
HAL Id: hal-04389619
https://univ-poitiers.hal.science/hal-04389619

Submitted on 11 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recursive regression estimation based on the
two-time-scale stochastic approximation method and

Bernstein polynomials
Yousri Slaoui, Salima Helali

To cite this version:
Yousri Slaoui, Salima Helali. Recursive regression estimation based on the two-time-scale stochastic
approximation method and Bernstein polynomials. Monte Carlo Methods and Applications, 2022, 28,
pp.45 - 59. �10.1515/mcma-2022-2104�. �hal-04389619�

https://univ-poitiers.hal.science/hal-04389619
https://hal.archives-ouvertes.fr


Monte Carlo Methods Appl. 2022; 28(1): 45–59

Research Article

Yousri Slaoui* and Salima Helali

Recursive regression estimation based on
the two-time-scale stochastic approximation
method and Bernstein polynomials
https://doi.org/10.1515/mcma-2022-2104
Received March 10, 2021; revised January 25, 2022; accepted January 30, 2022

Abstract: In this paper, we propose a recursive estimators of the regression function based on the two-

time-scale stochastic approximation algorithms and the Bernstein polynomials. We study the asymptotic

properties of this estimators.We compare the proposed estimators with the classic regression estimator using

the Bernstein polynomial defined by Tenbusch. Results showed that, our proposed recursive estimators can

overcome the problem of the edges associated with kernel regression estimation with a compact support.

The proposed recursive two-time-scale estimators are compared to the non-recursive estimator introduced by

Tenbusch and the performance of the two estimators are illustrated via simulations as well as two real

datasets.

Keywords: Two-time-scale stochastic approximation algorithms, Bernstein polynomials, regression

estimation

MSC 2010: 62G08, 62L20, 65D10

1 Introduction
Nonparametric regression estimation methods have attracted a great deal of attention as researchers have

realized that parametric regression is not suitable for adequately fitting curves to many datasets that arise in

practice. There aremany reasons for choosing the nonparametric regressionmethods, no assumption should

be made on the form of the regression function, the complexity of the model will be determined completely

by the data, it is applicable for various design situations and it is easy to interpret.

There have been several monograph on the nonparametric regression estimation, see, e.g., [5, 8, 10, 25],

where it is shown that nonparametric regression techniques havemuch to offer in applications, such as obser-

vational astronomy, forecasting future opportunities and risks in business, causal relationships between

parameters in biological systems and various other situations.

Themost famous nonparametric estimator of the regression function r : x → 𝔼(Y | X = x), was proposed
by Nadaraya [26] and Watson [39]. In the current work, we are concerned by the recursive estimation of

a regression function. Recursive estimation have become an increasingly important area of research. Inmany

situations, data arrives regularly so that it is impossible to store them in a traditional database. In such

a context, building a recursive estimator which does not require to store all the data in memory is of great

interest.
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The recursive regression estimation was introduced first by Kiefer and Wolfowitz [16], extended by

Révész [28] using the Robbins–Monro’s procedure, generalized by Mokkadem, Pelletier and Slaoui [24]

and studied by Slaoui [30–32]. The semi-recursive approach was introduced in [33], while the recursive

regression estimation for independent functional data was established in [34, 35].

However, kernel methods and their recursive improvements have estimation problems in the edges when

the regression function has a bounded support. To overcome this problem, their have been many methods

such as the approach of regression estimation using Bernstein polynomials proposed by Tenbusch [37].

Bernstein polynomial was used in several directions to estimate a density of probability and distribution

functions. See for instance, the original work of [38], extended in [1, 7, 11–14, 19–21, 27, 36, 37].

Let (X, Y), (X
1
, Y

1
), . . . , (Xn , Yn) be independent, identically distributed pairs of random variables with

joints density function g(x, y) and let f such that f(x) = ∫ℝ g(x, t) dt, denote the density of X which is sup-

ported on [0, 1]. We denote by

a(x) = f(x)r(x), Zk,m = 𝟙{ km <Xi k+1m }bk(m − 1, x),
where bk(m, x) = Cmk x

k(1 − x)m−k is the Bernstein polynomial of order m and let 𝔼(|Y|) < ∞. The non-

recursive estimator defined in [37] such that f(x) ̸= 0, for x ∈ [0, 1],

r̂n(x) =

{{{{{
{{{{{
{

∑ni=1 Yi ∑mk=1 Zk,m
∑ni=1∑mk=1 Zk,m if

m
∑
k=1 Zk,m ̸= 0,

0 if

m
∑
k=1 Zk,m = 0,

(1.1)

The aim of this paper is to introduce two-time-scale stochastic approximation algorithms in order to

define a class of recursive estimators of a regression function based on Bernstein polynomials. The two-time-

scale stochastic approximation algorithms have been defined in [2, 3, 17], their convergence rate studied

in [18, 22, 23, 29].

