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O-MINIMAL EXPANSIONS OF REAL CLOSED FIELDS AND

COMPLETENESS IN THE SENSE OF SCOTT

OLIVIER FRÉCON

Abstract. We consider an o-minimal expansion M0 = (R0, <,+, · · · ) of a

real closed field, and a real closed field R, complete in the sense of D. Scott,
containing R0 as a dense subfield. We show that M0 has an elementary

extension M = (R,<,+, · · · ) with domain R. Moreover, such a structure M
with domain R is unique.

Note

In an unpublished article, Antongiulio Fornasiero proved a more general result
than the main theorem of this paper. Indeed, he showed a similar result for d-
minimal expansions of a real closed field [1, Proposition 11.6]. However our proofs
are very different.

1. Introduction

By the Compactness Theorem, it is easy to elementarily embed any expansion
M0 = (R0, <,+, · · · ) of a real closed field in an expansion M = (R,< +, · · · )
of a Scott-complete real closed field, that is complete in the sense of Dana Scott
(Definition 1.1). However, we have little control on the size of the elementary
extension obtained. For instance, if R0 is countable, it is possible that the field
R has no countable dense subfield. The main result of this paper shows that
any o-minimal expansion of a real closed field R0 is elementarily embedded in an
expansion of a Scott-complete real closed field, in which R0 is dense (Theorem 1.2).
We note that, since we consider an expansion of a real closed field, not just the field
structure, the model completeness of the theory of real closed fields will not help
us.

We recall the definition of a complete real closed field in the sense of [2].

Definition 1.1.. – If K and L are ordered fields and K ⊆ L, then K is dense in
L if between any two distinct elements of L there lies an element of K.

A given ordered field is called Scott-complete if it has no proper extension to an
ordered field in which the given field is dense.

The main result of this paper is the following.

Theorem 1.2.. – Any o-minimal expansion of a real closed field R0 has an elemen-
tary extension of domain a Scott-complete field R in which R0 is dense. Moreover,
for a fixed field R, this elementary extension is unique.
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2. Notations and preliminary results

For the rest of this paper, we fix an o-minimal expansion M1 = (R0, <, · · · ) of
a real closed field R0, and we denote by R a Scott-complete field in which R0 is
dense: its existence is ensured by Fact 2.1 below.

Fact 2.1.. – [2, Theorem 1] Given any ordered field K, there is a Scott-complete

ordered field K̂ in which K is dense. Any other Scott-complete ordered field in
which K is dense is isomorphic to K̂ by a unique isomorphism that is the identity
on K.

In the following, we say that a set X is definable if it is definable in the structure
M1.

For each integer k and each subset A of Rk, we denote by A its (topological)

closure in Rk. For each subset X of Rk
0 , we denote by X̆ the union of subsets F for

F a R0-closed definable subset contained in X.
For clarity, we use a very different notation for the closure in Rk

0 of a subset X of
Rk

0 : we denote it by clX. Moreover, we denote by ∂X its frontier: ∂X = clX \X.
For any element x = (x1, . . . , xk) of Rk, we consider

|x| = max{|xi| | i ∈ {1, . . . , k}}

Remark 2.2.. –

• For any subset X of Rk
0 , it follows from the definition of X̆ that X = X̆∩Rk

0 .
• The proof of Theorem 1.2 will show that the elementary extension of M1

of domain R has the following property:
for any two integers k and m, if A is any subset of Rk

0 defined by a
formula ϕ(x, a) with free variables x = (x1, . . . , xk) and parameters a ∈ Rm

0 ,

then the subset of Rk defined by ϕ(x, a) is Ă.

The first lemma is certainly well-known, but we could not find a reference for it.

Lemma 2.3.. – Let k be an integer, X a subset of Rk
0 , and f : X → R0 be a

uniformly continuous map. Then for each x ∈ X, the following limit exists:

lim
y∈X
y→x

f(y)

Proof – Let ε ∈ R>0
0 . Since f is uniformly continuous on X, then we may

associate with ε some δ(ε) ∈ R>0
0 such that whenever |v − u| < δ(ε) for u and

v in X, we have |f(v) − f(u)| < ε. Then for each y ∈ X and z ∈ X such that
|y− x| < δ(ε)/2 and |z − x| < δ(ε)/2, we have |z − y| < δ(ε) and |f(z)− f(y)| < ε.

Let C−ε (resp. C+
ε ) be the set of elements α ∈ R0 such that α < f(y)− ε (resp.

