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ABSTRACT
Despite various analysis models and tests proposed by the real-time
community to validate the temporal performance of hard real-time
systems, several cases derived from industrial practices do not find
their corresponding tests in standard schedulability analysis tools.
They need to be transformed and adapted in terms of qualitative
and quantitative information while remaining conservative. The
current state-of-practice of transformation relies solely on designers
expertise. As a result, the adaptation/transformation task tends to
be time- and effort-intensive.

This papers proposes to capitalize adaptation efforts by storing
them in a repository, hence designers can be helped to automatically
transform and adapt their practical designs to analyzable models
while staying conservative. Thanks to model-driven engineering
settings the capitalization is illustrated by the implementation of a
repository as a decision support and the automatic adaptation relies
on model-based transformations. Also, a case study is presented to
stress the importance of our contribution.

CCS CONCEPTS
• Computer systems organization→ Real-time system spec-
ification; Real-time system architecture; • Software and its
engineering → Scheduling; Process validation;
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1 INTRODUCTION
Critical real-time systems need to be analyzed to check their tem-
poral performance. That is, tasks, messages and end-to-end flows
have to meet the requirements in terms of scheduling, deadlines,
delays, processors utilization, etc.

Schedulability tests are among techniques that can be used to
conclude about the temporal performance of a given system. They
are basically based on algebraic methods and are known by their
scalability referring to the number of tasks and messages of systems
especially industrial ones. Since the 1970s, the real-time community
has continuously proposed a plethora of schedulability tests [18]
while each test is dedicated to a specific analysis model (a.k.a. task
model). This latter relies on a set of assumptions describing the
architecture, the tasks structure and the systemworst-case behavior.
In other words, the result of an analysis test can never be reliable
unless the analyzed system fits accurately with the analysis model
of the applied test.

1.1 Context and problem statement
The design of real-time systems becomes more and more complex
since - in addition to the functional requirements - it spreads across
various domains (e.g., time, energy, safety, security, etc.). The de-
sign process may then spread over several years and is essentially
composed of two main phases: modeling and analysis.

The modeling phase leads to get a representation combining
many artifacts originating from different domains while the analy-
sis phase is separated into different domain-specific analyses. That
is, the temporal validation is among those analyses that are applied
on the qualitative and quantitative information derived and/or ex-
tracted from the modeling. In fact, the transition from the modeling
phase to the analysis phase faces two main inter-dependant prob-
lems. The first problem is the difficulty of choosing the appropriate
schedulability test according to the input model. The second one
is that despite the existence of numerous tests related to different
architectures, tests do not cover all possible situations of real-time
systems. Hence, the modeling has to be transformed to conform
to an existing test. Moreover, this transformation must be conser-
vative (see Section 2.1), i.e., the worst case behavior of the target
model should never be optimistic compared to the source model.

https://doi.org/10.475/123_4
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Currently, the transition process form the modeling to the anal-
ysis is still driven by designers experiences which makes the transi-
tion endeavour tedious, time-consuming and error-prone due to the
complexity and precision required to manipulate real-time theory.

1.2 Work positioning
While our recent works [15, 21, 22] proposed to cope with the first
problem by helping designers to choose the suitable analysis tests,
the second problem still lacks a solution that can help designers
to choose which conservative adaptations their models have to
undergo in order to generate models compliant with the source
ones in terms of temporal behaviour and to take benefits from
analysis tests.

In this paper, we propose an approach to conceptualize the re-
quired knowledge and to capitalize efforts to ease the transforma-
tion and the adaptation of practical cases to match suitable analysis
models. Our proposition is based on a an extensible models reposi-
tory, which allows experts to share their knowledge and that can
be used by non-experts as a decision support. Our proposition is
based on model-driven engineering settings to make it utilizable
with design languages.

1.3 Paper outline
The rest of the paper is organized as follows. Section 2 the state of
the art and related works. Section 3 is dedicated to present the con-
tribution. The implementation and tooling are presented Section 4.
Section 5 presents a case study stressing the paper contribution.
Finally, Section 6 summarizes and concludes this paper.

2 STATE OF THE ART
In this section, we present the theoretical and technological back-
ground of this work. We introduce some motivational examples
and we discuss related work.

