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LINEARITY OF GROUPS DEFINABLE IN O-MINIMAL
STRUCTURES

OLIVIER FRECON

ABSTRACT. We consider an arbitrary o-minimal structure M and a defin-
ably connected definable group G. The main theorem provides definable real
closed fields Ry, ..., Rk such that G/Z(G) is definably isomorphic to a direct
product of definable subgroups of GLp, (R1),...,GLn, (Ry), where Z(G) de-
notes the center of G. From this we derive a Levi decomposition for G, and
show that [G, G]Z(G)/Z(G) is definable and definably isomorphic to a direct
product of semialgebraic linear groups over Rq, ..., Rg.

1. INTRODUCTION

The theory of o-minimal structures provides a general framework for studying
semi-algebraic, semi-analytic and sub-analytic sets. It has been introduced in the
early 1980’s, and can be viewed as a realization of Grothendieck’s idea of tame
topology in “Esquisse d'un programme” ([17], 1984). The ordered field (R, <, +, -)
of real numbers is a typical example of o-minimal structure. In this structure,
a subset of R™ is definable if and only if it is a semi-algebraic set. Many other
structures are o-minimal, and a remarkable example is given by a difficult theorem
of Wilkie showing the o-minimality of the real exponential field [32]. For more
details on o-minimal structures, we refer to Van Den Dries’ book [30].

An ordered structure M = (M, <, ---) is o-minimal if every definable subset
of M is a finite union of intervals and points. This paper is concerned with groups
definable in an arbitrary o-minimal structure. The main example of such a group is
obtained by taking a real closed field R = (R, <, +, - ) as o-minimal structure and
a group of the form H(R) where H is an algebraic group defined over the field R.
For the converse, in a famous paper on groups definable in o-minimal structures
[22], Peterzil, Pillay and Starchenko obtain an o-minimal analogue of Cherlin’s
conjecture (Fact 2.8): suppose that G is a nonabelian group definable in an o-
minimal structure, and that G has no proper nontrivial normal (G, - )-definable
subgroup. Then G is isomorphic to a semialgebraic subgroup of finite index of a
group of the form H(R), where R is a real closed field and H is a simple algebraic
group over R.
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2 OLIVIER FRECON

For nonnecessarily simple groups, a result of Otero, Peterzil and Pillay [21]
shows that, if a group G is definable in an o-minimal expansion & of a real closed
field (R, <,+, +), and if G is definably connected, then G/Z(G) is definably iso-
morphic to a definable subgroup of GL, (R) for an integer n (Fact 5.1).

Moreover, Peterzil, Pillay and Starchenko [22] show that, in an arbitrary o-
minimal structure, any centerless definably connected definable group is definably
isomorphic to a direct product of definable subgroups of GLy,, (R1),...GLy, (Rk)
for definable real closed fields Ry,..., R and integers nq,...,n; (Fact 2.15).

1.1. Main Theorem. In this paper, we work inside a fixed arbitrary o-minimal
structure M = (M, <, --+), and definable means M-definable (with parameters).
The aim of this paper is to unify the previous two theorems, namely Facts 5.1 and
2.15. First it is important to note that the centerless hypothesis is fully used in
the step 3.2.1 of [22]. Our strategy is the following: rather than wishing to find an
alternative proof, we will use intensively Facts 5.1 and 2.15, and as a result, we
will prove the following.

Main Theorem 5.15. Let G be a definably connected definable group. Then
G/Z(G) is the direct product of definable groups Hy,..., Hy such that for every
i €{1,...,k} there are a definable real closed field R;, an integer n; and a definable
isomorphism between H; and a definable subgroup of GLy, (R;).

The proof uses numerous results on groups definable in o-minimal structures,
such as Facts 2.8, 2.15 and 5.1 above. The main new ingredients come from the
theory of groups of finite Morley rank, namely pseudo-tori, Ur-groups for a de-
finable real closed field R, and U-groups (Definitions 3.1, 3.9 and 3.23). Thanks
to these notions, we can provide two results on the structure of definable groups,
which are important for the main result.

