+ 5).

Moreover, in order to select the bandwidth selection, we consider a cross-validation
procedure, defined as follows; firstly, we choose a sequence of bandwidth hi = C i−ν

for i = 1, . . . , n, with C ∈ {0.5, 1, 1.5 . . . , 10} and ν ∈ {0.001, 0.002, . . . , 1}. Then,
the cross-validation criterion

CV (C, ν) =
1

n

n∑
i=1

(ĝ (Y |X)− ĝ−i (Y |X))
2
,

where ĝ (Y |X) represents one of the considered estimators including the recursive
and the non-recursive one, ĝ−i (Y |X) represents one of the considered estimators
using all the points except the ith observation (Xi, Yi), for i ∈ 1, . . . , n.

The stepsizes ((βn) , (γn)) equal respectively to
((
n−1

)
,
(
n−1

))
,((

n−1
)
,
(
[1− a]n−1

))
,
((

[1− a]n−1
)
,
(
n−1

))
or
((

[1− a]n−1
)
,
(
[1− a]n−1

))
.

These four choices are referred to as Recursive 1, 2, 3 and 4 respectively. Not-
ing that the special cases (βn) =

(
[1− a]n−1

)
, respectively (γn) =

(
[1− a]n−1

)
represent the case which minimizes the variance of the numerator respectively the
denominator of the proposed estimators (2.2) and the special cases (βn) =

(
n−1

)
,

respectively (γn) =
(
n−1

)
represent the case which minimizes the MSE of the

numerator respectively the denominator of the proposed estimators (2.2), see, for
instance Slaoui (2015, 2016) in the framework of the regression function.

Remark 4.2.
The choice (γn) =

(
[1− a]n−1

)
is equivalent to the choice (γn) = (hn/

∑n
k=1 hk),

this two choices belong to the class of estimators which minimizes the asymptotic
variance of the recursive kernel density estimators (for more details see Mokkadem
et al. (2009).

We can conclude from Tables 4.1, 4.2 and 4.3, that
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• In the three considered models, the sdMSE of the recursive estimator give
better results compared to the non-recursive estimator.
• In the third model, the recursive estimator outperformed the non-recursive

estimator in all the considered censoring levels, while in the first and the
second model, the recursive estimator outperformed the non-recursive es-
timator in all the considered censoring levels, with exception of the non-
censoring case.
• In many situations, the proposed recursive estimators with the stepsizes

((βn) , (γn)) =
((
n−1

)
,
(
[1− a]n−1

))
outperformed the non-recursive esti-

mator (2.1) in terms of estimation error.
• The estimators get closer to the true density function as sample size in-

creases and the proportion of the censoring level decreases.
• The Average MSEs decrease as the sample size increases.
• The Average MSEs increase as the percentage of censoring τ decreases.
• The Average MSEs decrease as the dimension d increases.

5. Proof

Throughout this section we use the following notation:

Πn =

n∏
i=1

(1− γj) ,

Qn =

n∏
j=1

(1− βj) .

Let us first state the following technical lemma.

Lemma 5.1. Let (vn) ∈ GS (v∗), (γn) ∈ GS (−α), (βn) ∈ GS (−β), m1 > 0 such
that m1 − v∗ε1 > 0 where ε1 is defined in ( 3.2), m2 > 0 and ε2 is defined in ( 3.3).
We have

lim
n→+∞

vnΠm1
n Qm2

n

n∑
k=1

Π−m1

k Q−m2

k

γk
vk

=


1

(cm1+m2−v∗ε2) if γn ≡ c βn
1
m2

if γn = o (βn)
1

m1−v∗ε1 if βn = o (γn)

(5.1)

Moreover, for all positive sequence (αn) such that limn→+∞ αn = 0, and all δ ∈ R,

lim
n→+∞

vnΠm1
n Qm2

n

[
n∑
k=1

Π−m1

k Q−m2

k

γk
vk
αk + δ

]
= 0. (5.2)

Lemma 5.2. (Bias and variance of fn(x, t)). Under Assumptions A1, A2, A4
and A5(i)− (iii), and assuming that f (2) (x, t) is continuous at (x, t).
If a ∈ [0, β/(d+ 5)], then

E
[
f̂n (x, t)

]
− f (x, t)

=
1

2 (1− 2aε2)
h2n

 d∑
j=1

(
µ2
jf

(2)
j,j (x, t)

)
+m2f

(2)(x, t)

+ o(h2n). (5.3)
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If a ∈]β/(d+ 5), 1[, then

E
[
f̂n (x, t)

]
− f (x, t) = o

(√
βnh

−d−1
n

)
. (5.4)

If a ∈ [β/(d+ 5), 1[, then

V ar
[
f̂n (x, t)

]
=

1

(2− (β − (d+ 1)a) ε2)

βn

hd+1
n

f(x, t)

G(t)

∫
R
K2

0 (z)dz

∫
Rd

K2
1 (y)dy. (5.5)

If a ∈ [0, β/(d+ 5)[, then

V ar
[
f̂n (x, t)

]
= o(h4n). (5.6)

Lemma 5.3. (Bias and variance of fn). Under Assumptions A3, A4(i), A5(iv)−
(v), and assuming that f (2) (x) is continuous at x.
If a ∈ [0, α/(d+ 4)], then

E
[
f̂n (x)

]
− f (x) =

1

2(α− 2aε1)
h2n

d∑
j=1

(
µ2
jf

(2)
j,j (x)

)
+ o(h2n). (5.7)

If a ∈]α/(d+ 4), 1[, then

E
[
f̂n (x)

]
− f (x) = o

(√
γnh

−d
n

)
. (5.8)

If a ∈ [α/(d+ 4), 1[, then

V ar
[
f̂n (x)

]
=

1

(2− (α− ad) ε1)

γn
hdn
f (x)

∫
Rd

K2
0 (z)dz. (5.9)

If a ∈ [0, α/(d+ 4)[, then

V ar
[
f̂n (x)

]
= o(h4n).

