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Abstract
In the present paper, we are mainly concerned with the kernel type estimators for the moment generating function.
More precisely, we establish the central limit theorem together with the characterization of the bias and the variance
for the nonparametric recursive kernel-type estimators for the moment generating function under some mild condi-
tions. Finally, we investigate the performance of the methodology for small samples through a short simulation study.

Key words and phrases: Moment generating function; Kernel type estimator; Stochastic approximation algorithm.
MSC: 62G08, 62L20, 60F10, 62G07.

1 Introduction

Over years ago, Parzen (1962a) studied some properties of kernel density estimators introduced by Akaike (1954) and
Rosenblatt (1956). Nonparametric regression function estimation has been the subject of intense investigation by both
statisticians and probabilists for many years and this has led to the development of a large variety of methods. Kernel
nonparametric function estimation methods have long attracted a great deal of attention, for good sources of references
to research literature in this area along with statistical applications consult Devroye and Györfi (1985), Devroye (1987),
Scott (1992), Wand and Jones (1995), Eggermont and LaRiccia (2001), Bouzebda and Nemouchi (2020); Bouzebda and
El-hadjali (2020); Bouzebda et al. (2021) and the references therein. The moment generating function is an important
tool for several statistical problems. Despite this importance, nonparametric estimation of the moment generating
function has received only relatively scant attention. The moment generating function is commonly thought of as a
vehicle for obtaining the moments of a distribution. There are, however, other statistical settings in which it arises quite
naturally. Quandt and Ramsey (1978) used the moment generating function to develop a method of estimating the
parameters of a mixture of normal distributions. Epps et al. (1982) used on the empirical moment generating function
to construct a test of separate families of distributions. Saddlepoint methods for approximating the pdf of a sample mean
involves the moment generating function of the underlying distribution (e.g.; Reid (1988)). Csörgő and Welsh (1989)
proposed the moment generating function to construct statistical tests for testing composite goodness-of-fit hypotheses
on the exponential and bivariate Marshall-Olkin exponential distribution. Gbur and Collins (1989) investigated the
parametric moment generating function. In the work of Meintanis (2007) tests of hypothesis are constructed for the
family of skew normal distributions. The proposed tests utilize the fact that the moment generating function of the skew
normal variable satisfies a simple differential equation. Henze and Visagie (2020) used a system of first-order partial
differential equations that characterize the moment generating function of the d-variate standard normal distribution to
construct a class of affine invariant tests for normality in any dimension. In this paper we will consider the nonparametric
recursive kernel-type estimators for the multivariate moment generating function. Recursive estimation, was proposed
first in Robbins and Monro (1951) and further investigation in many directions was given by Ljung (1978), Tsybakov
(1990), Duflo (1997), Kushner and Yin (2003), Mokkadem et al. (2009a,b), Slaoui (2014b, 2015).

This work concerns a nonparametric estimation of the recursive general kernel-type estimators for moment generating
function defined by the stochastic approximation algorithm. To the best of our knowledge, the results presented here
respond to a problem that has not been studied systematically up to the present, which was the basic motivation of the
paper.
We start by giving some notation and definitions that are needed for the forthcoming sections. Let d be a fixed natural
number, and X1,X2, . . .Xn be a sequence of independent d-dimensional random vectors with common distribution
function F (x), x = (x1, . . . , xd) ∈ Rd and probability density function f(·) with respect to the Lebesgue measure.
Suppose that the moment generating function

C(t) =

∫
exp (〈t,x〉) dF (x), t = (t1, . . . , td) ∈ Rd,
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exists on a non-degenerate d -dimensional subset I of Rd, necessarily containing the origin, where 〈t,x〉 =
∑d
k=1 tkxk

denotes the usual inner product. Throughout the paper we write bold letters for vectors, e.g., x = (xd, . . . , xd) is a
d-dimensional vector. For u := (u1, . . . , ud) ∈ Rd and v := (v1, . . . , vd) ∈ Rd, we write u ≤ v when uj ≤ vj for

j = 1, . . . , d and |t| = 〈t, t〉 12 and ‖t‖ = max(|t1|, . . . , |td|) will denote the length and maximum-norm on Rd. For each
n ≥ 1 and x ∈ Rd, let Fn(·) be the empirical distribution function of X1, . . . ,Xn, i.e.,

Fn(x) =
1

n

n∑
i=1

1{Xi ≤ x}. (1.1)

When considered as a pointwise estimator of F (·), Fn(·) is an unbiased and strongly consistent estimator of F (·)
(see Serfling (1980) for more details). Based on the empirical distribution function, we introduce the empirical moment
generating function

Cn(t) =
1

n

n∑
j=1

exp (〈t,Xj〉) =

∫
Rd

exp (〈t,x〉) dFn(x), for t ∈ Rd.