2.1 Background
Software engineers and architects design their real-time systems
by using modeling languages [3, 11]. As such, their designs are
described referring to functional and non-functional specifications
to be easily understood. The description done by the design engineer
do often not correspond to “conventionnal” analyses.

In the following, we present some of the cases that we considered
as motivational examples for this work.

2.1.1 Example 1: alternative task triggering. A task can be acti-
vated by several ways: through a predetermined arrival pattern, or
by other tasks. Figure 1 presents a case of OR precedence relation-
ship. We consider three communicating tasks. Tasks τ1 and τ2 are
sporadic tasks. Task τ3 is activated by either task τ1, or τ2, through
a message to τ3. Therefore, τ3 is preceded by τ1, or τ2. To the best
of our knowledge, there is no off-the-shelf tool developed espe-
cially for this kind of architecture. That is, to analyze the system
of Figure 1, one has to transform the architecture to be adapted to
another analyzable structure. Moreover, the temporal behavior of
the transformation result model has to dominate the origin model.

Since it is difficult to determine finely the execution of task τ3,
this latter can be represented as two tasks, τ3A and τ3B , as it is

Figure 1: OR precedence relationship between 3 tasks

Figure 2: Transformation result of example shown in Fig. 1

shown in Figure 2 . This leads in a task activated by τ1 and the
other one is activated by τ2. Indeed, τ3 is a task with two inter-
twinned sporadic activations. Since in the original model, τ3 is
usually considered as non-reentrant (i.e. FIFO activations), τ3A and
τ3B should not be able to preempt each other in the second model.

Finally, note that this transformation is valid in a lot of contexts
(uniprocessor, global multiprocessor, paritioned multiprocessor) as
long as we can enforce that the two subtasks may never overlap,
or are executed on the same processor if we have a partitioned
scheduler. The priority should also remain consistant with the
source model, for example, if the scheduler based on fixed-task
priority, the two subtasks shall have the same priority to reflect
reality.

2.1.2 Example 2: probabilistic task execution. Probabilistic sche-
dulability analysis [16] allows to get an approached estimation of
the system. Nevertheless, very few tools handle probabilistic worst-
case execution time as input, but an upper bound on this wcet. Then,
in case of probabilistic distributions of execution times (which for
instance can be calculated via Weibull law), the designers need to
consider the worst-case execution time to obtain a valid response
time value. Consequently, a model transformation should provide
the designers with an automatic mean to transform probabilistic
tasks parameters into worst-case ones.

2.1.3 Example 3: sliding window arrival pattern. A sliding win-
dow is an arrival pattern type of task activation. A task τi activated
in a sliding window is such that for any window time of size wi ,
there are at most ni activations of τi .

We came across this model in an industrial case study, and, there
again, no available tool considers this pattern as a possible activa-
tion pattern.

We consider a task-set constituted by n tasks τi,i=1...n with
worst-case execution time Ci and a sliding window defined by ni
andwi . We cannot determine the exact position of the activations
to determine the evolution of the system and analyze the system’s
schedulability.
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Nevertheless, if we are in a context where the request bound
function (RBF) [2] (resp. the demand bound function [2] (DBF))
can be used to represent the worst-case activation pattern of tasks
(resp. the worst-case cumulative processor demand to be satisfied),
we can observe that it is possible to envelop every possible set of
releases (resp. every possible set of deadlines) in a sliding window
by a single sporadic release of ni jobs with a period wi . It shows
that, in a context where the RBF or the DBF is used for analysis, a
sliding window activation pattern can be equivalently represented
by sporadic activations.

Figure 3: RBF of a sliding window

Figure 3 present two cases considering, for task τi , ni = 5:
• the blue curve represents the request bound function for a
sporadic task τi with WCET niCi and period equalwi ,
• the black (or dashed) curve represents different possible
activation patterns for τi activated with a sliding window
pattern.

This transformation from sliding window to sporadic preserves
the interference as well as the worst-case response time for a sliding
window task in the case of fixed-task priorities on a single processor.
Feasibility is can also be studied using the RBF of a sporadic task
rather than the sliding window task.