Theorem 3.29. Any nilpotent definably connected definable group G is the central
product of a pseudo-torus by a U-group.

We recall that a group is said to be definably simple if it has no proper
non-trivial normal definable subgroup.

Theorem 4.9. Let G be a definably connected definable group. Then G has a
normal U-group U such that G/U is a central extension of a direct product of
definably simple definable groups.

We note that, in Theorem 5.15, the subgroups H; of GL,, (R;) are not neces-
sarily semialgebraic. Indeed, such a subgroup H; is not necessarily semialgebraic
and, even, it may not be abstractly isomorphic to a semialgebraic group (see the
introduction of [23] for a counter-example). However, by using the analysis of lin-
ear groups in [24], we may obtain a structure result, closer to semialgebraicity and
Fact 2.8 .



LINEARITY OF GROUPS IN O-MINIMAL STRUCTURES 3

Corollary 5.17. If G is a definably connected definable group, then G'Z(G)/Z(G)
is a direct product of definably connected definable groups H, ..., Hy such that
for every i € {1,... ,ﬁ there is a definable real closed field R; and a definable

isomorphism between H; and a semialgebraic linear group over R;.

1.2. Levi decomposition. In the last section, we show that, thanks to our main
result, we may generalize the Levi decomposition, obtained by Conversano and
Pillay [6] for groups definable in an o-minimal expansion of a real closed field, to
groups definable in an arbitrary o-minimal structure.

There is a difficulty with semisimple groups. Indeed, a semisimple group is
defined to be a definably connected definable group with no infinite abelian normal
subgroup (Definition 6.1). However, Conversano exhibited a definably connected
definable group G with no semisimple subgroup S such that G = RS for a normal
solvable subgroup R. In order to remedy to this problem, Conversano and Pillay
introduced in [6] ind-definable semisimple subgroups, and they provide the Levi
decomposition with these subgroups (Fact 6.3).

In this paper, we introduce quasi-semisimple groups as definably connected
definable groups with no decomposition of the form RH for a normal definable
solvable subgroup R and a proper definable subgroup H (Definition 6.1). For such
a group S, the derived subgroup is perfect and S/Z(S) is semisimple. Then we
provide a Levi decomposition for any definably connected definable group (Theo-
rem 6.6 below). Furthermore, we show that if G is any definably connected group
definable in an o-minimal expansion of a real closed field, its maximal ind-definable
semisimple subgroups are precisely the derived subgroups of its maximal quasi-
semisimple subgroups (Corollary 6.7).

Theorem 6.6. Let G be a definably connected definable group. Then G has a
maximal quasi-semisimple subgroup S, unique up to conjugacy in G. Moreover,
there is a normal solvable definable subgroup R such that G = RS and GN S <
Z(S).

The organization of this paper is as follows. In §2, we recall known results and
give some useful corollaries. The purpose of §3 is the analysis of nilpotent groups
(Theorem 3.29). In particular, we introduce pseudo-tori, Ug-groups and U -groups,
which are fundamental notions for this paper. In §4, we study the group actions
on a solvable group, and then we obtain a structure theorem for any definably
connected definable group (Theorem 4.9). In §5, we prove the main result of this
paper (Theorem 5.15). In §6, we apply the main result to Levi decomposition
(Theorem 6.6).

2. PRELIMINARIES

The basic reference for o-minimal structures is [29] (see [19] for a survey on
groups definable in an o-minimal structure).



4 OLIVIER FRECON

By [11], in an arbitrary o-minimal structure, every interpretable group is
definably isomorphic to a definable one. Actually, any group definable in an o-
minimal structure eliminates imaginaries. More precisely, the following result is
due to M. Edmundo.

Fact 2.1. [10, Theorem 7.2] Let G be a definable group, and let {T'(z) : x € X} be
a definable family of non-empty definable subsets of G. Then there is a definable
function t : X — G such that for all v,y € X we have t(x) € T(x) and if
T(x) =T(y) then t(z) = t(y).

