
HAL Id: hal-04024003
https://univ-poitiers.hal.science/hal-04024003

Submitted on 10 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Towards a Model-Based Approach to Support Physical
Test Process of Aircraft Hydraulic Systems

Ouissem Mesli-Kesraoui, Yassine Ouhammou, Olga Goubali, Pascal Berruet,
Patrick Girard, Emmanuel Grolleau

To cite this version:
Ouissem Mesli-Kesraoui, Yassine Ouhammou, Olga Goubali, Pascal Berruet, Patrick Girard, et al..
Towards a Model-Based Approach to Support Physical Test Process of Aircraft Hydraulic Systems.
10th International Conference on Model and Data Engineering (MEDI 2021), Jun 2021, Tallinn,
Estonia. pp.33-40, �10.1007/978-3-030-78428-7_3�. �hal-04024003�

https://univ-poitiers.hal.science/hal-04024003
https://hal.archives-ouvertes.fr


Towards a model-based approach to support
physical test process of aircraft hydraulic

systems

MESLI-KESRAOUI Ouissem1,2,3, OUHAMMOU Yassine2, GOUBALI Olga1,
BERRUET Pascal3, GIRARD Patrick2, and GROLLEAU Emmanuel2

1 SEGULA Engineering, France
2 LIAS/ISAE-ENSMA and University of Poitiers Chasseneuil du Poitou, France

3 Lab-STICC/University of Bretagne Sud LORIENT, France
ouissem.mesli@ensma.fr, yassine.ouhammou@ensma.fr,

olga.goubali@segula.fr, pascal.berruet@univ-ubs.fr,

patrick.girard@univ-poitiers.fr, grolleau@ensma.fr

Abstract. The physical integration of an aircraft consists of the assem-
bly of several complex subsystems (including hydraulic systems) devel-
oped by different stakeholders. The cleanliness of the developed hydraulic
subsystems is ensured by performing several decontamination and flush-
ing tests. This testing phase is very tedious as it is mainly performed
by SCADA (Supervisory Control and Data Acquisition) systems and de-
pends on chemical substances. However, as the design is mainly expressed
in informal textual languages and synoptic diagrams, this testing is cur-
rently done manually and is determined by the experience of the testers.
This makes it error-prone and time-consuming.
In this paper, we propose to capitalize the effort for physical testing
of hydraulic systems by proposing a model-based system engineering
approach that allows: (i) to graphically specify the systems under test
and (ii) to automatically generate the corresponding test cases. A proof
of concept is proposed as well as a case study.

Keywords: DSML · MBT · Avionic Test · Hydraulic System · Flushing

1 Context and Positioning

The aircraft is composed of complex subsystems called avionics systems such
as: the hydraulic power system (ATA 29), the landing gear system (ATA 32),
the flight control system (ATA 27), etc. [4]. A hydraulic system is a complex as-
sembly of hydraulic, electronic, and mechanical components. This system uses a
pressurized fluid to transfer energy from one point to another [6]. Before commis-
sioning an avionics system, a series of tests should be performed to ensure that it
is free of contaminants. The presence of contaminants in a hydraulic circuit can
alter its function and damage it. To reduce this damage, the hydraulic system
and its components must be flushed [6] to remove contaminants that may have
been created during the components fabrication, assembly and/or maintenance.



Flushing is one of the best and most cost-effective solutions for removing contam-
inants from hydraulic circuits. For efficient flushing, the system is decompressed
in loops (a portion of the circuit consisting of equipment and piping) [8].

To perform the flushing test, the testers follow three steps (Fig. 1). In the
first step (Specification Translation), the testers obtain and translate the spec-
ification documentation needed to identify the test loop. These documents are
essentially: (i) The physical architecture of the system under test. It is a Piping
and Instrumentation Diagram (P&ID) which illustrate the connections between
different the equipment and piping; (ii) The flushing process and constraints. The
flushing process consists of a description of the components and their roles: the
component to be flushed, the generating components, the component that stores
the fluid, valves to circulate the fluid, etc. A set of constraints to be respected
like the velocity, loop order, etc. are also described in constraints documents.
In the second step (Identification of abstract loops), testers use the above doc-
uments to divide the circuit into sections or loops (part of the circuits on the
physical architecture). This ensures that the velocity is maintained (test con-
straints compliance). Finally, in the third step (Translation of abstract loops to
concrete loops) the testers convert the abstract loops into executable loops by
adding information about the role of each component and how the components
are handled (opening the generating component, operating the valves to allow
the fluid to flow towards the loop, etc.). These concrete loops are then executed
on the SCADA test bench according to a specific sequence to ensure that the
fluid only flows through cleaning sections.