Lemma 5.1 is widely applied throughout the proofs. Lemmas 5.1 and 5.2 are
proved in Sections 5.1 and 5.2, respectively. The proof of Lemma 5.3 is given
in Mokkadem et al. (2009).

5.1. Proof of Lemma 5.1. To prove Lemma 5.1, we first establish (5.2). Set

Ln = vnΠm1
n Qm2

n

[
n∑
k=1

Π−m1

k Q−m2

k

γk
vk
αk + δ

]
= 0.

We have

Ln =
vn
vn−1

(1− γn)
m1 (1− βn)

m2 Ln−1 + γnαn (5.10)

with, since (vn) ∈ GS (v∗) and in view of (3.2),

vn
vn−1

(1− γn)
m1 =

(
1 +

v∗

n
+ o

(
1

n

))
(1−m1γn + o (γn))

= (1− v∗ε1γn + o (γn)) (1−m1γn + o (γn))

= 1− (m1 − v∗ε1) γn + o (γn) .
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and in view of (3.3),

(1− βn)
m2 = 1−m2βn + o (βn) ,

then, it follows that

vn
vn−1

(1− γn)
m1 (1− βn)

m2

= (1− (m1 − v∗ε1) γn + o (γn)) (1−m2βn + o (βn)) ,

= 1− [(m1 − v∗ε1) γn +m2βn] + o (γn + βn)

then,

vn
vn−1

(1− γn)
m1 (1− βn)

m2

=

 1− (cm1 +m2 − v∗ε2)βn + o (βn) if γn ≡ c βn
1−m2βn + o (βn) if γn = o (βn)
1− (m1 − v∗ε1) γn + o (γn) if βn = o (γn)

(5.11)

and from (5.10), Set A1 ∈ ]0,min {cm1 +m2 − v∗ε2;m2}[ and A2 ∈ ]0,m1 − v∗ε1[;
for n large enough, we obtain

Ln ≤
{

(1−A1βn)Ln−1 + γnαn when limn→+∞ γnβ
−1
n ∈ [0,+∞[

(1−A2γn)Ln−1 + γnαn when limn→+∞ γnβ
−1
n =∞

and (5.2) follows straightforwardly from the application of Lemma 4.1.1 in Duflo
(1997). Now, let:

ξ =


1

(cm1+m2−v∗ε2) if γn ≡ c βn
1
m2

if γn = o (βn)
1

m1−v∗ε1 if βn = o (γn)

Moreover, we let C denote a positive generic constant that may vary from line to
line; we have

vnΠm1
n Qm2

n

n∑
k=1

Π−m1

k Q−m2

k

γk
vk
− ξ = vnΠm1

n Qm2
n

[
n∑
k=1

Π−m1

k Q−m2

k

γk
vk
− ξPn

]

with, in view of (5.11),

Pn = v−1n Π−m1
n Q−m2

n

=

n∑
k=2

(
v−1k Π−m1

k Q−m2

k − v−1k−1Π−m1

k−1 Q
−m2

k−1
)

+ C

=

n∑
k=2

v−1k Π−m1

k Q−m2

k

[
1− vk

vk−1
(1− γk)

m1 (1− βk)
m2

]
+ C

=

n∑
k=2

v−1k Π−m1

k Q−m2

k

[
ξ−1 (γk + βk) + o (γk + βk)

]
+ C.
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It follows that

vnΠm1
n Qm2

n

n∑
k=1

Π−m1

k Q−m2

k

γk
vk
− ξ

= vnΠm1
n Qm2

n

[
n∑
k=2

v−1k Π−m1

k Q−m2

k o (γk + βk) + C

]
.

and (5.1) follows from the application of (5.2), which conclude the proof of Lemma 5.1.

5.2. Proof of Lemma 5.2. First, for x such that f̂n(x) 6= 0, we have

f̂n (x, t)− f (x, t)

= Qn

n∑
k=1

Q−1k βkh
−d−1
k δkG

−1
n (Yk)K0

(
x−Xk

hk

)
K1

(
t− Yk
hk

)
− f(x, t).

The proof is standard, in the sense that is not affected by the dependence structure.
Using the fact that for any measurable function ψ

1{T1≤C1}ψ(Y1) = 1{T1≤C1}ψ(T1).

First, it follows from (3.9), that

f̃n (x, t) = Qn

n∑
k=1

Q−1k βkh
−d−1
k δkG

−1
(Yk)K0

(
x−Xk

hk

)
K1

(
t− Yk
hk

)
, (5.12)

and we let

Zk(x, t) = h−d−1k 1{Tk≤Ck}G
−1

(Yk)K0

(
x−Xk

hk

)
K1

(
t− Yk
hk

)
. (5.13)

Then, it follows that

E
[
f̃n (x, t)

]
− f (x, t) = Qn

n∑
k=1

Q−1k βkE {Zk(x, t)} − f(x, t).

The following Lemma 5.4 is widely used and plays a very important role in the
proofs also in equation (5.14) (below) which shows the same asymptotic behavior

of the two estimators f̂n (x, t) and f̃n (x, t).