Now, given the information that F (·) is absolutely continuous, it is more appropriate to consider a smooth estimator of
F (·) rather than the empirical distribution function. For this purpose, let K(·) be a kernel function on Rd (

∫
Rd K (z) dz =

1), K (z) =
∫ z1
−∞ · · ·

∫ zd
−∞K (u1, . . . , ud) du1 . . . dud =

∫ z

−∞K (u) du and consider the standard kernel estimator of F (·)
based on X1, . . . ,Xn

F̃n (x) =
1

n

n∑
j=1

K
(
x−Xj

hn

)
, for x ∈ Rd, (1.2)

where hn > 0 is a bandwidth parameter. This estimator was considered for the first time in Nadaraya (1964), and it is
constructed by integrating out the Parzen–Rosenblatt kernel density estimate (Rosenblatt (1956) and Parzen (1962b)),

F̃n (x) =

∫ x

−∞
fn (u) du,

where fn (x) = 1
nhd

n

∑n
j=1K

(
x−Xj

hn

)
. The almost sure uniform consistency of F̃n(·) was established in Yamato (1973)

with the only smoothness condition that F (·) be continuous, while Yukich (1989) extended this result to higher dimen-

sions. Moreover, it has been shown by several authors that the asymptotic performance of F̃n(·) is better than that
of the empirical distribution function Fn(·) for an appropriate choice of the kernel K(·) and on the bandwidth hn, for
more details see Azzalini (1981), Reiss (1981), Falk (1983), Swanepoel (1988), Abdous (1993) and Swanepoel (2021). A

typical measure of accuracy of F̃n(·) is the Mean Weighted Integrated Squared Error (MWISE), defined as

MWISE
(
F̃n

)
:= E

[∫
Rd

{
F̃n (x)− F (x)

}2

w (x) dF (x)

]
, (1.3)

where w (·) is some weight function. Several authors have derived asymptotic expressions for (1.3), see for instance Swanepoel
(1988), Jones (1990) and Altman and Léger (1995). Notice that the classical kernel estimator of C(t) is defined to be

C̃n(t) =

∫
Rd

exp (〈t,x〉) dF̃n(x) =

∫
Rd

exp (〈t,x〉) fn(x)dx, for t ∈ Rd. (1.4)

The main motivation of the current work is based of the following class of estimators of the distribution function F
introduced in Slaoui (2014b)

F̂n (x) = (1− γn) F̂n−1 (x) + γnK
(
x−Xn

hn

)
. (1.5)

The estimator (1.5) was proposed in Slaoui (2014b) by using the Robbins-Monro algorithm, where the stepsize (γn) is
a sequence of positive real numbers that goes to zero, satisfying

∑
n≥1 γn = ∞ and

∑
n≥1 γ

2
n < ∞ in order to ensure

the almost sure convergence (see Duflo (1997)), and the bandwidth (hn) is a sequence of positive real numbers that
goes to zero. Slaoui (2014b) showed that for an appropriate choice of the stepsize (γn), the bandwidth (hn) and the

kernel K(·), the estimator F̂n(·) outperformed the estimator F̃n(·) in terms of MWISE, the author consider the weight
function equal to the density function (w (·) = f (·)). It comes that

dF̂n(x) = (1− γn) dF̂n−1(x) + γnh
−d
n K

(
x−Xn

hn

)
dx. (1.6)
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In this paper, we consider the following recursive estimator

Ĉn(t) =

∫
Rd

exp (〈t,x〉) dF̂n(x), for t ∈ Rd, (1.7)

By combining equations (1.6) and (1.7), it follows that

Ĉn(t) = (1− γn) Ĉn−1(t) +
γn
hdn

∫
Rd

exp (〈t,x〉)K
(
x−Xn

hn

)
dx. (1.8)

This recursive scheme offers many advantages to recursive estimators: they are of easy implementation and they do not
require extensive storage of data. More precisely, from a practical point of view, this arrangement provides important
savings in computational time and storage memory which is a consequence of the fact that the estimate updating is
independent of the history of the data providing a decisive computational advantage. The main drawback of the classical
kernel estimator is the use of all data at each step of estimation. The estimators that we consider is given in more general

form including as particular case the estimator C̃n (t), see Remark 2.
An outline of the remainder of the present paper is as follows. In Section 2, we will provide some notation and

assumptions that we will use in our analysis. Section 3 is devoted to the main results of the present work. The
finite sample performance of the proposed methodology is illustrated by means of Monte Carlo simulations in Section
4. Section 5 contains brief concluding remarks. To avoid interrupting the flow of the presentation, all mathematical
developments are relegated to Section 6.