α > f(y) + ε) for some y ∈ X satisfying |y − x| < δ(ε)/2. Let C− (resp. C+) be
the union of subsets of the form C−ε (resp. C+

ε ) for ε ∈ R>0
0 .

Claim 1: for each a ∈ C− and each b ∈ C+, we have a < b. In particular, the
set C− ∩ C+ is empty.

There exist y1 and y2 in X, and ε1 and ε2 in R>0
0 , such that |y1 − x| < δ(ε1)/2,

|y2 − x| < δ(ε2)/2, a < f(y1) − ε1 and b > f(y2) + ε2. Let δ = min{δ(ε1), δ(ε2)}.
We fix y ∈ X such that |y−x| < δ/2. Then we have |f(y)−f(y1)| < ε1 < f(y1)−a
and |f(y)− f(y2)| < ε2 < b− f(y2), so we obtain a < f(y) < b.

Claim 2: for each r ∈ R>0
0 , there is a ∈ C− and b ∈ C+ such that b− a < r.
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Let y ∈ X such that |y − x| < δ(r/3)/2. Then for a = f(y) − r/2 and b =
f(y) + r/2, we have a ∈ C−r/3 and b ∈ C+

r/3, and we obtain a ∈ C−, b ∈ C+ and

b− a < r.

Conclusion: By [3, §2, Lemma 2.8] (or [2]), there is a unique ω ∈ R satisfying
a < ω < b for every a ∈ C− and b ∈ C+. Hence for each ε ∈ R>0

0 , there is
δ(= δ(ε)) ∈ R>0

0 such that whenever |y−x| < δ/2 for y ∈ X, we have ω ≥ f(y)− ε
and ω ≤ f(y) + ε, so |f(y)− ω| ≤ ε. Now ω = lim

y∈X
y→x

f(y) exists. �

Lemma 2.4.. – Let k be an integer. If E and F are two closed definable subsets
of Rk

0 , then E ∩ F = E ∩ F . In particular, if E ∩ F is non-empty, then E ∩ F is
non-empty too.

Proof – We have just to prove that E ∩ F contains E ∩F . Let x ∈ E ∩F . For
each ε ∈ R>0

0 , we fix uε ∈ E such that |uε−x| < ε. Let Bε = {y ∈ Rk
0 | |uε−y| ≤ ε}.

Since x ∈ E∩F and since |uε−x| < ε, we have x ∈ Eε∩Fε where Eε = Bε∩E and
Fε = Bε ∩ F . Moreover, we note that Eε and Fε are closed and bounded definable
subsets of Rk

0 .
We show that Eε∩Fε is non-empty. Let fε : Eε×Fε → R0 defined by fε(z, z

′) =
|z − z′|. It is a definable continuous function, so its image is closed and bounded
(see [4, Chapter 6 §1]). For each η ∈ R>0

0 , there exist u ∈ Eε and v ∈ Fε such
that |u − x| < η/2 and |v − x| < η/2, so we have f(u, v) = |u − v| < η. Since the
image of fε is closed and bounded, this implies that it contains zero. Hence there
exist a ∈ Eε and b ∈ Fε such that fε(a, b) = 0. Now we have a = b ∈ Eε ∩ Fε, and
Eε ∩ Fε is non-empty.

Since |uε − x| < ε, we have |y − x| < 2ε for any y ∈ Bε. Thus, the previous
paragraph proves that for each ε ∈ R>0

0 , there exists y ∈ E∩F such that |y−x| ≤ 2ε,

so x ∈ E ∩ F , as desired. �

Corollary 2.5.. – For each subset X of Rk
0 , and each x ∈ X̆, there is a closed and

bounded definable subset F of X such that x ∈ F .

Proof – Since x ∈ X̆, there exists x0 ∈ X such that |x− x0| < 1. We consider
F1 = {y ∈ Rk

0 | |y− x0| ≤ 1}. Then F1 is a closed and bounded definable subset of
Rk

0 . By density of R0 in R and since |x− x0| < 1, we have x ∈ F1.

Moreover, by the definition of X̆, there is a closed definable subset F2 of X such
that x ∈ F2. Then F = F1 ∩F2 is a closed and bounded definable subset of X, and
Lemma 2.4 gives x ∈ F . �

Proposition 2.6.. – Let k be an integer. If {A1, . . . , Am} is a partition of Rk
0 into

definable subsets, then {Ă1, . . . , Ăm} is a partition of Rk.

Proof – First we show that Rk is the union of Ă1, . . . , Ăm. Since each definable
subset of Rk

0 has a decomposition into cells (see [4, Chapter 3 §2] for more details),
we may assume that A1, . . . , Am are cells.