In order to construct a recursive regression estimator defined by the two-time-scale stochastic algorithm,

at a point x such as f(x) ̸= 0, we define an algorithm of search of the common zero of the functions:

l
1
: (y, z) 󳨃→ f(x) − y and l

2
: (y, z) 󳨃→ r(x)f(x)

y
− z.

We proceed in the following way, for x ∈ [0, 1]:
(i) f

0
(x) > 0 and r

0
(x) ∈ ℝ,

(ii) for n ≥ 1,
{
{
{

fn(x) = fn−1(x) + γnW(1)n (x),
rn(x) = rn−1(x) + βnW(2)n (x),

where W(1)n and W(2)n are the observations of the functions l
1
and l

2
at the point (fn−1(x), rn−1(x)), and

where the stepsizes (γn) and (βn) are two sequences of positive real numbers that go to zero such that

γn ≤ 1 and limn→∞ βnγ−1n = 0. Then, we estimate f(x) and a(x) respectively by

m
m−1
∑
k=0 𝟙{ km <Xn≤ k+1m }bk(m − 1, x) and mYn

m−1
∑
k=0 𝟙{ km <Xn≤ k+1m }bk(m − 1, x).

Then the two-time-scale stochastic approximation algorithm can be rewritten as

{{{{{{
{{{{{{
{

fn(x) = (1 − γn)fn−1(x) + γnm m−1
∑
k=0 𝟙{ km <Xn≤ k+1m }bk(m − 1, x),

rn(x) = (1 − βn)rn−1(x) + βnmYnfn−1(x) m−1∑k=0 𝟙{ km <Xn≤ k+1m }bk(m − 1, x).
(1.2)

The aim of this paper is to study the properties of the regression estimators defined in (1.2), as a competitor

for the non-recursive estimator (1.1).
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The remainder of this paper is organized as follows. In the next section, we present the assumptions and

notations thatweneed to give theproprieties of our proposed two-time-scale estimators (1.2). In Section3,we

state our main results. Section 4 is devoted to give some numerical comparison between our proposed recur-

sive estimators (1.2) and the non-recursive estimator 3 through some simulation studies and then through

two real datasets. Some concluding remarks and possible future developments are mentioned in Section 6.

While, all the mathematical developments are deferred to Section 7.

2 Assumptions and notations
We define the following class of regularly varying sequences.

Definition 1. Let δ ∈ ℝ and (vn)n≥1 be a nonrandom positive sequence. We say that (vn) ∈ GS(v) if

lim

n→+∞ n[1 − vn−1vn ] = v.
This conditionwas introducedby [6] to define regularly varying sequences. To study asymptotic the behaviors

of the estimator rn definedby equations (1.2) inside the interval [0, 1],we consider the following assumptions

for a ∈ (0, 1
3

):
(A1) (i) (mn) ∈ GS(a) with a ∈ (0, 1).

(ii) (βn) ∈ GS(−β) with β ∈ (3a, 1].
(iii) (γn) ∈ GS(−α) with α ∈ (min{3a, a + 1 − β}, β] such that limn→∞ β−1n γn(ln∑nk=1 γk)−1 = ∞.
(iv) limn→∞(nβn) > min{a, 1

2

(β − a
2

)}𝟙{x∈(0,1)} +min{a, 1
2

(β − a)}𝟙{x∈{0,1}}.
(A2) (i) v → g(v, w) is continuous onℝ.

(ii) For t > 0, v → ∫ℝ |w|tg(v, w) dw is a bounded function.

Discussion of the assumptions:
(i) Assumptions (A1) and (A2) are regularity conditions which permit us to evaluate the bias term and the

variance term of the proposed estimator.

(ii) The intuition behind the use of such bandwidth (hn) belonging to GS(−a) is that the ratio hn−1
hn is equal

to 1 + an + o(
1

n ), similarly, we use the stepsize (βn) belonging to GS(−β); then the ratio

βn−1
βn is equal to

1 + βn + o(
1

n ). The application of Lemma 1 ensures that the bias and the variance will depend only on hn
and βn and not on h1, . . . , hn and β1, . . . , βn; then the MISE will depend only on hn and βn, which will
be helpful to deduce an optimal bandwidth and an optimal stepsize.

(iii) In order to help the readers to follow the main results obtained in this paper, we underline that the

application of Lemma 1 under assumption (A2) ensures

Πn

n
∑
k=1Π−1k βk = 1 + o(1),

Πn

n
∑
k=1Π−1k βkh2k = O(h2n),

Π

2

n

n
∑
k=1Π−2k β2kh−1k = O(βnh−1h ).