2 Notation and assumptions

Through-out this paper, let us unburden our notation by writing

µj(K) =

∫
Rd

z2jK(z)dz, R(K) =

∫
Rd

K2 (z) dz, where z = (z1, . . . , zd),

and

ξ = lim
n→+∞

(nγn)−1. (2.1)

First of all, let us set the following definition of a class of regularly varying sequences.

Definition 1. Let (vn)n≥1 be a nonrandom positive sequence and γ ∈ R. We say that

(vn)n≥1 ∈ GS(γ) if lim
n→+∞

n

[
1− vn−1

vn

]
= γ. (2.2)

Condition (2.2) was introduced by Galambos and Seneta (1973) to define regularly varying sequences (see also Bojanic
and Seneta (1995)). Noting that the acronym GS stands for (Galambos and Seneta). Typical sequences in GS (γ) are,

for b ∈ R, nγ (log n)
b
, nγ (log log n)

b
, and so on. For our theoretical main results, we need the following assumptions.

Assumptions:

(A1) K : Rd −→ R is a continuous bounded function satisfying:∫
Rd

K (z) dz = 1 , ∀j ∈ {1, . . . , d},
∫
Rd

zjK (z) dz = 0 and µj(K) =

∫
Rd

z2jK (z) dz <∞;

(A2) (i) (γn)n≥1 ∈ GS(−α), with α ∈
(
1
2 , 1
]
,

(ii) (hn)n≥1 ∈ GS(−a), with a ∈ (0, α/d],

(iii) lim
n→+∞

(nγn) ∈
(
min{a, α−ad2 },∞

]
;

(A3) the density function f(·) is bounded and differentiable.

Discussion on the assumptions:

• Assumptions (A1) and (A3) are standard in the framework of nonparametric kernel estimation (see for in-
stance Slaoui (2014a)).

• Assumption(A2) is widely used on the stochastic approximation algorithms (see for instance Mokkadem et al.
(2009a)).
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• Assumption (A2) (iii) on the limit of (nγn) as n goes to infinity is usual in the framework of stochastic approxi-

mation algorithms. It implies in particular that the limit of
(

[nγn]
−1
)

is finite.

• To understand better the use the assumption (A2), it is advised to consider the easiest sequence belonging to
GS (γ), which is nγ , one can check that for (an) ∈ GS (a) and (bn) ∈ GS (b), we have (anbn) ∈ GS (a+ b) and(
anb
−1
n

)
∈ GS (a− b). For a sequences vn belonging to GS (γ) with positive γ, we have limn→∞ vn = ∞ and

for sequences wn belonging to GS (β) with negative β, we have limn→∞ wn = 0. Then, it comes from (A2)(i)
that, γn → 0,

∑
n γn = ∞ and

∑
n γ

2
n < ∞, the assumption (A2)(ii) ensures that hn → 0 and γn/h

d
n → 0, the

assumption (A2)(iii), is very useful for the applicability of Lemma 1.

• The intuition behind the use of such bandwidth hn belonging to GS (−a) is that the ratio hn−1/hn is equal to
1 + a/n+ o (1/n), the application of Lemma 1 under the assumption (A2), ensures that the bias and the variance
depend only on hn and not on h1, . . . , hn.

3 Main results

Our first result is the following, which gives respectively the bias and the variance of Ĉn(·).
Proposition 1 (Bias and variance of Ĉn (t)). Let Assumptions (A1)-(A3) hold.

1. If a ∈
(

0, α
d+4

]
, then

E[Ĉn(t)]−C(t) =
h2n

2(1− 2aξ)

d∑
j=1

t2jµ
2
j (K)

∫
Rd

exp (〈t,x〉) f (x) dx + o
(
h2n
)
. (3.1)

2. If a ∈
(

α
d+4 , 1

)
, then

E[Ĉn(t)]−C(t) = o

(√
γnh

−d
n

)
. (3.2)

3. If a ∈
(

0, α
d+4

)
, then

Var[Ĉn (t)] = o
(
h4n
)
. (3.3)

4. If a ∈
[
α
d+4 , 1

)
, then

Var[Ĉn (t)] =
γn
hdn

1

2− (α− ad) ξ
R (K)

∫
R

exp (2〈t,x〉) f (x) dx + o

(
γn
hdn

)
. (3.4)

The bias and the variance of the estimator Ĉn(·) defined by the stochastic approximation algorithm (1.8) then heavily
depend on the choice of the stepsize (γn).