Let x ∈ Rk. We show that x ∈ Ăj for some j ∈ {1, . . . ,m}. We may assume
x 6∈ Rk

0 . By finiteness of the partition {A1, . . . , Am}, there exists r ∈ R>0 such that,
for any s ∈]0, r], the set I = {i ∈ {1, . . . ,m} | ∃a ∈ Ai, |x − a| < s} is constant.
Since R0 is dense in R, the set I is non-empty, and by the definition of I, the point
x is in the Rk-closure Ai of Ai for each i ∈ I.
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Let d be the smallest integer such that there is j ∈ {1, . . . ,m} and a definable
subset B of Aj of dimension d with x contained in B. Let Bi = Ai ∩ ∂B for each
i ∈ {1, . . . ,m}. Then for each i ∈ {1, . . . ,m}, the subset Bi of Ai is definable
(see [4, Chapter 1 §3]) and we have dimBi ≤ dim ∂B < dimB = d [4, Chapter
4 §1]. By the minimality of d, the point x is contained in the Rk-closure Bi of
Bi for no i ∈ {1, . . . ,m}. Consequently, there is t ∈ R>0 such that |y − x| > t
for any y ∈ ∪mi=1Bi, and we may choose t ∈ R0 as R0 is dense in R. Since
∪mi=1Bi = ∂B and since x ∈ B, there exists b0 ∈ B such that |b0 − x| < t/2. Let
Bf = {b ∈ B | |b − b0| ≤ t/2}. By the choices of t and b0, we have x ∈ Bf and
∂B ∩ Bf = ∅. This implies that the set Bf is a closed definable subset of B and

that x belongs to Ăj , as desired.

We show that Ăi ∩ Ăj = ∅ for any distinct elements i and j of {1, . . . ,m}.
Otherwise there is a closed definable subset Fi (resp. Fj) of Ai (resp. Aj) such

that Fi ∩ Fj 6= ∅. By Lemma 2.4, the set Fi ∩ Fj is non-empty, contradicting

Ai ∩Aj = ∅. Thus {Ă1, . . . , Ăm} is a partition of Rk. �

3. Proof of the main theorem

We provide three preparatory results before the final argument.

Lemma 3.1.. – Let S0 = {(u, v) ∈ R2
0 | u < v} and S = {(u, v) ∈ R2 | u < v}.

Then we have S = S̆0.

Proof – First we show that S̆0 contains S. Let (u, v) ∈ S. Then there exists
r ∈ R>0

0 such that v − u > r. Let (u0, v0) ∈ R2
0 such that |u − u0| < r/4 and

|v − v0| < r/4, and let F = {(x, y) ∈ R2
0 | |x − u0| ≤ r/4, |y − v0| ≤ r/4}.

In particular, we have (u, v) ∈ F . Moreover we have v0 − u0 > r/2, so we obtain
y−x > 0 for each (x, y) ∈ F , and F is a closed definable subset of S0. Consequently

(u, v) belongs to S̆0, and S̆0 contains S.

Now we show that S contains S̆0. Let (u, v) ∈ S̆0. By Corollary 2.5, there is a
closed and bounded definable subset F0 of S0 such that (u, v) ∈ F0. Let f : F0 → R0

defined by f(x, y) = y−x. Then f is a definable continuous function, so its image is
closed and bounded. Let m = min{f(x, y) | (x, y) ∈ F0}. Then we have b− a ≥ m
for each (a, b) ∈ F0. Since F0 ⊆ S0, we have m > 0 and we obtain (u, v) ∈ S. �

Corollary 3.2.. – Let T0 = {(u, v) ∈ R2
0 | u = v} and T = {(u, v) ∈ R2 | u = v}.

Then we have T = T̆0.

Proof – Let S0 = {(u, v) ∈ R2
0 | u < v} and S1 = {(u, v) ∈ R2

0 | u > v}.
Then {S0, S1, T0} is a partition of R2

0, and Proposition 2.6 says that {S̆0, S̆1, T̆0} is

a partition of R2. Now Lemma 3.1 gives T̆0 = R2 \ (S̆0 ∪ S̆1) = T . �

Lemma 3.3.. – If G0 (resp. H0, K0) denotes the graph of · (resp. +, −) in R3
0

(resp. R3
0, R2

0), then the graph of · (resp. +, −) in R3 (resp. R3, R2) is Ğ0 (resp.

H̆0, K̆0).