Lemma 5.4. (Brunel and Comte (2005))

E

{
sup

t∈A([0,τ ]

∣∣Gn(t)−G(t)
∣∣} = O

(
1

n

)
as n→∞.
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First, using lemma 5.4, we have

E

{
sup

t∈A([0,τ ]

|f̂n(x, t)− f̃n(x, t)|

}

= E

{
sup

t∈A([0,τ ]

∣∣∣∣∣Qn
n∑
k=1

Q−1k βkh
−d−1
k δk

(
G
−1
n (Yk)−G−1 (Yk)

)
K0

(
x−Xk

hk

)
K1

(
t− Yk
hk

)∣∣∣∣}
6

∣∣∣∣∣‖K1‖∞ ×
supt∈A([0,τ ] |Gn(t)−G(t)|
Gn(τ +Dhk)G(τ +Dhk)

Qn

n∑
k=1

Q−1k βkh
−d−1
k E

{
K0

(
x−Xk

hk

)}∣∣∣∣∣
where D is related to the support of K1. Since Gn(τ + Dhk) and G(τ + Dhk) →
G(τ) > 0, we have under Lemmas 5.1 and 5.4

E

{
sup

t∈A([0,τ ]

∣∣∣f̂n(x, t)− f̃n(x, t)
∣∣∣} = O

(
1

nhdn

)
= o (1) . (5.14)

Now, using the properties of conditional expectation, the independence between
(X,T ) and C, and Taylor’s expansion with integral, we have

E {Zk(x, t)} − f (x, t)

= h−d−1k E
{
K0

(
x−X1

hn

)
E
[
1{T1≤C1}G

−1
(Yk)K1

(
t− Yk
hk

)∣∣∣∣Xk, Tk

]}
− f (x, t)

= h−d−1k E
{
G
−1

(Tk)K0

(
x−Xk

hk

)
K1

(
t− Tk
hk

)
E
[
1{Tk≤Ck}|Xk, Tk

]}
− f (x, t)

= h−d−1k E
{
K0

(
x−Xk

hk

)
K1

(
t− Tk
hk

)}
− f (x, t) (5.15)

=

∫
Rd

∫
R
K0(u)K1(v) [f (x− hku, t− hkv)− f (x, t)] dudv

=
h2k
2

 d∑
j=1

µ2
jf

(2)
j,j (x, t) +m2f

(2)(x, t)

+ ηk (x, t) , (5.16)

with

ηk (x, t) =

∫
Rd

∫
R
K0(r)K1(s)

f (x− hku, t− hkv)− f (x, t) + rhk

d∑
j=1

∂f

∂xj
(x, t)

+shk
∂f

∂t
(x, t)− h2k

2

d∑
j=1

r2j
∂2f

∂2xj
(x, t)− sh2k

d∑
j=1

rj
∂2f

∂xj∂t
(x, t)

− s2
h2k
2

∂2f

∂2t
(x, t)

}
drds.

Since f
(2)
i,j is bounded and continuous at (x, t) for all i, j ∈ {1, . . . , d}, we have

limk→∞ ηk (x, t) = 0. In the case when a ≤ β/ (d+ 5), we have limn→∞ (nβn) > 2a,
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the application of Lemma 5.1, gives

E
[
f̃n (x, t)

]
− f (x, t)

=
1

2
Qn

n∑
k=1

Q−1k βk

h2k
2

 d∑
j=1

µ2
jf

(2)
j,j (x, t) +m2f

(2)(x, t) + o(1)


=

1

2(1− 2aε2)
h2n

 d∑
j=1

µ2
jf

(2)
j,j (x, t) +m2f

(2)(x, t) + o(1)

 ,
and (5.3) follows from (5.14). In the case when a > β/ (d+ 5), we have h2n =

o
(√

βnh
−d−1
n

)
; since limn→∞ (nβn) > (β − (d+ 1) a) /2, the application of Lemma 5.1

ensures that

E
[
f̃n (x, t)

]
− f (x, t) =

1

2
Qn

n∑
k=1

Q−1k βko

(√
βkh

−d−1
k

)
= o

(√
βnh

−d−1
n

)
,

then, (5.4) follows from (5.14). Now, we have

V ar
[
f̃n (x, t)

]
= Q2

n

n∑
k=1

Q−2k β2
kV ar [Zk (x, t)]

= Q2
n

n∑
k=1

Q−2k β2
kh
−(d+1)
k

[∫
Rd

∫
R

K2
0 (z)K2

1 (y)

G (t− yhk)
f (x− zhk, t− yhk)

−hd+1
k

(∫
Rd

∫
R
K0 (z)K1 (y) f (x− zhk, t− yhk)

)2
]
dzdy

= Q2
n

n∑
k=1

Q−2k β2
kh
−(d+1)
k

[
f(x, t)

G(t)

∫
Rd

∫
R
K2

0 (z)K2
1 (y)dzdy + vk (x, t)

−hd+1
k ṽk (x, t)

]
with

vk (x, t) =

∫
Rd

∫
R
K2

0 (z)K2
1 (y)

[
f (x− zhk, t− yhk)

G (t− yhk)
− f(x, t)

G(t)

]
dzdy

ṽk (x, t) =

(∫
Rd

∫
R
K0 (z)K1 (y) f (x− zhk, t− yhk)

)2

.

Since G and f are bounded and continuous, we have limk→∞ vk (x) = 0 and

limk→∞ hd+1
k ṽk (x) = 0. In the case when a ≥ β/ (d+ 5), we have limn→∞ (nβn) >

(β − (d+ 1) a) /2, and the application of Lemma 5.1 gives

V ar
[
f̃n (x, t)

]
= Q2

n

n∑
k=1

Q−2k β2
kh
−(d+1)
k

[
f (x, t)

G (t)

∫
Rd

∫
R
K2

0 (z)K2
1 (y) dzdy + o (1)

]
=
f(x, t)

G(t)

∫
Rd

∫
R
K2

0 (z)K2
1 (y)dzdy

1

(2− (β − (d+ 1)a)ε2

βn

hd+1
n

+ o

(
βn

hd+1
n

)
,
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then, (5.5) follows from (5.14). In the case when a < β/ (d+ 5), we have βnh
−(d+1)
n =

o
(
h4n
)
; since limn→∞ (nβn) > 2a, the application of Lemma 5.1 ensures that

V ar
[
f̃n (x, t)

]
= Q2

n

n∑
k=1

Q−2k βko
(
h4k
)

= o
(
h4n
)
,

then, (5.6) follows from (5.14).