Remark 1. The combination of (3.1) and (3.4), ensure that, when a = α
d+4 , we can obtain the asymptotic expression of

the bais and the variance of the proposed estimator together, and then, we can obtain the weak pointwise convergence
rate (see Theorem 1 and Corollary 2). Then, the case a = α

d+4 is a very interesting case. We can also observe that,

when (γn) ∈ GS (−1) (e.g. (γn) =
(
n−1

)
), α = 1.

Remark 2. The estimator C̃n (t), can be written recursively as follows:

C̃n (t) =

(
1− 1

n

)
C̃n−1 (t) +

γn
hdn

∫
Rd

exp (〈t,x〉)K
(
x−Xn

hn

)
dx.

Then, the estimator C̃n (t) is a special case of the considered estimator Ĉn(t), with the choice (γn) =
(
n−1

)
.

The following Corollary is a consequence of the Proposition 1.

Corollary 1 (Bias and variance of C̃n (t)). Let Assumptions (A1), (A2) (i)− (ii) and (A3) hold.

E[C̃n(t)]−C(t) =
(d+ 4)

2 (d+ 2)
h2n

d∑
j=1

t2jµ
2
j (K)

∫
Rd

exp (〈t,x〉) f (x) dx + o
(
h2n
)
, (3.5)

and

Var[C̃n (t)] =
(d+ 4)

(2d+ 4)

γn
hdn
R (K)

∫
R

exp (2〈t,x〉) f (x) dx + o

(
γn
hdn

)
. (3.6)

4



Now, let us state the following theorems which gives respectively the asymptotic normality of the generalized recursive

estimator Ĉn(·) defined in (1.8) and the generalized nonrecursive estimator C̃n(·) defined in (1.4).

3.1 Asymptotic normality of Ĉn(·) and C̃n (t)

Let us now state the following theorem, which gives the weak convergence rate of the estimator Ĉn(·) defined in (1.8).

Below, we write Z
D
= N (µ, σ2) whenever the random variable Z follows a normal law with expectation µ and variance

σ2,
D→ denotes the convergence in distribution and

P→ the convergence in probability.

Theorem 1 (Weak pointwise convergence rate of Ĉn(·)). Let the assumptions (A1)-(A3) hold.

1. If there exists c ≥ 0 such that γ−1n hd+4
n → c, then√

γ−1n hdn(Ĉn (t)−C(t))

D−→
n→+∞

N

 √
c

2(1− 2aξ)

d∑
j=1

t2jµ
2
j (K)

∫
Rd

exp (〈t,x〉) f (x) dx,

1

2− (α− ad) ξ
R (K)

∫
R

exp (2〈t,x〉) f (x) dx

)
.

2. If γ−1n hd+4
n →∞, then

1

h2n
(Ĉn (t)−C(t))

P→ 1

2 (1− 2aξ)

d∑
j=1

t2jµ
2
j (K)

∫
Rd

exp (〈t,x〉) f (x) dx.

The following corollary is an immediate consequence of Theorem 1.

Corollary 2 (Weak pointwise convergence rate of C̃n (t)). Let the assumptions (A1), (A2) (i)− (ii) and (A3) hold.

1. If there exists c ≥ 0 such that nhd+4
n → c, then√

nhdn(C̃n (t)−C(t))

D−→
n→+∞

N

√c
2

(d+ 4)

(d+ 2)

d∑
j=1

t2jµ
2
j (K)

∫
Rd

exp (〈t,x〉) f (x) dx,
(d+ 4)

(2d+ 4)
R (K)

∫
R

exp (2〈t,x〉) f (x) dx

 .

2. If nhd+4
n →∞, then

1

h2n
(C̃n (t)−C(t))

P→ 1

2

(d+ 4)

(d+ 2)

d∑
j=1

t2jµ
2
j (K)

∫
Rd

exp (〈t,x〉) f (x) dx.

Theorem 2 (Uniform convergence of Ĉn (t)). Let the assumptions (A1)-(A3) hold, f(·) is uniformly continuous and
there exists η > 0 such that z→ ‖z‖η |f (z)| is a bounded function. We let C be a compact set of Rd. Then, we have

sup
t∈C

∣∣∣Ĉn (t)−C(t)
∣∣∣ = o (1) a.s asn→∞.

The following corollary is an immediate consequence of 2.