2.1.4 Example 4: watchdog tasks. The Watchdog is also a par-
ticular type of task activation. A task activated by a watchdog of
timeoutw is such that, if the watchdog is not reset duringw , the
task is activated. This kind of tasks usually plays the role of an
alert to perform some action (e.g., switch to degraded mode, resolve
errors, rebooting the system, sound an alarm, etc.). As watchdogs
should not be triggered under normal operations, it is uncertain of
when they can occur. For a safe and accurate temporal behavior
analysis, the watchdog task can be assumed to be triggered every
w time units at most, and, therefore, be modeled as a sporadic task
with period (minimum inter-arrival time) equals to the timeout of
the watchdog.

Several other examples could be found to highlight the gap be-
tween practical use cases and analysis models.

2.2 Model-driven Engineering for modeling
and transformation

The model-driven engineering (MDE) [17] is a generative process
enabling to get, treat and produce information from structured data
entities called models. MDE settings are mainly based on modeling,
meta-modeling and transformation aspects. Another important
MDE aspect is the conformity relationship. A model conforms
to the meta-model as a program conforms to the programming
language’s grammar in which it is written. This means that a meta-
model describes the different types of model elements and how
they are arranged. Thanks to the transformations techniques the
transition of data from models to other models is possible. There
are two kinds of model-to-model transformations, the exogenous
and the endogenous transformation. While the first kind consists of
having meta-models of the source models different to meta-models
of the target models, the second kind means that source and target
models are both conform to the same meta-model.

The need of MDE is increasingly growing to ease development
and reduce its costs by following correct-by-construction approaches.
Real-time systems actors have taken benefits form the MDE par-
adigm by proposing and using modeling languages such as the
standards UML-MARTE (Modeling and Analysis of Real-Time Em-
bedded systems)[13] and AADL (Architecture Analysis and Design
Language) [5]. Several temporal performance analysis tools have
also been proposed based on MDE technologies and have been in-
tegrated in the design process tool-chain (e.g., MAST [7], Cheddar
[19], etc.).

2.3 Related work and discussion
Transformations are nowadays lead by either the analyst expertise
or automatically by frameworks but opaque, non-extensible and
without any information given to users.

There exist only few tools that explicit the transition from design
models to analysis models: Tempo and MoSaRT propose such mech-
anism. Tempo [8] is a MARTE-compliant tool based on a subset
of scheduling analysis concepts. Its transformations are driven by
concepts semantics and are expressed by annotations. That is, the
knowledge of the target schedulability test should be known by
the user beforehand. Hence, the non-expert user cannot be totally
autonomous. Moreover, the transformation is more guided by the
initial input models of the analysis tools supported by Tempo. In
other words, the goal of the transformation is to adapt models to
analysis tools and not to adapt practical cases.

MoSaRT analysis repository [15, 22] proposes to capitalize the
transformation from design language to analysis tools. It can be
enriched by real-time researchers and practitioners by adding their
assumptions that input analysis modelsmust meet and adding trans-
formations towards associated analysis tools. However, the reposi-
tory proposed by MoSaRT supports only conventional analyzable
models and helps users to find the appropriate scheduling tests that
match their models.

Since we focus on critical real-time systems, we realize that cur-
rent transformations from the design models to the adapted design
models still requires expertise from a scheduling analysis expert.
The very important point is to verify that the output model (adapted
model) is either equivalent to, or a worst-case of, the original model.
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In this paper, we take benefits from MoSaRT analysis repository
principles and we propose an extensible repository of endogenous
model transformations called CONSERT (CONServative Endoge-
nous Repository-based Transformations). It is in charge of finding
and applying the necessary transformations to models based on
experience of expert designers and analysts. CONSERT repository
enables to store assumptions of models that need to be adapted
and the appropriate transformations that should be run to obtain
analyzable models that will be fed to schedulability analysis tools.
This repository will also help designers to have a traceability of
the changes applied to their original input model before analysis.
Even if CONSERT does not depend on a particular design language
and it can be compliant with several languages, in this paper we
show the usefulness of our contribution by integrating it within a
development framework called Time4Sys (which is a new evolu-
tion of MARTE). It stems from the Waruna project1 where we are
involved with other academic and practitioners partners.

3 CONSERT FUNDAMENTALS
The underlying idea behind proposing such repository is to store
the knowledge of design/analyst experts and to share it with other
collaborators and users. Hence, the repository can play the role of
a decision support and make users autonomous during the analysis
phase.