(iv) Assumption (A2) (iii) on the limit of (nβn) as n goes to infinity is usual in the framework of stochastic

approximation algorithms. It implies in particular that the limit of ([nβn]−1) is finite.
Throughout this paper, we will use the following notations:

ξ = lim

n→∞(nβn)−1,
ψ(x) = (4πx(1 − x))− 12 ,

Wn(x) = mnYn
mn−1
∑
k=0 𝟙{ kmn <Xn≤ k+1mn }bk(mn − 1, x),
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Zn(x) = mn

mn−1
∑
k=0 𝟙{ kmn <Xn≤ k+1mn }bk(mn − 1, x),

∆
1
(x) = 1

2

[(1 − 2x)f 󸀠(x) + x(1 − x)f 2(x)],
∆
2
(x) = 1

2

[(1 − 2x)(r󸀠(x)f(x) − r(x)f 󸀠(x)) + x(1 − x)(r(2)(x)f(x) + r(x)f (2)(x) + 2f 󸀠(x)r󸀠(x))],
Bias(x) = (∆2(x) − r(x)∆1(x))

f(x)
,

V(x) = Var[Y | X = x]ψ(x)
f(x)(2 − (β − a

2

)ξ)
𝟙{x∈(0,1)} + Var[Y | X = x]

f(x)(2 − (β − a)ξ)
𝟙{x∈{0,1}}.

3 Main results
Throughout this paper we consider the two following sequences:

(vn) = (m
1

2

n 𝟙{x∈(0,1)} + mn𝟙{x∈{0,1}}) and (Vn) = (β
− 1
2

n v−1n ).
For simplicity, we let

A1

a,x = {a, x : a ∈ (0,
β
3

], x ∈ {0, 1}}, A2

a,x = {a, x : a ∈ (0,
2

5

β], x ∈ (0, 1)},

A3

a,x = {a, x : a ∈ (
β
3

, 1), x ∈ {0, 1}}, A4

a,x = {a, x : a ∈ (
2

5

β, 1), x ∈ (0, 1)}.

Our first result is the following proposition, which gives the bias and the variance of the proposed recursive

estimator rn.

Proposition 1 (Bias and variance of rn). Let Assumptions (A1)–(A2) hold such as f(x) > 0. Then

𝔼[rn(x)] − r(x) = m−1n Bias(x) 1

1 − aξ
𝟙A1

a,x∪A2

a,x
[1 + o(1)] + 𝟙A4

a,x
o(√βnm

1

2

n ) + 𝟙A3

a,x
o(√βnmn)

and
Var[rn(x)] = βnm

1

2

n
Var[Y | X = x]ψ(x)

2 − (β − a
2

)ξ
𝟙A4

a,x
[1 + ox(1)]

+ βnmn
Var[Y | X = x]
2 − (β − a)ξ

𝟙A3

a,x
[1 + o(1)] + 𝟙A1

a,x∪A2

a,x
o(m−2n ). (3.1)

The following proposition gives the mean squared error (MSE) of the proposed two-time-scale recursive esti-

mators rn.

Proposition 2 (MSE of rn). Let Assumptions (A1)–(A2) hold. Then

MSE[rn(x)] = m−2n Bias

2(x)
(1 − aξ)2

𝟙A1

a,x∪A2

a,x
[1 + o(1)] + βnm

1

2

n
Var[Y | X = x]ψ(x)

2 − (β − a
2

)ξ
𝟙A4

a,x
[1 + ox(1)]

+ βnmn
Var[Y | X = x]
2 − (β − a)ξ

𝟙A3

a,x
[1 + o(1)] + 𝟙A1

a,x∪A2

a,x
o(m−2n )

+ 𝟙A4

a,x
o(βnm

1

2

n ) + 𝟙A3

a,x
o(βnmn).

Tominimize theMSE of rn(x) for x ∈ (0, 1) such that ψ(x) > 0, the stepsize (βn)must be chosen in GS(−1) and
(mn)must be in GS(2

5

). To minimize the MSE of rn(x) for x ∈ {0, 1} such that ψ(x) > 0, the stepsize (βn)must

be chosen in GS(−1) and (mn)must be in GS(1
3

).

Corollary 1. Let Assumptions (A1)–(A2) hold. To minimize the MSE of the proposed two-time-scale recursive
estimators rn(x), the stepsize (γn)must be chosen equal to (n−1). The optimal order (mn) should be equal to

(2
6

5 (
5

3

)
2

5

(
Bias

4

5 (x)
ψ(x) 25Var[Y | X = x] 25

)n
2

5𝟙{x∈(0,1)} + 6 1

3 (
Bias

2

3 (x)
Var[Y | X = x] 13

)n
1

3𝟙{x∈{0,1}}),
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and the correspondingMSEmust be equal to

MSE[r̂n(x)] =
5

4

2

− 2
5 (

5

3

)
6

5

ψ(x)
4

5
Var[Y | X = x]

4

5
Bias

2

5 (x)n− 45 [1 + o(1)]𝟙{x∈(0,1)}
+
3

3

2

− 1
3 (

3

2

)
4

3

Var[Y | X = x]
2

3
Bias

2

3 (x)n− 23 [1 + o(1)]𝟙{x∈{0,1}}.
Finally, the following proposition shows the asymptotic normality of the recursive estimators rn.