Corollary 3 (Uniform convergence of C̃n (t)). Let the assumptions (A1), (A2) (i)−(ii) and (A3) hold, f(·) is uniformly
continuous and there exists η > 0 such that z → ‖z‖η |f (z)| is a bounded function. We let C be a compact set of Rd.
Then, we have

sup
t∈C

∣∣∣C̃n (t)−C(t)
∣∣∣ = o (1) a.s asn→∞.

Remark 3. 1. The rate of convergence of the recursive estimator Ĉn (t) is
√
γ−1n hdn, while the rate of convergence of

the recursive estimator C̃n (t) is
√
nhdn.
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2. In the case when (γn) =
(
n−1

)
, the bias, variance and the rate of convergence of the two estimators Ĉn (t) and

C̃n (t) are the same.

3. Clearly the empirical distribution function is a recursive estimator, it follows from (1.1), that

Fn(x) =

(
1− 1

n

)
Fn−1(x) +

1

n
1{Xn ≤ x}, which gives Cn(t) =

(
1− 1

n

)
Cn−1(t) +

1

n
exp (〈t,Xn〉) .

4 Simulation results

In this section, series of experiments are conducted in order to examine the performance of the proposed estimators
given in (1.8). The computing program codes are implemented in R. The setup of our simulation study closely follows
that of Slaoui (2014b). More precisely, we consider the case of drawing i.i.d. univariate random samples Xi, i = 1, . . . , n.
We consider the exponential E(1), the standard normal N (0, 1) and the uniform U [0, 1] distributions. In our simulation
study, we make use of the following kernels:

• the gaussian kernel:

K(x/h) =
1√
2π
e−x

2/2h2

,

• the Epanečnikov (1969) kernel:

K(x/h) =
3

4
(1− (x/h)2)1{|x/h| ≤ 1},

• the quadratic kernel :

K(u) =
15

16

(
1− u2

)2
1{|u| ≤ 1}.

Here, h is the smoothing bandwidth. We adopt the “normal scale rule” or the rule-of-thumb method, see for instance
Silverman (1986), to select the bandwidth, i.e., we chose h to be αhσ̂(X)n−1/5 where αh is some positive constant
and σ̂(X) is the standard deviation of X. These frameworks allow us to examine the finite sample properties of our
estimators in (1.8). To this end, we compute our estimators, for each of the three kernels presented above, and some
values of αh and n ∈ {100, 250, 500, 1000}. The parameter αh is calculated by minimizing the L2 distance between fn(·)
and f(·), i.e.,

arg min
αh∈A

∑̀
i=1

(fn(ti)− f(ti))
2,

where A is an appropriately chosen set. In our simulation A = [0, 001, 10]. We have chosen the uniform discretization
t1, . . . , t` with ` = 50 of [−0, 10, 0, 10]. The choice of αh is not the optimal one, since we are choosing this in order
to minimize the distance between the densities rather than between the moment generating functions. This choice is
sufficient for our needs. The flexibility of this choice is due to the rule-of-thumb method. For the sake of effective
calculations of these measures, the theoretical density can be replaced by the empirical counterparts based, for example,
on 10000 simulations. For each setting, we consider three local measures are given, for a given t and for any estimate

(say C̃n(t)), let

- the (local) bias: Bias(t) := E
[
C̃n(t)

]
− C(t),

- the (local) variance: Var(t) := E
[(

C̃n(t)− E
[
C̃n(t)

])2]
,

- the (local) mean square-error: MSE(t) := E
[(

C̃n(t)− C(t)
)2]

.

The same remark that C(t) can be replaced by the empirical counterparts based, for example, on 10000 simulations.
Notice that, as in any other inferential context, the greater the sample size is, the better the performance is. Simple

inspection of the results reported in the Figures (1, 2 and 3 local MSE for C̃n(t)), (4, 5 and 6 local MSE for Ĉn(t))
allows us to deduce that for large values of the sample size n gives smaller MSE. In the case of the normal distribution,
the obtained are very satisfactory for the both estimators. This can be justified by the fact that the moment generating
function for the normal distribution C(t) = exp(t2/2) is very smooth. However the results for the uniform distribution
are not similar to those for the normal distribution. This being said, the main problem is the difficulty to estimate the
moment generating function for the uniform distribution C(t) = (exp(t)− 1)/t in the neighborhood of 0. However, one
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can see that MSE is less than 10−4 in all cases for the uniform distribution. One can see that the moment generating
function for the exponential distribution C(t) = 1/(1 − t) is not smooth like for the normal distribution. Figures (8, 9

and 10 for C̃n(t)) (11, 12 and 13 for Ĉn(t)) corroborate the preceding remark. Figures (7 and 14) display the results
for Cn(t), where we can see the good performance of the estimator for the different distributions. Figures ((15, 16 and