2.1. Nilpotent definable groups. We recall two general results on nilpotent
groups definable in an o-minimal structure, and more generally. Any group de-
finable in an o-minimal structure .4~ satisfies the descending chain condition on
A -definable subgroups [27, Remark 2.13 (ii)]. In particular, it is an M. -group,
that is a group with descending chain condition on centralizers. Thus, by the fol-
lowing fact, any nilpotent group definable in an o-minimal structure has infinite
center.

For every group G, we denote by Zy(G) = 1 the trivial group, and we define
Z;(G) for each integer i by Z,11(G)/Z;(G) = Z(G/Z;(@)).

Fact 2.2. [12, Lemma 3.7.10] Any infinite nilpotent M.-group has infinite center.

More generally, if a group G has a finite subset X such that Z(G) = Cq(X),
and if H is a normal subgroup such that H N Zy(G) is infinite for an integer k,
then Z(G) N H s infinite.

Proof. There is a smallest integer j such that B = Z;11(G) N H is infinite. Then
[g, B] is contained in the finite subgroup Z;(G) N H for each g € G, and the index
of Cp(g) in B is finite. Thus B/Cp(X) is finite, and Z(G) N B has finite index in
B, so Z(G)N H = Z(G) N B is infinite. O

We note that, if we consider an algebraically closed field K of characteristic
p > 0 and a subgroup H of finite index in the center of G = UT3(K) and proper
in Z(G), then G/H is an infinite nilpotent group such that Z(G/H) = Z(G)/H
is finite.

Moreover, if M is a maximal abelian subgroup of G and A a complement
to Z(G) in M, then the index of AH in Ng(AH) = M is finite whereas AH has
infinite index in G.

However, by Fact 2.3, in a nilpotent group G definable in an o-minimal struc-
ture, any definable subgroup of infinite index has infinite index in its normalizer.

Fact 2.3. (see [28, Proposition 1.12] for a special case) Let H be a subgroup of
infinite index in a nilpotent group G. Let X ={x € G | [H : HNH"] < 400} and
K =NgexH®. If K has finite index in H, then H has infinite index in Ng(H).

Proof. We note that K is a normal subgroup of Ng(H) and that K < H <
Ng(H) € X C Ng(K). We show that the index of K in Ng(K) is infinite.
Otherwise H has finite index in Ng(K), so Ng(Ng(K)) is contained in X C
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N¢g(K). Since G is nilpotent, we obtain Ng(K) = G and H has finite index in G,
contradicting our hypothesis. Thus K has infinite index in Ng(K).

Since K has finite index in H, the subgroup H/K is finite in the infinite
nilpotent group Ng(K)/K. Thus it is sufficient to show that any finite subgroup
F of an infinite nilpotent group N has an infinite centralizer Cn (F'). We proceed
by induction on the nilpotence class of N. We may assume that Z(N) is finite.
Then, by induction hypothesis, C/Z(N) = Cn/zn)(FZ(N)/Z(N)) is infinite.
But for each f € F, the map uy : C' — Z(N) defined by us(z) = [f, z] is a group
homomorphism with kernel C(f). Since Z(N) and F are finite, C/C¢(F) is finite
too. Hence Co(F) < Cn(F) is infinite, as desired. O

2.2. Connected component. For every definable group GG, we denote by G° the
definably connected component (of the identity) in G. It is the smallest definable
subgroup of G of finite index in G [27, Proposition 2.12]. A group G is said to be
definably connected if G = G°.

In this section, we show that for any definable group G, this subgroup G°
is definable in the pure group (G, - ), and has no proper subgroup of finite index:
every subgroup of finite index is definable and G° is the smallest subgroup of finite
index (Proposition 2.11 below). In particular, the definably connected component
of a definable group is independant from the language.

The proof of Proposition 2.11 requires several facts.