Theorem 1 (Asymptotic normality of rn). The following statements hold:
(i) In the case when x ∈ (0, 1), if there exists c ≥ 0 such that β−1n m− 52n → c (resp. the case when x ∈ {0, 1},

if β−1n m−3n → c), then

Vn(rn(x) − r(x))
D
󳨀󳨀→ N(

√c
(1 − aξ)

Bias(x),V(x)).

(ii) In the case when x ∈ (0, 1), if β−1n m− 52n →∞ (resp. the case when x ∈ {0, 1}, if β−1n m−3n →∞), then
mn(rn(x) − r(x))

ℙ
󳨀→

1

1 − aξ
Bias(x).

4 Numerical studies
The aim of this subsection is to compare our proposed two-time-scale estimators (1.2) with the non-recursive

estimator (1.1), through a simulation. We consider the regression model

Y = r(X) + ε,

where X ∼ N(0, 1) and ε ∼ N(0, σ2), where σ ∈ {0.05, 0.1, 1}. When using our proposed two-time-scale algo-

rithm (1.2), the stepsizes (γn , βn) are chosen to be equal to (n−0.98, 0.31n−0.99). Moreover, in order to select
the smoothing parameter (mn), we consider a Monte Carlo procedure for each point x ∈ [0, 1]. We determine

the parameter m for 1 ≤ m ≤ 400 by minimizing

1

N

N
∑
i=1[rin,m(x) − r(x)]2,

where rin,m is the estimator of rn,m computed from the ith sample of size n. We choose N = 500 trials for the
Monte Carlo simulation. In our simulation study, we consider three sample sizes; n = 50, n = 100, n = 200
and the following regression functions:

(a) r(x) = cos(x),
(b) r(x) = (1 + exp(x))−1,
(c) r(x) = 1 + 0.6x.
For each model and sample size n, we approximate the average integrated squared error (ISE) and the inte-

grated absolute error (IAE) of the estimator using N = 500 trials of sample size n:

ISE =
1

N

N
∑
k=1 ISE[rk], IAE =

1

N

N
∑
k=1 IAE[rk],

where rk is the estimator computed from the kth sample, and

ISE(rk) =
1

∫
0

(rk(x) − r(x))2 dx, IAE(rk) = ∫ℝ |rk(x) − r(x)| dx.
Table 1 shows that in terms of the average ISE and IAE of the two considered estimators, the proposed

two-time-scale recursive estimators (1.2) have a smaller ISE and smaller IAE compared to the non-recursive

estimator (1.1) by using any one of the three regression functions and by considering any one of the three

different noise variance.
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ISE IAE

Model n Recursive Non-recursive Recursive Non-recursive

σ = 0.05 (a) 50 0.108152 0.263466 0.278830 0.512572
100 0.146173 0.275628 0.342211 0.523425
200 0.172898 0.265569 0.385824 0.514904

(b) 50 0.149485 0.261717 0.374100 0.511469
100 0.180104 0.250942 0.416693 0.500793
200 0.219903 0.256299 0.461882 0.506157

(c) 50 0.192147 0.246308 0.375262 0.495552
100 0.166492 0.241962 0.345006 0.491480
200 0.315283 0.242560 0.488220 0.492026

σ = 0.1 (a) 50 0.237895 0.279316 0.459012 0.527103
100 0.142256 0.273119 0.339965 0.521741
200 0.205788 0.261468 0.429494 0.510851

(b) 50 0.240268 0.262336 0.478994 0.512000
100 0.186827 0.263747 0.422515 0.513192
200 0.168894 0.260439 0.403971 0.510155

(c) 50 0.241451 0.236557 0.432593 0.485448
100 0.169090 0.2400389 0.354381 0.489659
200 0.669683 0.237169 0.714953 0.486410

σ = 1 (a) 50 0.153426 0.245387 0.256094 0.495342
100 0.089536 0.231082 0.242418 0.480270
200 0.081775 0.216917 0.234569 0.465104

(b) 50 0.076953 0.238752 0.257034 0.487440
100 0.069710 0.214250 0.231290 0.460268
200 0.086527 0.240928 0.263234 0.488604

(c) 50 0.044846 0.259154 0.113061 0.508533
100 0.030788 0.236227 0.074095 0.483667
200 0.026170 0.227478 0.078804 0.474521