17, local variance results) and (22, 23 and 24, local bias results) for C̃n(t)), ((18, 19 and 20, local variance results) and

(25, 26 and 27, local bias results) for Ĉn(t)) display the results for the bias and the variance for the non-recursive and
the recursive estimators. As in the results for the MSE, we have good performance of the estimators for the normal
distribution. We do not have the same accuracy for the uniform distribution. Figures (21 (local variance) and 28 (local
bias)) display the results for Cn(t), where we have the same conclusion as for the local MSE, the estimator behaves well
in the different settings.

5 Conclusion

In this paper we have considered the estimation of the nonparametric moment generating function. We have investigated
the asymptotic properties of the nonparametric recursive kernel-type estimators for the moment generating function.
More precisely, we obtained the central limit theorem together with the characterization of the bias and the variance of
these estimators under general conditions. A future research direction would be to study the problem of estimation in
nonparametric moment generating function models as such investigated in this work in the setting of serially dependent
observations (mixing or weak dependent), which requires non trivial mathematics, that goes well beyond the scope of
the present paper. It would be interesting to extend our work to the case of censored data that may be applied in
several areas. We plan also to consider some bandwidth selection procedures like in Slaoui (2014a,b) with some real
data applications related to this context.

6 Proofs

This section is devoted to the proof of our results. The previously presented notation continues to be used in the
following. Throughout this section we use the following notation:

Πn =

n∏
j=1

(1− γj) ,

Zn (t) = h−dn

∫
Rd

exp (〈t,x〉)K
(
x−Xn

hn

)
dx. (6.1)

Before giving the outlines of the proofs, we state the following technical lemma, which is proved in Mokkadem et al.
(2009a), and which is widely applied throughout the demonstrations.

Lemma 1. Let (vn) ∈ GS (v∗), (γn) ∈ GS (−α), and m > 0 such that m− v∗ξ > 0 where ξ is defined in (2.1). We have

lim
n→+∞

vnΠm
n

n∑
k=1

Π−mk
γk
vk

=
1

m− v∗ξ
. (6.2)

Moreover, for all positive sequence (αn) such that limn→+∞ αn = 0, and all δ ∈ R,

lim
n→+∞

vnΠm
n

[
n∑
k=1

Π−mk
γk
vk
αk + δ

]
= 0. (6.3)

Let us underline that the application of Lemma 1 requires Assumption (A2)(iii) on the limit of (nγn) as n goes to
infinity.
We denote by C a constant varying from line to line. Our proofs are organized as follows. Propositions 1 in Section 6.1,
Theorem 1 in Section 6.2.

6.1 Proof of Proposition 1

First, in view of (6.1), we infer that

Ĉn (t)−C(t) = (1− γn)
(
Ĉn−1 (t)−C(t)

)
+ γn (Zn (t)−C(t))

=

n−1∑
k=1

 n∏
j=k+1

(1− γj)

 γk (Zk (t)−C(t)) + γn (Zn (t)−C(t)) +

 n∏
j=1

(1− γj)

(Ĉ0 (t)−C(t)
)

= Πn

n∑
k=1

Π−1k γk (Zk (t)−C(t)) + Πn

(
Ĉ0 (t)−C(t)

)
. (6.4)
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This readily implies that

E
(
Ĉn (t)

)
−C(t) = Πn

n∑
k=1

Π−1k γk (E (Zk (t))−C(t)) + Πn

(
Ĉ0 (t)−C(t)

)
. (6.5)

Taylor’s expansion with integral remainder ensures that

E [Zk (t)]−C(t) =

∫
R2d

{exp (〈t,x + hkz〉)− exp (〈t,x〉)}K (z) f(x)dzdx.