3.1 Transformation contexts
The context represents the required assumptions for a model to
be considered as input model for the transformation. For example,
the transformation from sliding window to sporadic can only be
applied if all the jobs are to be executed on the same processor. We
define a context C as a set of assumptions {a1, a2, .., an } such as "the
hardware architecture is uniprocessor", or "tasks priorities are fixed".
Each assumption ai is then a set of propositions, whose values are
expressed as constraints on the meta-model, that an input model
satisfies, or not. For example, characteristics of contexts tackled in
Section 2.1 can be described by a set of assumptions as follows:
• Excerpt of alternative task activation context (CA):
– "The hardware architecture is uniprocessor"
– "There exists a least one task preceded by two or more
tasks and the precedence kind is an OR relationship"

– "Every precedence constraint is either one-to-one or OR"
– etc.
• Excerpt of sliding window context (CB ):
– "The hardware architecture is uniprocessor"
– "There is at least one task activated with a sliding window"
– "There is no self-suspension"
– etc.
• Excerpt of tasks with probabilistic parameters context (CC ):
– "There is at least a probabilistic parameter"
– "Task(s) concerned by a probabilistic value:
∗ "is independent"
∗ "is not self-suspended"

– etc.
• Excerpt of watchdog task activation context (CD ):
– "There is at least a watchdog activation"

1www.waruna-projet.fr

– etc.

CONSERT can also be enriched with transformations requir-
ing analysis, as long as the output model of the analysis can be
expressed in the same meta-model as the source meta-model. For
example, if tasks are periodic, and offset free [6], a third-party
analysis tool could be used to assign a value to these offset such
that the system is schedulable by a giving scheduling algorithm. A
chain of subtasks with a final deadline could also be modified by a
third-party tool proposing intermediate (tasks) deadlines. We could
also see response time computation tools as third-party tool used
for endogenous transformation, as long as the response time can
be expressed in the meta-model. It is not yet implemented in our
framework, but is a serious reflection for future work, in order to
achieve an holistic analysis per part on an input system.

3.2 Detection rules
Each design which might be transformed/adapted would conform
to a context stored in the repository. For this, we have to define
detection rules to spot the assumptions in the design to apply the
correct transformations.

Let DR = d1,d2, ..,dn be a set of detection rules. Since it is
common to find several contexts characterized by the same subset
of assumptions, each rule di may or not verify an assumption ai
and an assumption belongs to several contexts Cj . Indeed, each rule
di is an interrogation checking the system design and leads to an
assumption characterizing one or several contexts. For example, dp
is "number of processor equals to 1", thus, if dp is true, it verifies
assumption a0 "the hardware architecture is uniprocessor", and ifdp
is false, it verifies the assumption "the hardware architecture is not
uniprocessor". Therefore, for factoring the number of assumptions
and to guarantee the scalability and the incremental enrichment of
CONSERT repositories, let Sf be a function for specifying contexts
and defined as Sf : C × DR → Boolean. For instance, Sf (CA,dp )
= True.

3.3 CONSERT metamodel

Figure 4: Excerpt of CONSERT metamodel
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Figure 4 shows the metamodel that embodied our proposition
and which any CONSERT repository has to be conform to. Fig-
ure 4 is expressed in Ecore language [20] which is a graphical
meta-modeling language with concepts quite similar to UML class
diagram [14]. Indeed, the root element is the Repository class
which each of their instances is composed of a set of detection rules
(i.e. instances of DetectionRule class) and a set of contexts (i.e.,
instances of ContextModel class). Each detection rule is charac-
terized by an id, a description written in native language and a
formal expression. This latter relies on the modeling language
expressing the design which requires transformations. For exam-
ple, let Sys = {τ1, τ2, .., τn } be a system composed of a set of tasks,
where every task τi is characterized by a period T i and a relative
deadline Di , then τi :=<T i , Di>. Therefore, the formal expression
attribute of a detection rule aiming to check if the deadlines of all
tasks are constrained will be expressed as follows: ∀ τi ∈ Sys , T i
≤ Di . In our case the formal expression will be written in OCL
(Object Constraint Language [12]) since we would like to make our
contribution compliant with Time4Sys, see Section 4).