Table 1: Average ISE and IAE for N = 500 trials of non-recursive estimator and the proposed estimator with the choice(γn , βn) = (n−0.98 , 0.31n−99). The bold values indicate the smallest values regarding the average ISE and IAE.
5 Real dataset
An interesting subject of any dataset is to estimate the unknown regression in order to predict the response

variable Y when we know the explanatory variable X. In this section, we apply our proposed two-time-scale

estimators rn defined in (1.2) and the non-recursive estimator r̂n given in (1.1) on the following two datasets.
(1) Firstly, we consider the CO2 dataset¹ which contained 60 observations on two variables: Year and CO2

in August. Scientists recorded CO2 levels, in parts per million (ppm), in the atmosphere for each Year

from the start of 1958 through 2018. Finally, we used the Monte-Carlo method to obtain m = 60 for our
recursive estimator rn and m = 50 for the non-recursive estimator r̂n. We observe that our estimator is

more close to the observed data, than the non-recursive estimator, especially near the boundaries.

(2) Secondly, we consider the wage1 dataset which appear in R package np (see [40]). Cross-sectionwage data

consisting of a random sample taken from the U.S. Current Population Survey for the year 1976. There

are 526 observations of the average hourly earnings and the years of education. We used the Monte-

Carlomethod to obtainm = 68 for our recursive estimator rn andm = 170 for the non-recursive estimator

r̂n. We observe that our estimator is more close to the observed data, than the non-recursive estimator,

especially near the boundaries.

Figures 1 and 2 show that our proposed two-time-scale recursive estimators (1.2) can give better results

compared to the non-recursive estimator (1.1).

1 See https://www.co2.earth/monthly-co2.

https://www.co2.earth/monthly-co2
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Figure 1: Qualitative comparison between the two considered estimators. Here we consider the CO2 dataset using our proposed
estimators defined in (1.2) with the stepsize (γn , βn) = (n−0.98 , 0.31n−0.99) and the non-recursive estimator defined in (1.1).
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Figure 2: Qualitative comparison between the two considered estimators. Here we consider the wage1 dataset of the package np
using our proposed estimators defined in (1.2) with the stepsize (γn , βn) = (n−0.98 , 0.31n−0.99) and the non-recursive estimator
defined in (1.1).
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6 Concluding remarks
In the present paper we investigated a recursive nonparametric regression estimator to overcome the edge

estimation problem based on Bernstein polynomials and stochastic algorithm with two-time-scale. The pro-

posed estimator asymptotically follows normal distribution. Moreover, our proposed estimators attained the

asymptotic convergence rate O(n− 45 ) within the interval (0, 1) and O(n− 23 ) near the edges {0, 1}. A future

research directionwould be to extend our findings to the setting of serially dependent observations, α-mixing

framework like in [15]. Another direction is to investigate the data-driven bandwidth selection procedures

(see [32]), which requires nontrivial mathematics, this would go well beyond the scope of the present paper.

We plan also to extend our approach to the case of locally linear two-time-scale recursive regression (see [9]

in the case of locally linear regression).

7 Auxiliary results and mathematical developments
This section is devoted to the detailed proofs of our results. Throughout this paper we consider the following

notations:

ξ 󸀠 = lim

n→∞(nγn)−1, sn(x) =
n
∑
k=1 γk ,

Πn =
n
∏
j=1(1 − βj), Qn =

n
∏
j=1(1 − γj), C = 1

√2
+ 4(1 − √

2

3

).

Let us first state the following technical lemmas.

Lemma 1 (Mokkadem, Pelletier and Slaoui [24]). Let (vn) ∈ GS(v), let (γn) ∈ GS(−γ), and let l > 0 such that
l − vξ > 0. We have

lim

n→∞ vnΠln n
∑
k=1Π−lk γkvk = 1

l − vξ
.

Moreover, for all positive sequences (αn) such that limn→∞ αn = 0, and all δ ∈ ℝ,
lim

n→∞ vnΠln[ n
∑
k=1Π−lk γkvk αk + δ] = 0.

Let us now use the following decomposition:

rn(x) − r(x) =
1

f(x)
[Tn(x) + Rn,1(x) + Rn,2(x) + Rn,3(x) + Rn,4(x)] + Rn,5(x),

where

Tn(x) = Πn
n
∑
k=1Π−1k βk[Wk(x) − r(x)Zk(x)], (7.1)

Rn,1(x) = r(x)Πn
n
∑
k=1 Π
−1
k βk
γk
[fk(x) − fk−1(x)],

Rn,2(x) = Πn
n
∑
k=1Π−1k βk[Wk(x) − 𝔼(Wk(x))][

f(x) − fk−1(x)
fk−1(x) ],

Rn,3(x) = Πn
n
∑
k=1Π−1k βk[𝔼(Wk(x)) − a(x)][

f(x) − fk−1(x)
fk−1(x) ],

Rn,4(x) = r(x)Πn
n
∑
k=1Π−1k βk[(f(x) − fk−1(x))2fk−1(x) ],

Rn,5(x) = Πn(r0(x) − r(x)).
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Lemma 2. Under assumptions (A1)–(A2), we have

fn(x) − f(x) = O(max{√γn ln(sn)vn , v−2n }).
Lemma 3. Under assumptions (A1)–(A2), we have