=
h2k
2

d∑
j=1

t2jµj (K)

∫
Rd

exp (〈t,x〉) f (x) dx + h2kδk (t) , (6.6)

where

δk (t) = h−2k

∫
R2d

f (x)K (z)

{exp (〈t,x + hkz〉)− exp (〈t,x〉)} − h2k
2

exp (〈t,x〉)
d∑
j=1

(tjzj)
2

 dxdz.
We have limk→∞ δk (t) = 0. In the case 0 < a ≤ α/ (d+ 4), we have limn→∞ (nγn) > 2a; the application of Lemma 1

then gives

E
[
Ĉn (t)

]
−C(t) =

1

2

d∑
j=1

t2jµj (K)

∫
Rd

exp (〈t,x〉) f (x) dx

{
Πn

n∑
k=1

Π−1k γkh
2
k[1 + o(1)]

}
+Πn (C0 (t)−C(t))

=
1

2(1− 2aξ)

d∑
j=1

t2jµj (K)

∫
Rd

exp (〈t,x〉) f (x) dx
[
h2n + o(1)

]
,

and (3.1) follows. In the case α/ (d+ 4) < a < 1, we have h2n = o
(√

γnh
−d
n

)
. Since we have limn→∞ (nγn) >

(α− ad) /2, the application of Lemma 1 gives

E
[
Ĉn (t)

]
−C(t) = Πn

n∑
k=1

Π−1k γko

(√
γkh
−d
k

)
+O (Πn) = o

(√
γnh

−d
n

)
,

which gives (3.2). Now, since X1,X2, . . .Xn is a sequence of independent d-dimensional random vectors with common
distribution function F (x), we have Cov (Zk (t) , Z ′k (t)) = 0 for k 6= k′, then, it comes that

Var
[
Ĉn (t)

]
= Π2

n

n∑
k=1

Π−2k γ2kVar [Zk (t)]

= Π2
n

n∑
k=1

Π−2k γ2k
hdk

[∫
Rd

{∫
Rd

exp (〈t,x + zhk〉)K (z) dz

}{∫
Rd

exp (〈t,x + z′hk〉)K (z′) dz′
}
f (x) dx

−hdk
(∫

R2d

K (z) exp (〈t,x− zhk〉) f (x) dxdz

)2
]

= Π2
n

n∑
k=1

Π−2k γ2k
hdk

[
R (K)

∫
Rd

exp (2〈t,x〉) f (x) dx + νk (t)− hdkν̃k (t)

]
, (6.7)

where

νk (t) =

∫
Rd

{∫
Rd

{exp (〈t,x + zhk〉)− exp (〈t,x〉)}K (z) dz

}
×
{∫

Rd

{exp (〈t,x + z′hk〉)− exp (〈t,x〉)}K (z′) dz′
}
f (x) dx

ν̃k (t) =

(∫
R2d

exp (〈t,x + zhk〉)K (z) f (x) dxdz

)2

.
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In view of (A3), we have limk→∞ νk (t) = 0 and limk→∞ hdkν̃k (t) = 0, we let εk (t) = νk (t) − hdkν̃k (t), we have
limk→∞ εk (t) = 0. In the case α/ (d+ 4) ≤ a < 1, we have limn→∞ (nγn) > (α− ad) /2, we make use of Lemma 1 to
infer that

Var
[
Ĉn (t)

]
= Π2

n

n∑
k=1

Π−2k γ2k
hdk

[
R (K)

∫
Rd

exp (2〈t,x〉) f (x) dx + εk (t)

]
=

1

2− (α− ad) ξ

γn
hdn

[
R (K)

∫
Rd

exp (2〈t,x〉) f (x) dx + o (1)

]
,

which gives (3.4). When 0 < a < α/ (d+ 4), we have γnh
−d
n = o

(
h4n
)
. Then, since limn→∞ (nγn) > 2a, we apply

Lemma 1 to infer that

Var
[
Ĉn (t)

]
= Π2

n

n∑
k=1

Π−2k γko
(
h4k
)

= o
(
h4n
)
,

which proves (3.3). �

6.2 Proof of Theorem 1

First, it comes from (6.4) and (6.5), that

Ĉn (t)− E
[
Ĉn (t)

]
= Πn

n∑
k=1

Yk (t),

where

Yk (t) = Π−1k γk (Zk (t)− E (Zk (t))) .

Since limn→∞ (nγn) > (α− ad) /2, the application of Lemma 1 ensures that

v2n =

n∑
k=1

Var (Yk (t)) =

n∑
k=1

Π−2k γ2kVar (Zk (t))

= R (K)

n∑
k=1

Π−2k γ2k
hdn

[∫
Rd

exp (2〈t,x〉) f (x) dx + o (1)

]
= R (K)

1

Π2
n

γn
hdn

[
1

2− (α− ad) ξ

∫
Rd

exp (2〈t,x〉) f (x) dx + o (1)

]
.