Fig. 1. Testing of the avionics hydraulic system

The manual definition of test loops after the above steps is fraught with sev-
eral problems. First, the translation process (step 1) is a tedious task, since each
piece of information (physical architecture, flushing process, and constraints)
must be translated into a different language. In fact, nowadays, the information
about the test process and test constraints is mainly scattered in a document-
based manner (e.g., text and Excel files with natural languages), and the infor-
mation about the hydraulic system is schematic-based (e.g., Visio and PDF files)
without any domain semantics. Second, abstract and concrete loop identification
are often written manually by testers. Writing tests manually is a tedious, time
and resource consuming task and often prone to omissions and errors.



The problem of identifying flushing loops and their location has attracted
much attention in the context of drinking water decontamination [8, 7]. However,
the solutions proposed for drinking water decontamination cannot be applied
to hydraulic circuit flushing. Firstly, hydraulic circuits are complex and, unlike
water circuits, have many different components, and secondly, the test conditions
of hydraulic circuits are very different from those of water circuits.

To adapt to the increasing complexity of avionics system testing and to reduce
the manual effort required for testing, MBT was developed to make it easier for
testers to test avionics systems and to focus their efforts on the SUT and the
features under test [10]. MBT enables the automatic generation of test cases
from system models. Otherwise, while the MBT method has been used with
success in automating certain tests of avionics systems [1, 10], it has never been
used in generating flushing loops.

In this paper, we propose a model-based approach that leads to correct-by-
construction test cases (flushing loops) to reduce tester effort. This can shorten
the time-to-market as designers and testers can work together on data-centric
models. For this purpose, we first propose a Domain Specific Modeling Language
(DSML) to play the role of a pivot language to design and collect all the infor-
mation of the hydraulic system under test, as well as the flushing process and
constraints. The DSML is intended to improve the reusability of hydraulic system
test bench designs and to strengthen semantics. Second, we use the paradigm
Model-Based Testing (MBT) to automate the generation of test cases (loops)
from instances of the proposed pivot language.

The rest of the paper is as follows. In section 2, we introduce our DSML
and show its use for the automatic generation of flushing loops for hydraulic
systems. In section 3, we evaluate our approach using a case study and discuss
the obtained results. Section 4 concludes this paper and discusses some future
research directions.

2 Our contribution: A Reusable & Optimized approach
for flushing avionics systems

Due to the lack of space, in this paper we focus on two contributions correspond-
ing to the first two steps of the flushing process. The first one consists in defining
a new pivot language to express the P&ID of the hydraulic system, the flushing
process and the flushing constraints in one language. The second contribution is
the automatic generation of the abstract loops for the flushing test.

2.1 Towards a pivot language

A DSML is a language tailored to the needs of a particular domain. It allows
to create models of complex systems that are closer to reality and use domain
specific vocabularies to facilitate the understanding of different designers [9].
The use of domain concepts and terms allows experts to understand, validate,
modify, or even create a DSML.



The abstract syntax of our pivot language is modelled by a metamodel aug-
mented by several OCL (Object Constraint Language [3]) constraints that cap-
ture domain rules.

Core-elements of the proposed abstract syntax. Our pivot language (Fig. 2)
allows modeling the physical architecture of a hydraulic system, the functions
that ensure the flushing process, and the test constraints.

Fig. 2. Core elements of the proposed abstract syntax

The physical architecture facet. The root class in the physical architec-
ture metamodel is P&ID (left part in Fig. 2), identified by a title, description,
and version. The P&ID consists of a set of components that may be Equipment,
junction or link. An equipment can be Simple or Complex, which consists of
other simple equipment. A junction can connect equipment by their ports (In,
Out, etc.) to a link. A Pipe link is identified by a diameter (dash).

We also added several OCL constraints to capture domain rules. For example,
the following constraint limits the number of process ports to 2 for components
of type ISAValve2ways.