Rn,1(x) = Rn,2(x) = Rn,3(x) = Rn,4(x) = Rn,5(x) = o(max{√βnvn , v−2n }).
Lemma 4. Let Em(x) = ∑mk=0 b2k(m, x). We have:
(i) 0 ≤ Em(x) ≤ 1, for x ∈ [0, 1].
(ii) Em(x) = m− 12 [ψ(x) + ox((1)], for x ∈ (0, 1).
(iii) Em(0) = Em(1) = 1.
(iv) Let g be any continuous function on [0, 1]. Then

m
1

2

1

∫
0

g(x)Em(x) dx =
1

∫
0

g(x)ψ(x) dx + o(1).

Lemma 5. For x ∈ [0, 1], we have

𝔼(Zk(x)) = f(x) + ∆1(x)m−1k + o(m−1k ), (7.2)

𝔼(Wk(x)) = r(x)f(x) + ∆2(x)m−1k + o(m−1k ), (7.3)

Var(Wk(x)) = (m
1

2

k 𝔼(Y
2 | X = x)f(x)ψ(x) + ox(m

1

2

k ))𝟙{x∈(0,1)}
+ (𝔼[Y2 | X = x]f(x)mk + ox(mk))𝟙{x∈{0,1}}, (7.4)

Var(Zk(x)) = (f(x)ψ(x)m
1

2

k + ox(m
1

2

k ))𝟙{x∈(0,1)} + (f(x)mk + o(mk))𝟙{x∈{0,1}}, (7.5)

Cov(Wk(x),Zk(x)) = (r(x)f(x)ψ(x)m
1

2

k + ox(m
1

2

k ))𝟙{x∈(0,1)} + (r(x)f(x)mk + ox(mk))𝟙{x∈{0,1}}. (7.6)

7.1 Proof of Lemma 2

In order to prove this lemma, we referred to [36, Proposition 3.1] and we followed the same steps of proof

of [29, Theorem 2, p. 44].

7.2 Proof of Lemma 3

Let us first state the following notation:

(ζn)n =
{
{
{

√βnvn if lim

n→∞ βnm2

nvn = ∞,

v−2n otherwise.

First, we have Rn,5(x) = o(ζn).

7.2.1 Proof of Lemma 3 forRn,1

We first note that Rn,1 can be written as,

Rn,1(x) = Πn
n
∑
k=1 Π
−1
k βk
γk
[fk(x) − fk−1(x)]

= Πn
n
∑
k=1 Π
−1
k βk
γk
[fk(x) − f(x)] − Πn

n
∑
k=1 Π
−1
k βk
γk
[fk−1(x) − f(x)]
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= Πn
n−1
∑
k=1 Π
−1
k βk
γk
[fk(x) − f(x)] +

βn
γn
[fn(x) − f(x)] − Πn

Π

−1
1

β
1

γ
1

[f
0
(x) − f(x)]

− Πn
n−1
∑
k=1 Π
−1
k+1βk+1
γk+1 [fk(x) − f(x)]

= Πn
n−1
∑
k=1 Π
−1
k βk
γk
(1 −

Πk
Πk+1 βk+1βk γk

γk+1 )(fk(x) − f(x))
+
βn
γn
(fn(x) − f(x)) − Πn

β
1

(1 − β
1
)γ

1

(f
0
(x) − f(x)). (7.7)

Moreover, in view of (A1), we infer that

1 −
Πk
Πk+1 βk+1βk γk

γk+1 = 1 − 1

(1 − βk+1) β−1kβ−1k+1 γk
γk+1 = O(βk). (7.8)

Then the application of Lemma 2 together with (7.7) and (7.8) ensures that

Rn,1(x) = O(Πn
n
∑
k=1Π−1k β2k

γk
(fk(x) − f(x)) +

βn
γn
(fn(x) − f(x)) + Πn)

= O(Πn
n
∑
k=1Π−1k β2k

γk
(γkvk ln sk)

1

2 + Πn
n
∑
k=1Π−1k β2k

γk
v−2k + βnγn (γnvn ln sn) 12 + βnγn v−2n ) + O(Πn)

= O(Πn
n
∑
k=1Π−1k βko(√βkvk) + Πn n

∑
k=1Π−1k βko(v−2k )o(√βnvn) + o(v−2n ) + Πn)

= O(Πn
n
∑
k=1Π−1k βko(ζn)) + o(ζn) + O(Πn)

= o(ζn).

7.2.2 Proof of Lemma 3 forRn,2

Throughout this proof we use the following notation:

Lk(x) =Wk(x) − 𝔼(Wk(x)), Gk(x) =
f(x) − fk(x)
fk(x)

, Mn(x) =
n
∑
k=1Π−1k βkLk(x)Gk−1(x).