Proof – Since · is a continuous map over R0, its graph G0 in R3
0 is closed, and

we have Ğ0 = G0. Moreover, since · is a continuous map over R, its graph G in
R3 is closed, and since G contains G0, it contains G0 too. But R0 is dense in R,
hence for each (x, y) ∈ R2 we have (x, y, x · y) ∈ G0, and G is contained in G0. We

conclude that G = G0 = Ğ0, as desired.
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In the same way, we show that the graph of + (resp. −) in R3 (resp. R2) is H̆0

(resp. K̆0). �

Proof of Theorem 1.2 – We denote by L1 the language ofM1 = (R0, <, · · · ).
For each function symbol f of L1 with arity k, we consider a relation symbol Sf such

that SM1

f is the graph of fM1 , and for each constant symbol c of L1, we consider a

relation symbol Sc such that SM1
c = cM1 . We obtain a relational language L and

a structure M0 = (R0, <, · · · ) in L. We have just to prove that there is a unique
L-structure M with domain R such that M is an elementary extension of M0.

We note that, for any integer k, a subset X of Rk
0 is definable (in M1) if and

only if it is definable in M0.

Uniqueness:

First we assume that the structure M exists. Let S be any relation symbol of
arity k of L. Let F be a closed and bounded definable subset of SM0 , and let ϕ(x, a)
be an L-formula with free variables x = (x1, . . . , xk) and parameters a ∈ Rm

0 such

that F is defined by ϕ(x, a). Let F̃ be the subset of Rk defined by ϕ(x, a). SinceM
is an elementary extension ofM0, then F̃ contains F and it is closed and bounded
in Rk. Thus F̃ contains F . By Corollary 2.5, this implies that SM contains S̆M0 .

In the same way, the complementary of SM in Rk contains
˘̂

Rk
0 \ SM0 . Now

Proposition 2.6 gives SM = S̆M0 , so, if it exists such a structure M, then it is
unique.

Existence:

We consider the L-structure M = (R,<, · · · ) where for each relation symbol S

of arity k of L, we define SM by SM = S̆M0 . By Lemmas 3.1 and 3.3 and Corollary
3.2, it is sufficient to show that M is an elementary extension of M0.

First we note that for each relation symbol S of arity k of L, we have SM0 =
S̆M0 ∩Rk

0 (Remark 2.2), so M0 is a substructure of M.

Claim 1: if A is a definable subset of Rk
0 for an integer k, then we have Ă0 =

Rk \ Ă where A0 = Rk
0 \A.

Since {A,A0} is a partition of Rk
0 , then Proposition 2.6 says that {Ă, Ă0} is a

partition of Rk.

Claim 2: if A and B are two definable subsets of Rk
0 for an integer k, then we

have Ă ∩ B̆ =
˘̂

A ∩B.

It is sufficient to prove that
˘̂

A ∩B contains Ă ∩ B̆. Let x ∈ Ă ∩ B̆. Then there
exist a closed definable subset E of A and a closed defnable subset F of B such

that x ∈ E ∩ F . Now x belongs to E ∩ F ⊆ ˘̂
A ∩B by Lemma 2.4, and we obtain

Ă ∩ B̆ =
˘̂

A ∩B.

Claim 3: for any two integers k and l, if A and B are definable subsets of Rk
0

and Rl
0 respectively, then we have Ă× B̆ =

˘̂
A×B.

Let x ∈ Ă × B̆. We show that x belongs to
˘̂

A×B. We have x = (u, v) for

u ∈ Ă and v ∈ B̆. Then there are two closed definable subsets F and G of A and
B respectively such that u ∈ F and v ∈ G. For each ε ∈ R>0, there f ∈ F and
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g ∈ G such that |u− f | < ε and |v − g| < ε, so |(u, v)− (f, g)| < ε. Consequently,

x = (u, v) belongs to F ×G ⊆ ˘̂
A×B.

By Corollary 2.5, for any x ∈ ˘̂
A×B, there is a closed and bounded definable

subset H of A× B such that x ∈ H. If H1 (resp. H2) denotes the image of H by
the projection π1 : A × B → A (resp. π2 : A × B → B), then by the continuity
of the projections maps, the set H1 (resp. H2) is closed and bounded, and H is
contained in H1 ×H2. Now H is contained in H1 ×H2. But H1 ×H2 is closed in
Rk+l and it contains H1 × H2, so it contains H1 ×H2. Hence H is contained in

H1 ×H2, and Ă× B̆ contains
˘̂

A×B.

Claim 4: let π : Rk+1 → Rk be the projection on the first k coordinates for an

integer k. If A is a definable subset of Rk+1
0 , then we have π(Ă) =

˘̂
π(A).