1 Context ISAValve2Way inv :
2 s e l f . port−>count (MM: : Type : : Process ) = 2

The function (test process) facet. Each Function (right part in Fig. 2) is
identified by a name and a description. SystemFunction are functions performed
by the system. Functions are divided into (FunctionnalPurpose, Abstract-

Function, GeneralizedFunction and PhysicalFunction). The first one de-
scribes the high level functions of the flushing process, this function is always
the purpose of the design of the test bench (e.g. cleaning the circuits) which is



adopted by the whole SUT. The AbstractFunction is used to describe the func-
tion that is actually to be realized by the system (flushing). The Genralized-

fucntion is adopted by a subsystem of the SUT (e.g. Isolate the loop). And the
low-level function is the PhysicalFunction inherent to the elementary compo-
nents (Supply hydraulic power). Functions are connected by operators that allow
the execution order of functions. There are several operators: sequential (func-
tions are executed sequentially) and parallel (functions are executed in paral-
lel). To assign a PhysicalFunction to a component, the Assignment operator
is used. A GeneralizedFunction is guaranteed by more than one component,
for which the Cooperation operator is provided.

The constraint facet. A Constraint may refer to a function, a system,
or a component (Fig. 2). For example, the FunctionalConstraint describes
constraints that refer to system functions.

Testers designing test model. We develop a graphically concrete syntax
to our pivot language that allows information to be represented in a familiar
form to testers. In the first phase, testers used the proposed tool to design
P&ID of the hydraulic system under test by dragging and dropping components
and connections stored in a proposed library. During the creation of the P&ID,
testers must specify properties for the different components (diameter, length,
supported pressure, etc.). Once the P&ID is created, the testers can specify the
different functions that describe the flushing process and the flushing constraints.

2.2 Graph and abstract loop generation

We propose an MBT-based approach to identify the different flushing loops in
the hydraulic system (Fig. 3). This approach consists of 3 steps. In the first
step, the modelling of the P&ID, the flushing process and the test conditions
is performed by our proposed tool (graphical concrete syntax). The resulting
instance is called test model. The second step consists in transforming the test
model into an oriented graph. For this purpose, each P&ID component (valve,
cylinder, pump, etc.) is translated into a node and the piping into edges between
nodes. In our case, loop identification remains to identify a path in the generated
graph. To identify the loops, the components of P&ID are divided into: source,
well, waypoint, and goal. The source component is the component that supplies
hydraulic energy to the loop. The goal component is the component that needs
to be flushed. The component waypoint is a component through which the fluid
must necessarily pass, and the path ends in the component well that recovers the
flushed fluid. The generated graph is used in the third step to derive the abstract
loops of the flush. For this purpose, a search algorithm (Dijkstra algorithm [5]) is
used to find a path from the source component to the target component and from
the target component to the well component. Specifically, this step calculates the
different loops needed to flush the hydraulic system.



Fig. 3. MBT-based flushing loops generation

3 Proof of concept

To emphasise our proposal and show its importance, we use the landing gear
avionics system [2]. Fig. 4 shows the P&ID of the hydraulic circuit that controls
the landing gear and associated doors [2]. It contains 3 sets of landing gear (front,
right, left). Each set consisting of a door, the landing gear and the hydraulic
cylinders. This system is powered by the general Electro-valve which is connected
to four Electro-valves. The first valve controls the closing of the different doors
(front, right, left) and the second is used to open these doors. The third and
fourth valves are used to extend and retract the three landing gears (front,
right, left). The opening/closing of the doors and the retraction/extension of
the landing gear are done by cylinders.

Fig. 4. (A): The modelling of the three facets of the Landing gear system with our
tool. (B): Graph generated from the test model



3.1 Method

On this system, we applied our MBT-based approach to generate the flushing
loops. First, we used the proposed modelling tool to capture all the required
information about the flushing of the hydraulic system. We design P&ID in the
new pivot language using the component library included in the modelling tool
(Fig. 4). Then we specify the flushing process (functions), and the flushing con-
straints to obtain the Model Instance (test model). After the modelling step,
we generate an oriented graph from the pivot language specification. The ob-
tained graph of the landing gear system is shown in Fig. 4. The various steps
of Dijikstra’s algorithm are applied to this graph. The purpose of flushing in
this system is to flush the different cylinders (LD-CY, RD-CY, DF-CY, LG-CY,
RG-CY and FG-CY) corresponding to left-door cylinder, right-door cylinder,
front-door cylinder, left-gear cylinder, right-gear cylinder and front-gear cylin-
der respectively. These cylinders correspond to the goal component. The loop
used to flush a target component consists of two paths. A pressure path starts
at the source component and ends at the goal component. A return path starts
from the goal component to the well component.