First, we set Fk = σ((X1, Y1), . . . , (Xk , Yk)), and we note that the increasing process of the martingale (Mn(x)
satisfies

⟨M⟩n(x) =
n
∑
k=1𝔼[Π−2k β2kL2

k(x)G
2

k−1(x) | Fk−1]
=

n
∑
k=1Π−2k β2kG2k−1(x)𝔼[L2

k(x) | Fk−1]
=

n
∑
k=1Π−2k β2kG2k−1(x)𝔼(L2

k(x))

=
n
∑
k=1Π−2k β2kG2k−1(x)Var(Wk(x)).

In view of (7.4), the application of Lemma 2 ensures that

⟨M⟩n(x) = O(
n
∑
k=1Π−2k β2k( f(x) − fk−1(x)fk−1(x) )2vk) = O( n

∑
k=1Π−2k β2k(γk ln(sk)vk + v−4k )vk)

= O(
n
∑
k=1Π−2k β2kv2kγk ln(sk) + n

∑
k=1Π−2k β2kv−3k ).
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Let us first consider the case when limn→∞ nβn = ∞. The application of Lemma 1 gives

⟨M⟩n(x) = O(Π−2n βnγn ln(sn)v2n + Π−2n βnv−3n ).
Moreover, we note that for all ε > 0 we have

ln(Π−2n ) = n
∑
k=1 ln(1 − βk)−2 = n

∑
k=1(2βk + o(βk)) = O( n

∑
k=1 βkkε).

Since we have βnnε ∈ GS(−(β − ε)) with (β − ε) < 1, the application of Lemma 1 ensures that

lim

n→∞ nβnnε

∑nk=1 βkkε = 1 − (β − ε).
It comes that

ln(Π−2n ) = O(n1+εβn).
Moreover, the sequences (βnγn ln(sn)v2n) and (βnv−3n ) tend to zero. It follows that

ln⟨M⟩n(x) = O(ln(Π−2n )) = O(n1+εβn).
Then the application of [4, Theorem 1.3.15], ensures that for any δ > 0,

|Mn(x)| = o(⟨M⟩
1

2

n (x)(ln⟨M⟩n(x))
1+δ
2 ) + O(1)

= o(Π−1n (β 1

2

n γ
1

2

n ln(sn)
1

2 vn + β
1

2

n v
− 3
2

n )(n1+εβn) 1+δ2 ) + O(1).
Now, we set ε > 0 and δ > 0 such that ((γnv2n)

1

2 (n1+εβn) 1+δ2 ) ∈ GS(μ) with μ < 0. For more precision, the

existence of ε and δ should be ensured by the condition α > (a𝟙{x∈{0,1}} + a
2

𝟙{x∈(0,1)}) + 1 − β. Moreover,
we obtain

Πn|Mn(x)| = o((βnvn)
1

2 (γnvn)
1

2
ln(sn)

1

2 (n1+εβn) 1+δ2 + (βnvn) 12 v−2n (n1+εβn) 1+δ2 ) + O(Πn)
= o((βnvn)

1

2 + v−2n ) + o(ζn)
= o(ζn).

Now, in the case when the sequence (nβn) is bounded when n goes to infinity, the application of Lemma 1 for

all (Cn) ∈ GS(0) together with (7.9) ensures that

⟨M⟩n(x) = O(
n
∑
k=1Π−2k βk[(βkvk)(γkvk ln(sk)) + (βkvk)v−4k ])

= O(
n
∑
k=1Π−2k βk[o(βkvkCk) + o(v−4k Ck)])

= o(
n
∑
k=1Π−2k βko(ζ 2k Ck))

= o(Π−2n ζ 2nCn).
Moreover, since the sequence (nβn) is bounded when n goes to infinity, in this case, we have Π

−1
n ∈ GS(ξ−1)

and ln(Π−2n ζ 2nLn) = O(ln n). Then, the application of [4, Theorem 1.3.15], ensures that for all δ > 0,

|Mn(x)| = o(⟨M⟩
1

2

n (x)(ln⟨M⟩n(x))
1+δ
2 ) + O(1)

= o(Π−1n ζnC 1

2

n ln(n)
1+δ
2 ) + O(1).

Thus, for δ = 1 and Ln = (ln n)−2, we get Πn|Mn(x)| = o(ζn), which ensures that

Rn,2(x) = o(ζn).
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7.2.3 Proof of Lemma 3 forRn,3

The application of Lemma 1 together with Lemma 2, ensures that

Rn,3(x) = Πn
n−1
∑
k=0 Π−1k+1βk+1[𝔼(Wk+1(x)) − a(x)][ f(x) − fk(x)fk(x)

]

= Πn
n−1
∑
k=0 Π−1k+1βk+1[∆2(x)m−1k+1 + o(m−1k+1)][ f(x) − fk(x)fk(x)

]

= O(Πn
n−1
∑
k=0 Π−1k+1βk+1m−1k+1|f(x) − fk(x)|)

= o(ζn).