On the other hand, we have, for all p > 0,

E
[
|Zk (t)|2+p

]
= O

(
1

h
d(1+p)
k

)
,

and, since limn→∞ (nγn) > (α− ad) /2, there exists p > 0 such that limn→∞ (nγn) > 1+p
2+p (α− ad). Applying Lemma

1, we get

n∑
k=1

E
[
|Yk (x)|2+p

]
= O

(
n∑
k=1

Π−2−pk γ2+pk E
[
|Zk (t)|2+p

])
= O

(
n∑
k=1

Π−2−pk γ2+pk

h
d(1+p)
k

)
= O

(
γ1+pn

Π2+p
n h

d(1+p)
n

)
,

and we thus obtain

1

v2+pn

n∑
k=1

E
[
|Yk (x)|2+p

]
= O

([
γnh

−d
n

]p/2)
= o (1) .

Then the application of Lyapunov’s Theorem ensures that√
γ−1n hdn

(
Ĉn (t)− E

[
Ĉn (t)

])
D→ N

(
0,

1

2− (α− ad) ξ
R (K)

∫
Rd

exp (2〈t,x〉) f (x) dx

)
. (6.8)

Now, in the case when a > α/ (d+ 4), Part 1 of Theorem 1 follows from the combination of (3.2) and (6.8). Moreover,
in the case when a = α/ (d+ 4), Parts 1 and 2 of Theorem 1 follow from the combination of (3.1) and (6.8). In the case
a < α/ (d+ 4), (3.3) implies that

h−2n

(
Ĉn (t)− E

(
Ĉn (t)

))
P→ 0,

and the application of (3.1) gives Part 2 of Theorem 1.
�
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6.3 Proof of Theorem 2

First, using the compactness property of the set C, we infer that, for some (tk)1≤k≤γn , C ⊂
⋃γn
k=1B (tk, an), with an =

hd+1
n , where B (tk, an), is an open ball of centre tk and radius an. Now, for any t ∈ C, we set k̃ (t) = arg mink ‖tk − t‖.

Then, for any t ∈ C, we have

sup
t∈C

∣∣∣Ĉn (t)− E
[
Ĉn (t)

]∣∣∣ ≤ sup
t∈C

∣∣∣Ĉn (t)− Ĉn

(
tk̃
)∣∣∣+ sup

t∈C

∣∣∣Ĉn

(
tk̃
)
− E

[
Ĉn

(
tk̃
)]∣∣∣

+ sup
t∈C

∣∣∣E [Ĉn

(
tk̃
)]
− E

[
Ĉn (t)

]∣∣∣ =: T1,n + T2,n + T3,n. (6.9)

First, it follows from (1.8) and from some analysis considerations that for any t ∈ C∣∣∣Ĉn (t)− Ĉn

(
tk̃
)∣∣∣ ≤ Πn

n∑
k=1

Π−1k γkh
−d
k

∫
Rd

∣∣exp (〈t,x〉)− exp
(
〈tk̃,x〉

)∣∣ ∣∣∣∣K (Xk − x

hk

)∣∣∣∣ dx ≤ C ‖dK‖∞Πn

n∑
k=1

Π−1k γkhk,

we then get T1,n = o (1) and T3,n = o (1). Now, we set ρ > 0 and M such that

‖f‖∞
∫
‖z‖>M

|K (z)| dz ≤ C.

Moreover, Lemma 1 ensures that Πn

∑n
k=1 Π−1k γk = 1 + o (1), then, it comes that

∣∣∣Ĉn

(
tk̃
)
− E

[
Ĉn

(
tk̃
)]∣∣∣ ≤ Πn

n∑
k=1

Π−1k γk |E [Zk (t)]|

≤ C +

∫
‖z‖≤M

exp (〈t,x〉) |f (x)| |K (z)| dz

+ exp (〈t,x〉) Πn

n∑
k=1

Π−1k γk

∫
‖z‖>M

|K (z)| |f (x− zhk)− f (x)| dz.

Then, the uniform continuity of f(·) combined with the dominate convergence and the existence of η > 0 such that
z→ ‖z‖η |f (x)| is a bounded function ensure that T2,n = o (1). Then the combination of (3.1) and (6.9) concludes the
proof of Theorem 2. �
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We present here the figures for the simulations.
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Boston Inc., Boston, MA.

Devroye, L. and Györfi, L. (1985). Nonparametric characteristic estimation. Wiley Series in Probability and Mathe-
matical Statistics: Tracts on Probability and Statistics. John Wiley & Sons Inc., New York. The L1 view.

Duflo, M. (1997). Random iterative models. Collection Applications of Mathematics, Springer, Berlin.

Eggermont, P. P. B. and LaRiccia, V. N. (2001). Maximum penalized likelihood estimation. Vol. I . Springer Series in
Statistics. Springer-Verlag, New York. characteristic estimation.
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