5.3. Proof of Proposition 3.2.

Let us first note that, for x such that f̂n(x) 6= 0, we have

f̂n(t|x)− f(t|x) = Bn(x)
f(x)

f̂n(x)
, (5.17)

with

Bn(x) =
1

f(x)

[
f̂n (x, t)− f̃n (x, t)

]
+

1

f(x)

[
f̃n (x, t)

−f (x, t)]− f(t|x)

f(x)

[
f̂n(x)− f(x)

]
.

It follows from (5.17), that the asymptotic behavior of f̂n(t|x) − f(t|x) can be
deduced from the one of Bn(x). First, it follows from (5.3) and (5.7), in the case
when a ≤ β/ (d+ 5) (thanks to the assumption A5(iv)) that

E[f̂n(t|x)]− f(t|x) =
1

f(x)

 1

2(1− 2aε2)

 d∑
j=1

(
µ2
jf

(2)
j,j (x, t)

)
+m2f

(2)(x, t)

h2n


− f(t|x)

f(x)

h2n
2(1− 2aε1)

d∑
j=1

(
µ2
jf

(2)
j,j (x)

)
+ o(h2n),

which proves (3.4). Now, in the case when a > β/ (d+ 5), the combination of (5.4)
and (5.8) gives (3.5).
Now, in the case when a ≥ β/ (d+ 5), the combinations of (5.17), (5.5), (5.9), (5.14)
ensures that,

V ar
(
f̂n(t|x)

)
=

1

f2(x)

[
f(x, t)

G(t)

] ∫
Rd

∫
R
K2

0 (z)K2
1 (y)dzdy

1

(2− (β − (d+ 1)a)ε2)

βn

hd+1
n

+
f2(t|x)

f2(x)

[
f(x)

∫
Rd

K2
0 (z) dz

1

2− (1− ad)ε2

]
γn
hdn

−f(t|x)

f2(x)
cov

(
f̃n (x, t) , f̂n (x)

)
+ o

(
βn

hd+1
n

)
, (5.18)

with

cov
(
f̃n (x, t) , f̂n (x)

)
= E[f̃n (x, t) f̂n (x)]− E[f̃n (x, t)]E[f̂n (x)].
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Moreover, it follows from (2.5) and (2.6), that

f̃n (x, t) f̂n (x)

= Qn

n∑
k=1

Q−1k βkh
−d−1
k δkG

−1
(Yk)K0

(
x−Xk

hk

)
K1

(
t− Yk
hk

)

×Πn

n∑
k=1

Π−1k γkh
−d
k K0

(
x−Xk

hk

)

= QnΠn

n∑
k=1

Q−1k Π−1k βkγkh
−2d−1
k δkG

−1
(Yk)K2

0

(
x−Xk

hk

)
K1

(
t− Yk
hk

)

+QnΠn

n∑
i,j=1
i 6=j

Q−1i Π−1j βiγjh
−d−1
i h−dj δiG

−1
(Yk)K0

(
x−Xi

hi

)

K0

(
x−Xj

hj

)
K1

(
t− Yi
hi

)
=: Θ1

n + Θ2
n.

Then, we have

E[f̃n (x, t) f̂n (x)] = E[Θ1
n] + E[Θ2

n].

First, the application of Lemma 5.1 ensures that,

E[Θ1
n] = QnΠn

n∑
k=1

Q−1k Π−1k βkγkh
−2d−1
k E

[
δkG

−1
(Yk)K2

0

(
x−Xk

hk

)
K1

(
t− Yk
hk

)]

= QnΠn

n∑
k=1

Q−1k Π−1k βkγkh
−2d−1
k E

[
K2

0

(
x−Xk

hk

)
K1

(
t− Yk
hk

)
E
[
δkG

−1
(Yk) |(X,T )

]]
= QnΠn

n∑
k=1

Q−1k Π−1k βkγkh
−2d−1
k∫

Rd

∫
R
K2

0

(
x− z
hk

)
K1

(
t− y
hk

)
f(z, y)dzdy

= QnΠn

n∑
k=1

Q−1k Π−1k βkγkh
−d
k∫

Rd

∫
R
K2

0 (u)K1(v)f(x− uhk, t− vhk)dudv (5.19)

= QnΠn

n∑
k=1

Q−1k Π−1k βkO
(
γkh
−d
k

)
= o

(
βn
hdn

)
. (5.20)



20 Yousri Slaoui and Salah Khardani

Moreover, a conditional expectation ensures that

E[Θ2
n]

= E

QnΠn

n∑
i,j=1,

Q−1i Π−1j βiγjh
−d−1
i h−dj δiG

−1
(Yi)K0

(
x−Xi

hi

)

K0

(
x−Xj

hj

)
K1

(
t− Yi
hi

)]
= QnΠn

n∑
i,j=1
i 6=j

Q−1i Π−1j βiγjh
−d−1
i h−dj

×E
[
K0

(
x−Xi

hi

)
K0

(
x−Xj

hj

)
K1

(
t− Yi
hi

)
E
{
δiG
−1

(Yi) |(Xi, Xj , Yi)
}]

= QnΠn

n∑
i,j=1
i 6=j

Q−1i Π−1j βiγjh
−d−1
i h−dj E

[
K0

(
x−Xi

hi

)
K1

(
t− Yi
hi

)]
︸ ︷︷ ︸

ϕ1
n

×E
[
K0

(
x−Xj

hj

)]
︸ ︷︷ ︸

ϕ2
n

. (5.21)