3.2 Results & Discussion

The pivot language proved to be very useful as it successfully separated what
the tester was doing (specifying) and how the test was implemented (generating
loops). For the landing gear system example, our approach generates 4 loops.
These loops are represented by full and dashed lines in Fig. 4. Each loop is chosen
to be isolated to be flushed separately. Two full line loops allow the door circuit
(front door cylinder, right door cylinder, left door cylinder, and various piping
between these components) to be flushed by alternately operating the closed and
open Electro-valve. In fact, if the close Electro-valve is used to circulate fluid from
the General Electro-valve to supply the front door cylinder, right door cylinder,
left door cylinder and various piping components, then the open Electro-valve
is used to return fluid from the cylinders to the General Electro-valve, and vice
versa. the second loop takes the opposite path (Electro-valve is used for supply
and the close Electro-valve is used for return). The dotted line loops (two) are
used to flush the front gear cylinder, the left gear cylinder and the right gear
cylinder by selecting the supply valve and the return valve (selecting between
the extend Electro-valve and the retract Electro-valve).

We then compared these generated loops with the manual loops created by
testers and they are correct. This result proves that our pivot language contains
all the necessary information to generate all the required loops for the hydraulic
system. Nevertheless, it will be useful to improve the calculation process. For
this purpose, some constraints must be considered in the calculation process: (i)
consider the flushing constraints (velocity, flow, and pressure conditions) on the
optimization algorithm; (ii) add a success constraints that is used to evaluate
the cleanliness of a flushed component. If a loop is unsuccessful, that loop must
be re-executed.



4 Conclusion

Testing is the most important step that cannot be neglected in the design of
aircraft hydraulic systems. This step is always preceded by the design of test
loops. The latter can be time consuming and tedious, depending on a large
number of components and constraints that need to be considered. Our goal
is to reduce this design effort by providing an approach that allows testers to
easily define test models (P&ID, test constraints, test process) and generate the
required loops. We first proposed a pivot language to unify the specification of
all facets in one language. This language is supported by a proposed tool that is
closer to the domain. Using this tool, experts from different domains can easily
create specification models without learning a new language. Thus, the work of
experts is focused on the specification. To generate loops from specifications, we
proposed an MBT-based approach to determine the constitution of a loop.

5 Acknowledgement

We would like to thank Mr. Mikaël LE ROUX expert from SEGULA Montoir
De Bretagne-France, for his collaboration and his involvement.

References

1. Arefin, S.S.: Model-based testing of safety-critical avionics systems (2017)
2. Boniol, F., WIELS, V., Aı̈t-Ameur, Y., Schewe, K.D.: The landing gear case study:

challenges and experiments. International Journal on Software Tools for Technol-
ogy Transfer 19(2), 133–140 (Jul 2016). https://doi.org/10.1007/s10009-016-0431-
4, https://hal.archives-ouvertes.fr/hal-01851720

3. Cabot, J., Gogolla, M.: Object constraint language (ocl): a definitive guide. In:
International school on formal methods for the design of computer, communication
and software systems. pp. 58–90. Springer (2012)

4. Collinson, R.P.: Introduction to avionics, vol. 11. Springer Science & Business
Media (2012)

5. Dijkstra, E.W., et al.: A note on two problems in connexion with graphs. Nu-
merische mathematik 1(1), 269–271 (1959)

6. ISO 16431: Hydraulic fluid power — system clean-up procedures and verification
of cleanliness of assembled systems. Standard ISO 16431:2012(E), International
Organization for Standardization (2012)

7. Poulin, A.: Élaboration de procédures d’intervention en réponse aux contamina-
tions se produisant en réseaux d’eau potable. Ph.D. thesis (2008)

8. Poulin, A., Mailhot, A., Periche, N., Delorme, L., Villeneuve, J.P.: Planning uni-
directional flushing operations as a response to drinking water distribution system
contamination. Journal of Water Resources Planning and Management 136(6),
647–657 (2010)

9. Sloane, A.M.: Post-design domain-specific language embedding: A case study in
the software engineering domain. In: Proceedings of the 35th Annual Hawaii In-
ternational Conference on System Sciences. pp. 3647–3655. IEEE (2002)

10. Yang, S., Liu, B., Wang, S., Lu, M.: Model-based robustness testing for avionics-
embedded software. Chinese Journal of Aeronautics 26(3), 730–740 (2013)


