Article Dans Une Revue Statistics and Its Interface Année : 2020

Estimation of a distribution function using Lagrange polynomials with Tchebychev–Gauss points

Résumé

The estimation of the distribution function of a real random variable is an intrinsic topic in non parametric estimation. To this end, a distribution estimator based on Lagrange polynomials and Tchebychev-Gauss points, is introduced. Some asymptotic properties of the proposed estimator are investigated, such as its asymptotic bias, variance, mean squared error and Chung-Smirnov propriety. The asymptotic normality and the uniform convergence of the estimator are also established. Lastly, the performance of the proposed estimator is explored through a certain simulation examples.
Fichier principal
Vignette du fichier
45-SII_13_03_A09.pdf (352.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04390655 , version 1 (12-01-2024)

Identifiants

Citer

Salima Helali, Yousri Slaoui. Estimation of a distribution function using Lagrange polynomials with Tchebychev–Gauss points. Statistics and Its Interface, 2020, 13 (3), pp.399-410. ⟨10.4310/SII.2020.v13.n3.a9⟩. ⟨hal-04390655⟩
18 Consultations
26 Téléchargements

Altmetric

Partager

More