The combination of (5.15) and (5.16), implies that

ϕ1
n = hd+1

i

f(x, t) +
h2i
2

 d∑
j=1

(
µ2
jf

(2)
j,j (x, t)

)
+m2f

(2)(x, t)

+ o(h2k)

 . (5.22)

Moreover, a Taylor expansion ensures that

ϕ2
n = hdj

f (x) +
h2j
2

d∑
j=1

(
µ2
jf

(2)
j,j (x)

)
+ o

(
h2j
) . (5.23)

Then, the application of Lemma 5.1 together with (5.21), (5.22), (5.23), gives

E[Θ2
n]− E[f̂n (x, t)]E[f̂n (x)] = o

(
h4n
)
. (5.24)

Consequently, in the case when a ≥ β/ (d+ 5), the combination of (5.18), (5.19), (5.14)
and (5.24) ensures that,

V ar
(
f̂n(t|x)

)
=

1

f2 (x)

[
f (x, t)

G (t)

] ∫
Rd

∫
R
K2

0 (z)K2
1 (y) dzdy

1

(2− (β − (d+ 1) a) ε2)

βn

hd+1
n

+ o

(
βn

hd+1
n

)
,

which proves (3.7). Now, in the case when a < β/ (d+ 5), we have βnh
−d−1
n =

o
(
h4n
)
, and the application of Lemma 5.1 ensures that

V ar
(
f̂n(t|x)

)
= o

(
h4n
)
,

which gives (3.6).
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5.4. Proof of Theorem 3.3. Let us first state the following corollaries, which give

the weak convergence rate of the estimator f̂n(x) defined in (2.6) and the weak

convergence rate of the estimator f̂n(x, t) defined in (2.5) respectively.

Corollary 5.5 (Weak pointwise convergence rate). Let Assumptions A3, A4(i),
A5(iv)− (v) hold, and assume that f (2)(x) is continuous at x.

(1) If there exists c ≥ 0 such that γ−1n hd+4
n → c, then√

β−1n hd+1
n

(
f̂n (x)− f (x)

)
D→ N

√c
2

1

2 (α− 2aε1)

d∑
j=1

(
µ2
jf

(2)
j,j (x)

)
,

1

(2− (α− ad) ε1)
f (x)

∫
Rd

K2
0 (z) dz

 .

(2) If γ−1n hd+4
n →∞, then

1

h2n

(
f̂n (x)− f (x)

)
P→ 1

2 (α− 2aε1)

d∑
j=1

(
µ2
jf

(2)
j,j (x)

)
.

Corollary 5.6 (Weak pointwise convergence rate). Let Assumptions A1, A2, A4
and A5(i)− (iii) hold, and assume that f (2) (x, t) is continuous at (x, t).

(1) If there exists c ≥ 0 such that β−1n hd+5
n → c, then√

β−1n hd+1
n

(
f̂n(x, t)− f(x, t)

)
D→ N

(√
c
2 E

1/2
1 , E2

)
.

(2) If β−1n hd+5
n →∞, then

1

h2n

(
f̂n(x, t)− f(x, t)

)
P→ 1

2
C

1/2
1 .

Corollary 5.6 is proved in Section 5.4.1, while the proof of Corollary 5.5 is given
in Mokkadem et al. (2009).
Now, it follows from (5.17), for x such that fn(x) 6= 0, that√

β−1n hd+1
n

(
f̂n(t|x)− f(t|x)

)
=

1

f(x)

√
β−1n hd+1

n

(
f̂n(x, t)− f(x, t)

)
− f(t|x)

f(x)

√
β−1n hd+1

n

(
f̂n(x)− f(x)

)
=

1

f(x)

√
β−1n hd+1

n

(
f̂n(x, t)− f(x, t)

)
−f(t|x)

f(x)

√
β−1n hnγn

√
γnhdn

(
fn(x)− E

[
f̂n (x)

])
−f(t|x)

f(x)

√
β−1n hd+1

n

(
E
[
f̂n (x)

]
− f (x)

)
. (5.25)

Part 1 of Theorem 3.3 follows from the combination of (5.7), (5.25) and the first
part of Corollary 5.6.
Moreover, it follows from (5.17) that, for x such that fn(x) 6= 0, we have

h−2n

(
f̂n(t|x)− f(t|x)

)
=

1

f(x)
h−2n

(
f̂n(x, t)− f(x, t)

)
−f(t|x)

f(x)
h−2n

(
f̂n(x)− f(x)

)
. (5.26)
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Part 2 of Theorem 3.3 follows from the combination of (5.26), the second part of
Corollary 5.5 and the second part of Corollary 5.6.

5.4.1. Proof of Corollary 5.6. Let us first assume that, if a ≥ β/ (d+ 5), then√
β−1n hd+1

n

(
f̂n(x, t)− E

[
f̂n(x, t)

])
D→ N (0, E2) . (5.27)

In the case when a > β/ (d+ 5), Part 1 of Corollary 5.6 follows from the com-
bination of (5.4) and (5.27). In the case when a = β/ (d+ 5), Parts 1 and 2 of
Corollary 5.6 follow from the combination of (5.3) and (5.27). In the case when
a < β/ (d+ 5), (5.6) implies that

h−2n

(
f̂n(x, t)− E

[
f̂n(x, t)

])
D→ 0,

and the application of (5.3) gives Part 2 of Corollary 5.6.
We now prove (5.27). In view of (2.5) and (5.13), we have

f̂n (x, t)− E
[
f̂n (x, t)

]
= Qn

n∑
k=1

Q−1k βk (Zk (x, t)− E [Zk (x, t)]) .

Set

Yk (x, t) = Q−1k βk (Zk (x, t)− E [Zk (x, t)]) .