Figure 4 also shows the interpretation of Sf function to two re-
lations (TrueRules and FalseRules) between ContextModel and
DetectionRule classes. Besides, every instance of ContextModel
is characterized by an adaption (instance of ModelAdaptation)
which consists of describing the necessary transformations and
their implementations as a transformation program. The fileLocation
defines the location where it exists the program to run to get trans-
formed designs. Thanks to the trackModel operation, every execu-
tion of the transformation program on a design model generates
a model that stores the transformations and then helps designers
to follow the traceability and the evolution of initial models. The
generated model conforms to the traceability meta-model that we
present hereafter.

3.4 Traceability - Transformation tracking
The transformations conducted on a given model impact the con-
tained information. As such, after a transformation, it is impossible
to go back to the previous model unless we keep all the models in
memory, i.e. giving a high amount of memory to unused models.
We propose then to track the modifications made on the system
model, by user or by the framework.

Figure 5: Traceability meta-model

Figure 5 shows the meta-model to which every generated trace-
ability instance will be conform. The cornerstone of the trace-
ability meta-model is the Mapping class that represents the link
between source and target elements (both of them are instances

of MappingArtefact class). Source and target elements can be
distinguished thanks to the instances of the ResourceArtefact
class since they are containers of these elements. In addition, every
ResourceArtefact instance is characterized by a URI (Uniform Re-
source Identifier) and a resource (i.e., the root element of the model
that contains the resource artefact). The mapping is characterized
by a set of transformation rules expressed by a transformation lan-
guage (like ATL [9] or QVT [4]). Moreover, the mapping can be
a result of merging many source elements to get one target ele-
ment or one source element leading to a bifurcation to many target
elements.

4 TOOLING AND IMPLEMENTATION
This section presents the implementation of CONSERT and the soft-
ware tools and the support of development used for our proposal.

4.1 Waruna Project
Waruna Project is a collaborative project reuniting industrial and
academic partners from the field of real-time systems. It comes
from the need of industrials to analyze real-time systems in their
functional and non-functional requirements by using MDE para-
digm. It would reduce the time of testing and reduce the cost of
real-time related errors.

4.2 Integration in Time4Sys
4.2.1 Time4Sys in a nutshell. Time4sys is a framework devel-

oped as a Polarsys plugin2 and available on GitHub 3. The frame-
work reuse the philosophy from MoSaRT and Tempo frameworks
presented in Section 2.3. We present main functionalities.

Design. Time4Sys makes available a concrete syntax to model
Real-Time Embedded Systems on a large panoply of classes ex-
tracted from UML - MARTE profile.

Traceability. There is a gap between design and analysis. Anal-
ysis models and design models are expressed on the same meta-
model. Because there are some differences between the analysis
and design model, there is a need of a tracking of modifications.
Time4Sys proposes a traceability meta-model made with QVT [4]
and ATL.

Analysis. Time4Sys provides connections with analysis tools
such as MAST [7] or RTaW-Pegase[1]. Exogenous transformation
from the design model to the analysis input is provided in the
framework.

Result feedback. The plug-in intends to provide tools frommodel-
ing to analysis feedback (including model to model transformation
to the analysis tool). To this extent, Time4Sys is capable to handle
traces to track modifications made on the model.

The Time4Sys framework proposes an approach of Real-Time
systems from the design to the analysis and the redesign if neces-
sary. Figure 6 present the whole process available with Time4Sys.
Model can be imported from a design language. The model and
the framework are based on a subset of UML - MARTE profile.
The model can also be established in the framework thanks to the
2https://www.polarsys.org/projects/polarsys.time4sys
3https://github.com/polarsys/time4sys

https://github.com/polarsys/time4sys
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Figure 6: Abstract of the process of Time4Sys

concrete syntax embedded in the framework. Then, the model is
compared in the transformation context repository to check for
any available transformation to simplify the analysis. After the
endogenous transformation, creating a model also conforms to the
Time4Sys design language profile. The model is then compared to
the analysis repository to verify for analysis that suits the model
context or at least that approaches the model context.

4.2.2 Positioning of CONSERT inside Time4Sys. Figure 7 shows
the detailed process of analysis in Time4Sys, integrating our work-
flow. Our repository intends to be the first step after modeling in
Time4Sys framework (marked as (1) on the figure). From instances
of rules provided by CONSERT, the framework is able to compare
(marked (2) on the figure) with the model and determine the trans-
formation(s) to retrieve the adapted model. The transformations
(marked (3) on the figure) are conducted by the framework. Af-
terwards, the model is compared with the analysis repository to
determine the analysis tool (marked (4) and (5) on the figure). A
transformation from the adapted model to the analysis tool input
leads themodel to its analysis (marked (6) on the figure). The output
is retrieved to enrich the model for eventual further analyses.