By [27], any definable group G has a largest definably connected definable
solvable normal subgroup R(G), called the solvable radical of G. However, another
definition of solvable radical is used in [1].

Fact 2.4. [1, Lemma 4.5] Let G be a definable group. The subgroup generated by
all normal solvable subgroups of G is definable and solvable.

Moreover, by [7], any definable group G has a largest nilpotent normal sub-
group F(G), and this subgroup is definable by [10, Lemma 6.7].

For each group G, we denote by G’ = [G, G| the derived subgroup. We recall
that, for a definable group G, this subgroup is not necessarily definable (Conver-
sano exhibits a counter-example [5, Example 3.1.7]). However, Baro, Jaligot and
Otero [1] show its definability for a large class of definable groups.

The derived subgroup of a solvable definably connected definable group has
been studied in [10, Theorem 6.9], and a precision is given in [1, Proposition 5.5].

Fact 2.5. Let G be a solvable definably connected definable group. Then the fol-
lowing two conditions are satisfied:

e [10, Theorem 6.9] its derived subgroup G’ is contained in F(G);

e [1, Proposition 5.5] the group G/F(G)° is abelian and divisible.

Fact 2.6 describes the structure of nilpotent groups, where a group G is the
central product of two subgroups H and K if G = HK and [h,k] = 1 for each
(h,k) € H x K. We denote this by G = H * K.

Fact 2.6. Let G be a nilpotent definable group.
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(1) [10, Theorem 6.10] and [1, Lemma 3.10 (c)] G° is divisible and G has a
finite characteristic subgroup F such that G = G° x F.

(2) [31, Theorem 4.12 (Chernikov)] and [8, Corollary 1.5.12] The torsion sub-
group of G° is central in G.

Corollary 2.7. Let G be a nilpotent definably connected definable group. Then
any definable subgroup of G containing Z(G) is definably connected.

Proof. Since Z(G) contains the torsion part of G by Fact 2.6 (2), the group G/Z(G)
is torsion-free. In particular, each definable subgroup of G/Z(G) is definably con-
nected. But G is divisible by Fact 2.6 (1), so the torsion part of Z(G) is divisible,
and Fact 2.6 (1) applied with Z(G) shows that Z(G) is definably connected. Hence,
for any definable subgroup H/Z(G) of G/Z(G), the subgroup Z(G) is contained
in H°, and we have H = H°Z(G) = H°. O

The following result is a very important theorem for groups definable in an
o-minimal structure. It is used in the proof of Proposition 2.11 below.

Fact 2.8. [22, Theorem 4.1] Let G be an infinite (G, - )-definably connected de-
finable group. Assume G has no nontrivial abelian normal subgroup. Then G is
the direct product of (G, -)-definable subgroups Hi, ..., Hy such that for every
1€ {1,...,k} there is a definable real closed field R; and a definable isomorphism
between H; and a semialgebraic subgroup of GLy,(R;). Moreover, H; is (H;, -)-
definably simple and HY is definably simple.

Fact 2.9. [24, §6, Proof of Theorem 6.1 from Proposition 6.8] Let G be a semial-
gebraic, semialgebraically simple group over a real closed field R. Suppose that G
is not of compact type. Then there exists a simply connected almost R-simple al-
gebraic group Go defined over R and a surjective homomorphism mg : Ga(R) = G
defined over R with finite kernel.

Corollary 2.10. Let L be a definable definably simple group. Let n be a positive
integer and X = {«" | x € L}. Then L = X X.

Proof. If L is of compact type, then L is divisible by [20], so L = X in this case and
we may assume that L is not of compact type. By Fact 2.8, there is a definable
real closed field R and a definable isomorphism between L and a semialgebraic
subgroup of GL,(R). By Fact 2.9, there exists a simply connected almost R-
simple algebraic group Gs defined over R and a definable surjective homomorphism
R+ Go(R) — L with finite kernel.