The application of Lemma 5.1 ensures that

v2n =

n∑
k=1

V ar (Yk (x, t))

=

n∑
k=1

Q−2k β2
kV ar (Zk (x, t))

=

n∑
k=1

Q−2k β2
kh
−(d+1)
k

[
f (x, t)

G (t)

∫
Rd

∫
R
K2

0 (z)K2
1 (y) dzdy + o (1)

]
=

1

Q2
n

βn

hd+1
n

[
1

2− (β − a (d+ 1)) ε2

f (x, t)

G (t)

∫
Rd

∫
R
K2

0 (z)K2
1 (y) dzdy + o (1)

]
.

On the other hand, we have, for all p > 0,

E
[
|Zk (x, t)|2+p

]
= O

(
1

h
(d+1)(1+p)
k

)
.

By using the fact that limn→∞ (nβn) > (β − a (d+ 1)) /2, implies that there exists
p > 0 such that

lim
n→∞

(nβn) >
1 + p

2 + p
(β − a (d+ 1)) .
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The application of Lemma 5.1, ensures that
n∑
k=1

E
[
|Yk (x, t)|2+p

]
= O

(
n∑
k=1

Q−2−pk β2+p
k E

[
|Zk (x, t)|2+p

])

= O

(
n∑
k=1

Π−2−pk β2+p
k

h
(d+1)(1+p)
k

)

= O

(
β1+p
n

Q2+p
n h

(d+1)(1+p)
n

)
,

from which we conclude that

1

v2+pn

n∑
k=1

E
[
|Yk (x, t)|2+p

]
= O

([
βnh

−d−1
n

]p/2)
= o (1) .

The convergence in (5.27) then follows from the application of Lyapounov’s Theo-
rem.

6. Conclusion

This paper proposes an adaptive recursive kernel conditional density estimation
under censored data (2.2). The proposed estimators follow asymptotically the nor-
mal distribution. The proposed estimators are compared to the non-recursive con-
ditional density estimator for censored data (2.1). We showed that using a specific
cross-validation bandwidth selection and some particularly stepsizes, the proposed
recursive estimators often provides better results compared to the non-recursive
conditional density estimator in terms of estimation error.

However the main advantage of the recursive method is that it runs considerably
faster than the classical one, see for instance, Slaoui (2014a) in the framework of
density estimation, and Slaoui (2014b) in the framework of distribution estimation.

We plan to make an extensions of our proposed estimators by considering Bern-
stein polynomials rather than kernels and to propose an adaptation of the estima-
tors developed in Jmaei et al. (2017) and Slaoui and Jmaei (2019) in the context
of conditional density estimation under censoring data.

In conclusion, the proposed adaptive recursive estimators often provides better
results compared to the non-recursive under censoring data in terms of estimation
error and much better in terms of computational costs.
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E. Ould-Säıd. A strong uniform convergence rate of kernel conditional quantile
estimator under random censorship. Statist. Probab. Lett. 76 (6), 579–586 (2006).
MR2255786

W. Polonik and Q. Yao. Conditional minimum volume predictive regions for sto-
chastic processes. J. Amer. Statist. Assoc. 95 (450), 509–519 (2000). MR1803169

http://www.ams.org/mathscinet-getitem?mr=MR0624435
http://www.ams.org/mathscinet-getitem?mr=MR2109491
http://www.ams.org/mathscinet-getitem?mr=MR1422114
http://www.ams.org/mathscinet-getitem?mr=MR1905751
http://www.ams.org/mathscinet-getitem?mr=MR3740720
http://www.ams.org/mathscinet-getitem?mr=MR0093867
http://www.ams.org/mathscinet-getitem?mr=MR3285875
http://www.ams.org/mathscinet-getitem?mr=MR3944666
http://www.ams.org/mathscinet-getitem?mr=MR1889835
http://www.ams.org/mathscinet-getitem?mr=MR0499560
http://www.ams.org/mathscinet-getitem?mr=MR3072717
http://www.ams.org/mathscinet-getitem?mr=MR0976536
http://www.ams.org/mathscinet-getitem?mr=MR0913571
http://www.ams.org/mathscinet-getitem?mr=MR2351104
http://www.ams.org/mathscinet-getitem?mr=MR2508006
http://www.ams.org/mathscinet-getitem?mr=MR2255786
http://www.ams.org/mathscinet-getitem?mr=MR1803169


26 Yousri Slaoui and Salah Khardani
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Y = sin (1.5X) + ε
d=1 n = 100 n = 200 n = 300

0% MSE sdMSE MSE sdMSE MSE sdMSE
non-recursive 0.47169 0.34755 0.45528 0.34661 0.44123 0.34543
Recursive 1 0.49923 0.35809 0.49374 0.35087 0.48287 0.35026
Recursive 2 0.47490 0.34643 0.46969 0.34628 0.45679 0.34564
Recursive 3 0.50849 0.36673 0.49961 0.36614 0.48587 0.36146
Recursive 4 0.47133 0.34781 0.46427 0.34446 0.45537 0.34265

10% MSE sdMSE MSE sdMSE MSE sdMSE
non-recursive 0.50374 0.34491 0.48050 0.34540 0.46866 0.33591
Recursive 1 0.52690 0.36925 0.50962 0.35586 0.46906 0.33225
Recursive 2 0.48405 0.34879 0.47177 0.34016 0.46035 0.33241
Recursive 3 0.56004 0.39488 0.53764 0.37361 0.52663 0.37624
Recursive 4 0.49605 0.35918 0.48073 0.34653 0.45601 0.33132