7.2.4 Proof of Lemma 3 forRn,4

The application of Lemma 2 ensures that

Rn,4(x) = Πn
n
∑
k=1Π−1k βkO((f(x) − fk−1(x))2)

= O(Πn
n
∑
k=1Π−1k βk((γkvk ln sk) + v−4k ))

= o(ζn).

7.3 Proof of Proposition 1

The application of Lemma 1 together with (7.1) and (7.2) ensures that in the case when a, x ∈ A1

a,x ∪A
2

a,x,

𝔼(Tn(x)) =
1

1 − aξ
(∆

2
(x) − r(x)∆

1
(x) + o(1))m−1n ,

in the case when a, x ∈ A3

a,x, we have

𝔼(Tn(x)) = o(√βnmn),

and in the case when a, x ∈ A4

a,x, we have

𝔼(Tn(x)) = o(√βnm
1

2

n ).

Let assumptions (A1)–(A2) hold such as f(x) > 0 for x ∈ {0, 1}. The asymptotic behavior of rn − r is given by
the one of Tn. More precisely, we establish the following lemma.

Lemma 6. The following statements hold:
(i) In the case when x ∈ (0, 1), if there exists c ≥ 0 such that β−1n m− 52n → c (resp. the case when x ∈ {0, 1},

if β−1n m−3n → c), then

VnTn(x)
D
󳨀󳨀→ N(

√c
(1 − aξ)

Bias(x)f(x),V(x)f 2(x)).

(ii) In the case when x ∈ (0, 1), if β−1n m− 52n →∞ (resp. the case when x ∈ {0, 1}, if β−1n m−3n →∞), then
mn Tn(x)

ℙ
󳨀→

1

(1 − aξ)
Bias(x)f(x).

Proof. Let us first note that

Tn(x) − 𝔼(Tn(x)) = Πn
n
∑
k=1{vk(x) − 𝔼(vk(x))},
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where

vk(x) = Π−1k βk(Wk(x) − r(x)Zk(x)).

Let us now assume that, when a, x ∈ A3

a,x ∪A
4

a,x, we have

Vn(Tn(x) − 𝔼[Tn(x)])
D
󳨀󳨀→ N(0,V(x)f 2(x)). (7.9)

In the case when a, x ∈ A1

a,x ∪A
2

a,x, equation (3.1) gives mn(Tn(x) − 𝔼(Tn(x)))
ℙ
󳨀→ 0.

Let us now prove (7.9). For this purpose, we set

Bk(x) = Π−1k βk{vk(x) − 𝔼(vk(x))}.
Moreover, since

Var(Tk(x)) = O(m
1

2

k [1 + ox(1)]𝟙A4

a,x
+ mk[1 + o(1)]𝟙A3

a,x
),

the application of Lemma 1 ensures that

Y2n =
n
∑
k=1Var(Bk(x)) =

n
∑
k=1Π−2k β2kVar(vk(x)),

=
βnm

1

2

n

Π

2

n
V(x) + ox(

βnm
1

2

n

Π

2

n
)𝟙A4

a,x
+ o( γnmn

Π

2

n
)𝟙A3

a,x
.

Further, the application of Lemma 1 ensure that for all p > 0,

𝔼[|Bk(x)|2+p] = m2+p
k 𝔼(|Yk − r(x)|

2+p{mk−1
∑
j=0 𝟙{ jmk <Tk≤ j+1mk }bj(mk − 1, x)}

2+p
)

= O(m
3

4

(2+p)
k )𝟙A4

a,x
+ O(m2+p

k )𝟙A3

a,x
.

Using the fact that

lim

n→∞(nγn) > 2α − a
4

𝟙A4

a,x
+
α − a
2

𝟙A3

a,x
,

there exists p > 0 such that

lim

n→∞(nγn) > (1 + p
2 + p

α − 3
4

)𝟙A4

a,x
+ (

1 + p
2 + p

α − 3
2

)𝟙A3

a,x
.

Lemma 1 gives

n
∑
k=1𝔼[|Bk((x)|2+p] = O( n

∑
k=1Π−2−pk β2+pk 𝔼[|Tk(x)|

2+p])
= O(γ1+pn Π

−2−p
n m

3

4

(2+p)
n )𝟙A4

a,x
+ O(γ1+pn Π

−2−p
n m2+p

n )𝟙A3

a,x
,

from which we deduce that

1

Y
2+p
n

n
∑
k=1𝔼[|Bk((x)|2+p] = O(mn[γnmn]

p
2 ) = o(1).

The convergence in (7.9) then follows from the application of Lyapunov’s Theorem.
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