4.3 General structure and scenario usage
The meta-model is established on EMF (Eclipse Modeling Frame-
work [20]). To obtain the context and compare to the repository,
OCL (Object Constraint Language [12]) is used to implement trans-
formation rules between models. The endogenous transformation
is done through the ATL (Atlas Transformation Language [9])

If Time4Sys is used as support of our proposal, Figures 8 and 9
presents examples of instances of CONSERT and trace repositories

4.3.1 Pessimism on transformations. To transform real-time sys-
tems, we need to be conservative. In software certification, this

means the transformation cannot make the new model more opti-
mistic, scheduling-wise, than the model considered in the previous
step.

4.3.2 Classes transformation with Time4Sys. The transforma-
tions impact few classes on the meta-model. It is possible then to
verify the model obtained at each step. Table 1 summarizes all trans-
formations applied on Time4Sys classes for the cases we presented
at Section 2.1.

In the case of precedence constraints, a step can be preceded by
one or more step. It can be triggered by any step. All properties of
the triggered step, such as priority, blocking time, are duplicated
into a new task. The duplicated steps and tasks have the same
properties, except these have to access a mutual exclusion resource
to avoid these tasks preempting each other.

For probabilistic values, we convert the class associated to the
probabilistic value to a simple duration and take the minimum
or the maximum depending on the probabilistic parameter it was
affected to.

For Sliding windows activation, classes are transformed into a
burst pattern retrieving the parameters contained in the previous
class.

Awatchdog is currently designed as anAlarmwith a reset service
avoiding the execution of the alarm. The service is converted into
an independent sporadic task.

5 CASE STUDY - APPLICATION ON A
MINEPUMP

We present a case study of a simple example. First, we present the
initial design of the case study expressed in Time4Sys. Then, we
emphasize the practical case that should be adapted. We show how
the usage of a CONSERT repository helps to perform automatically
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Figure 7: Workflow of Time4Sys and integration of CONSERT

Time4Sys Class Before Transformation After Transformation
Alternative precedence relations context CA

PrecedenceRelation Connector kind set to Merge Connector kind set to Sequence
Step Single step with two (or more) precedences As much steps as there were precedences

SoftwareSchedulableResource One task As much tasks as there were precedences
MutualExclusion None A mutual exclusion for each instance of the task(s)

Sliding Windows activation pattern context CB
SlidingWindowPattern

(inherited from ActivationPattern)
ni maximum occurences
in any window of sizewi Non-existent

BurstPattern Non-existent Burst of ni occurences everywi
Probabilistic values context CC

ProbabilisticDuration
(inherited from NFP_Duration

& NFP_TimeInterval) Probabilistic distribution of time Non-existent
Duration

(for WCET values) Probabilistic Equals to maximum duration value
Duration

(for inter-arrival time) Probabilistic Equals to minimum duration value
Watchdog context CD

Alarm Designed as a watchdog Non-existent
SoftwareSchedulableResource Taskset Creation of task Watchdog

ActivationPattern N/A
Creation of a sporadic activation
associated to the task Watchdog

Table 1: Table of transformations

a series of transformation in order to get an analyzable design while
remaining the pessimist temporal behavior.
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Figure 8: Instance of the transformation repository

5.1 A sample practical use case
We consider a deep well filled with water inspired from [10]. It is
required to keep the water between Low andHigh levels. Amethane
sensor is located in the well, to shut down the pump when the air is
explosive (in case of a sparkle), but also to evacuate the employees
when the level is dangerous for a human being. If the methane level
is over L1, an alarm should be triggered. If the methane level is over
L2, the pump shall be deactivated. At Low level, the pump should
be off as it cannot pump any more water. All software components
are executed on a uniprocessor controller. Figure 10 presents a
schematic of the system.

5.2 Initial modeling
The software architecture is composed of three tasks. Task 1 is
periodic, and acquires the methane level every 50ms, task 2 retrieves
periodically information from Low level and High level sensors,
and task 3 has to compute whether or not the pump should work
and check if alarm should be triggered or stopped.