40% MSE sdMSE MSE sdMSE MSE sdMSE
non-recursive 0.89366 0.79130 0.75139 0.63007 0.60624 0.53639
Recursive 1 0.69192 0.46411 0.60886 0.38604 0.50076 0.34334
Recursive 2 0.57606 0.38179 0.51977 0.34627 0.48482 0.33539
Recursive 3 0.80475 0.58158 0.68932 0.45206 0.60226 0.39245
Recursive 4 0.63578 0.43047 0.56176 0.36897 0.54207 0.34603
d=2 n = 100 n = 200 n = 300

0% MSE sdMSE MSE sdMSE MSE sdMSE
non-recursive 0.43293 0.33216 0.42792 0.32986 0.40528 0.31968
Recursive 1 0.45928 0.34876 0.45428 0.32207 0.44358 0.32157
Recursive 2 0.43594 0.31783 0.43217 0.31887 0.42936 0.31727
Recursive 3 0.46675 0.33567 0.45875 0.33465 0.44667 0.33284
Recursive 4 0.43367 0.32938 0.42628 0.32619 0.41823 0.31458

10% MSE sdMSE MSE sdMSE MSE sdMSE
non-recursive 0.46249 0.32838 0.44318 0.32978 0.43234 0.32763
Recursive 1 0.48378 0.33898 0.46786 0.32674 0.43156 0.30498
Recursive 2 0.44438 0.32216 0.43345 0.31224 0.42456 0.34512
Recursive 3 0.51447 0.36287 0.49351 0.34494 0.48340 0.34536
Recursive 4 0.45593 0.32921 0.44165 0.31823 0.41856 0.31486

40% MSE sdMSE MSE sdMSE MSE sdMSE
non-recursive 0.82731 0.72638 0.68974 0.57832 0.55649 0.49285
Recursive 1 0.63534 0.42625 0.55889 0.35437 0.45966 0.31562
Recursive 2 0.52872 0.35246 0.47745 0.31786 0.44556 0.30785
Recursive 3 0.73842 0.53584 0.63775 0.41959 0.55825 0.36416
Recursive 4 0.58615 0.39527 0.52365 0.33945 0.49782 0.31735

Table 4.1. Average MSEs and standard deviation of MSE
(approximated using N = 500 trials) of the non-recursive es-
timator (2.1) and four recursive estimators; recursive 1 corre-
spond to the estimator (2.2) with the choice ((βn) , (γn)) =((
n−1

)
,
(
n−1

))
, recursive 2 correspond to the estimator (2.2)

with the choice ((βn) , (γn)) =
((
n−1

)
,
(
[1− a]n−1

))
, recur-

sive 3 correspond to the estimator (2.2) with the choice
((βn) , (γn)) =

((
[1− a]n−1

)
,
(
n−1

))
and recursive 4 corre-

spond to the estimator (2.2) with the choice ((βn) , (γn)) =((
[1− a]n−1

)
,
(
[1− a]n−1

))
. Here we consider the sinus model

Y = sin (1.5X) + ε, X ∼ N (0, Id) and ε ∼ N (0, 0.1Id), with
d ∈ {1, 2} and we consider three sample sizes n = 100, n = 200
and n = 300.
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Y = 1 +X2 + ε
d=1 n = 100 n = 200 n = 300

0% MSE sdMSE MSE sdMSE MSE sdMSE
non-recursive 0.32769 0.31714 0.30391 0.31198 0.28309 0.31694
Recursive 1 0.34989 0.30718 0.36159 0.31387 0.28573 0.31105
Recursive 2 0.31787 0.31363 0.32957 0.30926 0.27265 0.30109
Recursive 3 0.37645 0.30476 0.38472 0.32429 0.27983 0.31104
Recursive 4 0.34012 0.30847 0.35229 0.31245 0.27637 0.31225

10% MSE sdMSE MSE sdMSE MSE sdMSE
non-recursive 0.39926 0.34010 0.39073 0.33699 0.38957 0.32745
Recursive 1 0.44993 0.34646 0.44842 0.33971 0.44698 0.33567
Recursive 2 0.42835 0.33860 0.42232 0.33608 0.41742 0.33528
Recursive 3 0.46821 0.35069 0.46492 0.34198 0.46423 0.33839
Recursive 4 0.43682 0.34247 0.43437 0.33434 0.43444 0.33263

40% MSE sdMSE MSE sdMSE MSE sdMSE
non-recursive 0.45167 0.37771 0.41885 0.37020 0.41249 0.37353
Recursive 1 0.48201 0.36498 0.46823 0.35601 0.45645 0.35189
Recursive 2 0.46431 0.34759 0.44149 0.34528 0.43427 0.33518
Recursive 3 0.51110 0.38720 0.49747 0.37411 0.48358 0.40111
Recursive 4 0.47373 0.36587 0.46035 0.35497 0.45824 0.35339
d=2 n = 100 n = 200 n = 300

0% MSE sdMSE MSE sdMSE MSE sdMSE
non-recursive 0.30189 0.29118 0.27796 0.28637 0.26332 0.29187
Recursive 1 0.32145 0.28698 0.33147 0.28963 0.26448 0.28341
Recursive 2 0.29182 0.28714 0.30456 0.28486 0.25043 0.27957
Recursive 3 0.34548 0.27784 0.35465 0.29865 0.25644 0.28549
Recursive 4 0.31264 0.28349 0.32776 0.28672 0.25386 0.28646

10% MSE sdMSE MSE sdMSE MSE sdMSE
non-recursive 0.36629 0.31884 0.35843 0.30935 0.35685 0.30586
Recursive 1 0.41347 0.31828 0.41182 0.31285 0.41098 0.30289
Recursive 2 0.39458 0.31284 0.38756 0.30979 0.38162 0.30636
Recursive 3 0.42984 0.32089 0.42764 0.31138 0.42306 0.310483
Recursive 4 0.41872 0.31465 0.39848 0.30697 0.39858 0.30335