First we note that the restriction π|Rk+1
0

: Rk+1
0 → Rk

0 of π to Rk+1
0 is definable

and continuous. In particular, the set π(A) is definable.

Let x ∈ Ă. By Corollary 2.5, there is a closed and bounded definable subset
F of A such that x ∈ F . Then, for each ε ∈ R>0, there exists y ∈ F such that
|y − x| < ε, so we have |π(y) − π(x)| < ε, and thus we obtain π(x) ∈ π(F ) But
the restriction π|Rk+1

0
is definable and continuous, so π(F ) is a closed and bounded

definable subset contained in π(A). Hence π(x) belongs to
˘̂

π(A), and
˘̂

π(A) contains

π(Ă).

Let x ∈ ˘̂
π(A). We show that x belongs to π(Ă). By definable choice [4, Chapter

6 §1], there is a definable map f : π(A) → R0 such that {(α, f(α)) | α ∈ π(A)} is
contained in A. By cell decomposition [4, Chapter 3 §2], there are finitely many
cells C1, . . . , Cs of π(A) such that π(A) = ∪si=1Ci and f is continuous on Ci for

each i. By Proposition 2.6, we have x ∈ C̆r for some r ∈ {1, . . . , s}. By Corollary
2.5, there is a closed and bounded definable subset G of Cr such that x ∈ G. But f
is continuous on G, so the graph Γ of its restriction f|G : G→ R0 to G is a closed
and definable subset of A. Moreover, the continuity of f on G implies its uniform
continuity on G [4, Chapter 6 §1], hence the following limit exists by Lemma 2.3:

u = lim
y∈G
y→x

f(y)

Now (x, u) belongs to Γ, and since Γ is a closed and definable subset of A, we obtain

(x, u) ∈ Ă and x ∈ π(Ă).

Claim 5: if ϕ(x, a) is an atomic formula with free variables x = (x1, . . . , xk)
and parameters a = (a1, . . . , am) in Rm

0 , and if A is the definable subset of Rk
0

defined by ϕ(x, a), then Ă is the M-definable subset of Rk defined by ϕ(x, a).
Let S be a relation symbol such that ϕ(x, a) = S(x, a). By the definition of

SM, we have SM = S̆M0 . Therefore, if B = SM0 is the subset of Rk+m
0 defined

by ϕ(x, y), if C = Rk
0 × {a}, and if π : Rk+m → Rk is the projection on the first

k coordinates, then we have A = π(B ∩ C). In the same way, the M-definable
subset of Rk defined by ϕ(x, a) is π(SM ∩ (Rk × {a})). Since by Claim 3 we have

C̆ = R̆k
0 ×

˘̂{a} = Rk × {a}, and since by Claims 2 and 4 we have Ă = π(B̆ ∩ C̆),
Claim 5 is proven.
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Claim 6: let ϕ(x, y, a) be a formula with free variables x = (x1, . . . , xk) and y,

and parameters a ∈ Rm
0 . Let A be the subset of Rk+1

0 defined by ϕ(x, y, a), and B be
the subset of Rk

0 defined by ∃y ϕ(x, y, a). If the subset of Rk+1 defined by ϕ(x, y, a)

is Ă, then the subset of Rk defined by ∃y ϕ(x, y, a) is B̆.
This follows from Claim 4.

Claim 7: let ϕ(x, a) be a formula with free variables x = (x1, . . . , xk) and
parameters a ∈ Rm

0 . Let A be the subset of Rk
0 defined by ϕ(x, a), and B be the

subset of Rk
0 defined by ¬ϕ(x, a). If the subset of Rk defined by ϕ(x, a) is Ă, then

the subset of Rk defined by ¬ϕ(x, a) is B̆.
This follows from Claim 1.

Claim 8: let ϕ(x, a) and φ(x, a) be formulas with free variables x = (x1, . . . , xk)
and parameters a ∈ Rm

0 . Let A be the subset of Rk
0 defined by ϕ(x, a), and B be

the subset of Rk
0 defined by φ(x, a). If the subset of Rk defined by ϕ(x, a) is Ă and

the one defined by φ(x, a) is B̆, then the subset of Rk defined by ϕ(x, a)∧φ(x, a) is
˘̂

A ∩B.
This follows from Claim 2.

Conclusion: it follows from Claims 5, 6, 7 and 8, and from Remark 2.2, that
the structure M is an elementary extension of M0. �
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Laboratoire de Mathématiques et Applications, Université de Poitiers
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