Task 1 presents three steps corresponding to functions of the
task defined at functional modeling stage: acquire signal, compare

Figure 9: Example of an trace instance

PUMP

High

Low

L2

L1

Methane
Sensor

Controller

Figure 10: MinePump use case

methane, operate alarm. Task 2 has only 1 step of water level acqui-
sition. These tasks sends their data to task 3 in charge of computing
the signal to send to the pump.

Task 1 has a periodicity of 50ms and Task 2 a periodicity of
500ms.

There is a watchdog in the system to be reset every 50ms. The
watchdog is reset at each successful frame read. A trigger of the
watchdog implies a late arrival of a frame or a bad transmission of
the message.

We first try to analyze this system. For this kind of system,
MAST software is proposed (version 1.5.1.0). This implies a single
transaction for the system in MAST.
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Task Ti Ci Priority
T1 50ms 10ms 15

→ Step1.1 — 2ms —
→ Step1.2 — 3ms —
→ Step1.3 — 5ms —

T2 500ms 10ms 13
→ SingleStep 500ms 10ms —

T3 — 10ms 5
→ Step3.1 — 10ms —
→ Step3.2 — 5ms —
Watchdog — 5ms 1
Table 2: Summary of the system

Figure 11: Transformation separating the transactions

The model cannot be analyzed as a tool failure exception stops
the execution of the tool. A transformation is necessary.

5.3 First step
In this modeling, there is an "OR" precedence: task 3 preceded by
either Task 1 or 2. Figure 11 presents the Time4Sys model of the
case study. In Time4Sys, a watchdog cannot be represented at this
moment in the graphical syntax. The steps are given periods and
computation times Ci as follows in Table 2.

5.4 Second step of the transformation
The transformation conduct to the creation of two transactions,
instead of one transaction as previously, beginning with the acti-
vation of tasks 1 and 2. The tasks must be in mutual exclusion, to
avoid two jobs of task 3 preempting each other during the process.

5.5 Third Step
The transformation creates a watchdog task as a sporadic task of
minimum interarrival time equals to 50ms. Figure 13 presents the
model transformed after transformation.

As the watchdog activates a service on task 3, alerting it of a
frame failure, the transformation implies the creation of a third
instance of Task 3 in mutual exclusion with the other instances of
"task 3" As it is a safety task on system, it is affected the highest
priority on the processor. Table 3 presents the results on the system
with a watchdog.

Figure 12: Transformed model separating the transactions

Figure 13: Transformation adding a watchdog task

5.6 Analysis
We conduct the analysis on MAST. Table 2 summarizes the results
obtained through the analysis software. Column Case 1 designates
worst case response time excluding the watchdog in the computa-
tion, and column Case 1 including the watchdog as a sporadic task.

Task WCRT
Case 1 Case 2

Task1 285ms 545ms
Task2 10ms 15ms

Task3 (activation by T1) 190ms 345ms
Task3 (activation by T2) 110ms 210ms

Watchdog — 5ms

Table 3: MAST Results - Sliding Window

6 CONCLUSIONS
This papers tackled the difficulty faced by designers to analyze
some practical use cases. The designs of these use cases require
to be adapted to become analyzable (in a temporal performance
point of view) hence fit a model analysis to conclude about their
schedulability.

Basically, the required adaptation and transformation are guided
by analysts expertise since it is important that the resulting design
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should never be optimistic compared to the source one. To capi-
talize this expertise and make designers autonomous during the
analysis phase, we proposed CONSERT (CONServative Endoge-
nous Repository-based Transformations). Thanks to CONSERT, any
expert can share his/her knowledge with other collaborators by
creating a CONSERT repository where it is possible to store the
necessary transformation for each kind of design. Consequently,
the transformation can be performed automatically by connecting
the repository to a modeling language. Moreover, the utilization of
CONSERT repositories enables users to get, in addition to trans-
formed models, the evolution traces (also as model) of their initial
model that underwent the transformations.

CONSERT has been integrated within Time4Sys framework and
supports OCL to enable users express detection rules. The transfor-
mation and the traceability is managed thanks to ATL. A sample use
case has been treated in this paper to show how such work can be
needful in terms of safety and time-shortening since the content of
the repository is supposed to be done by an expert and the implicit
and manual transformations become explicit and automatic.
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