40% MSE sdMSE MSE sdMSE MSE sdMSE
non-recursive 0.41464 0.34673 0.38485 0.33979 0.37854 0.34744
Recursive 1 0.44214 0.33261 0.42924 0.32623 0.41989 0.32104
Recursive 2 0.42644 0.31936 0.40526 0.31429 0.39496 0.30618
Recursive 3 0.46916 0.35525 0.45628 0.34366 0.44388 0.36845
Recursive 4 0.43486 0.33684 0.42269 0.32847 0.42632 0.32873

Table 4.2. Average MSEs and standard deviation of MSE
(approximated using N = 500 trials) of the non-recursive es-
timator (2.1) and four recursive estimators; recursive 1 corre-
spond to the estimator (2.2) with the choice ((βn) , (γn)) =((
n−1

)
,
(
n−1

))
, recursive 2 correspond to the estimator (2.2)

with the choice ((βn) , (γn)) =
((
n−1

)
,
(
[1− a]n−1

))
, recur-

sive 3 correspond to the estimator (2.2) with the choice
((βn) , (γn)) =

((
[1− a]n−1

)
,
(
n−1

))
and recursive 4 corre-

spond to the estimator (2.2) with the choice ((βn) , (γn)) =((
[1− a]n−1

)
,
(
[1− a]n−1

))
. Here we consider the parabolic

model Y = 1 + X2 + ε, X ∼ N (0, 1) and ε ∼ N (0, 0.1) and
we consider three sample sizes n = 100, n = 200 and n = 300.
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Y = exp (X − 0.2) + ε
d=1 n = 100 n = 200 n = 300

0% MSE sdMSE MSE sdMSE MSE sdMSE
non-recursive 0.42833 0.36027 0.41430 0.35918 0.40384 0.35864
Recursive 1 0.43161 0.35150 0.42285 0.34915 0.41921 0.35558
Recursive 2 0.43280 0.35182 0.42327 0.34951 0.41728 0.33615
Recursive 3 0.42708 0.32801 0.40997 0.31353 0.39704 0.31252
Recursive 4 0.40618 0.34053 0.39809 0.34555 0.38464 0.34481

10% MSE sdMSE MSE sdMSE MSE sdMSE
non-recursive 0.45615 0.35219 0.40481 0.34873 0.38593 0.34156
Recursive 1 0.43922 0.34366 0.42326 0.34238 0.36921 0.33958
Recursive 2 0.43969 0.34527 0.41813 0.33615 0.34570 0.31342
Recursive 3 0.42708 0.32801 0.41704 0.31812 0.37973 0.31553
Recursive 4 0.41945 0.33378 0.39439 0.31991 0.36854 0.31447

40% MSE sdMSE MSE sdMSE MSE sdMSE
non-recursive 0.82192 0.72970 0.62419 0.45912 0.42344 0.43347
Recursive 1 0.66738 0.70964 0.59954 0.50787 0.49785 0.47703
Recursive 2 0.61095 0.53304 0.52550 0.41610 0.41229 0.40523
Recursive 3 1.01691 0.97070 0.83108 0.88199 0.64612 0.62362
Recursive 4 0.74369 0.69710 0.70782 0.56174 0.69365 0.52963
d=2 n = 100 n = 200 n = 300

0% MSE sdMSE MSE sdMSE MSE sdMSE
non-recursive 0.39773 0.33026 0.38084 0.32921 0.37969 0.32964
Recursive 1 0.39678 0.32228 0.38469 0.32048 0.38484 0.32635
Recursive 2 0.39743 0.32246 0.38846 0.32025 0.38338 0.30852
Recursive 3 0.39205 0.30102 0.37638 0.28776 0.36449 0.28615
Recursive 4 0.37248 0.31229 0.36582 0.31703 0.35326 0.31616

10% MSE sdMSE MSE sdMSE MSE sdMSE
non-recursive 0.41833 0.32358 0.37172 0.32092 0.35469 0.31472
Recursive 1 0.40332 0.31563 0.38834 0.31426 0.33189 0.31107
Recursive 2 0.40346 0.31638 0.38344 0.30814 0.31784 0.28766
Recursive 3 0.39295 0.30102 0.38235 0.29219 0.34856 0.28348
Recursive 4 0.38557 0.30867 0.36224 0.29255 0.33839 0.28814

40% MSE sdMSE MSE sdMSE MSE sdMSE
non-recursive 0.75465 0.66984 0.57396 0.42144 0.38878 0.39895
Recursive 1 0.61268 0.65198 0.55058 0.46694 0.45695 0.43765
Recursive 2 0.56093 0.48924 0.48232 0.38197 0.37844 0.37128
Recursive 3 0.91222 0.89343 0.76283 0.80934 0.59912 0.57424
Recursive 4 0.68235 0.63989 0.64974 0.51628 0.63674 0.48614

Table 4.3. Average MSEs and standard deviation of MSE
(approximated using N = 500 trials) of the non-recursive es-
timator (2.1) and four recursive estimators; recursive 1 corre-
spond to the estimator (2.2) with the choice ((βn) , (γn)) =((
n−1

)
,
(
n−1

))
, recursive 2 correspond to the estimator (2.2)

with the choice ((βn) , (γn)) =
((
n−1

)
,
(
[1− a]n−1

))
, recur-

sive 3 correspond to the estimator (2.2) with the choice
((βn) , (γn)) =

((
[1− a]n−1

)
,
(
n−1

))
and recursive 4 corre-

spond to the estimator (2.2) with the choice ((βn) , (γn)) =((
[1− a]n−1

)
,
(
[1− a]n−1

))
. Here we consider the exponential

model Y = exp (X − 0.2) + ε, X ∼ N (0, 1) and ε ∼ N (0, 0.1) and
we consider three sample sizes n = 100, n = 200 and n = 300.
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