We consider z € L and g € G2(R) such that mr(g) = z. Then g € Ga(R)
is the product of a semisimple element s € Go(R) and a unipotent element u €
G2(R). But s is contained in a maximal algebraic torus T of Go(R) and w is
contained in a unipotent algebraic subgroup U of Ga(R). In particular T and U
are divisible, hence x belongs to mr(T)mr(U) C X X, as desired. O

Proposition 2.11. Let G be definable group. Then G° is definable in the pure
group (G, -). Moreover, G° has no proper subgroup of finite index.
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Proof. Every (G, -)-definable subgroup of G is definable, so G has a smallest
(G, - )-definable subgroup of finite index. In particular, this subgroup is definable,
contains G° as a subgroup of finite index, and it has no proper (G, -)-definable
subgroup of finite index. So we may assume that G is (G, - )-definably connected,
and we have just to prove that G has no proper subgroup of finite index.

Let N be a subgroup of G of finite index n. We show that N = G. We may
assume that N is contained in G°. Moreover, since the index of N in G is finite,
N contains a G-normal subgroup of finite index, and we may assume that N is
normal in G. Let X = {z" | € G}. In particular, X is a definable subset of N.

We show that XX contains R(G). By Fact 2.6 (1), the definable subgroup
F(G)° is divisible, so it is contained in X. By Fact 2.5, the quotient group
R(G)/F(G)° is divisible, so XF(G)° C XX contains R(G).

Let Z be the subgroup of G° generated by all its normal solvable subgroups.
It is definable and solvable (Fact 2.4), so Z/R(G) is finite. In particular, G°/Z
has no non-trivial abelian normal subgroup, and Fact 2.8 implies that G°/Z is
the direct product of definable subgroups Hy/Z,...,H/Z such that for every
i € {1,...,k} there is a definable real closed field R; and a definable isomorphism
fi between H;/Z and a semialgebraic subgroup L; of GL,,(R;), and such that
H?Z/Z is definably simple. Moreover, since G°/Z is definably connected, H;/Z is
definably connected for each i, so L; ~ H;/Z is definably simple. Now Corollary
2.10 shows that H;/Z is contained in X X Z/Z for each i. Thus each H; is contained
in XXZ, and we obtain N < G° C XXZ.

Since XX C N contains R(G) and since Z/R(G) is finite, there is a finite
subset W of Z N N such that Z N N = WR(G). Therefore we obtain

N=XXZNN=XX(ZNN)=XXWR(G) C XXWXX
So N=XXWXX is (G, - )-definable, and N = G. O

2.3. Definable fields. The following fundamental results are due to Pillay (Facts
2.12 and 2.13), and Peterzil and Steinhorn (Fact 2.14). They are crucial for us.

Fact 2.12. [27, Corollary 2.15 (i)] Any infinite definable group has an infinite
definable abelian subgroup.

Fact 2.13. [27, Theorem 3.9 and Proposition 3.11] Let K be an infinite definable
field. Then K is real closed or algebraically closed. It is real closed if and only if
its dimension is 1.

Fact 2.14. [26, Theorem 4.1] Let # = (K,+,0, ) be an infinite definable ring
without zero divisors. Then K is a division ring and there is a one-dimensional
definable subring R of K which is a real closed field such that K is either R,
R(\/=1), or the ring of quaternions over R.

Lemma 2.19 and Proposition 2.20 are very useful for this paper. The proof
of Proposition 2.20 is based on the following very important fact (Fact 2.15), and
on the study of abelian definable subgroups of the general linear group over a
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definable real closed field (Facts 2.16 and 2.17). Moreover, we note that the proof
of Fact 2.15 s based on the theory of nonorthogonality from [22].

Fact 2.15. [22, Theorems 3.1 and 3.2] Let G be a definably connected definable
centerless group. Then G is definably isomorphic to a direct product Hy X -+ - X Hy,
where, for each i = 1,... k, there is a definable real closed field R; such that H;
is a definable subgroup of GLy,,(R;) for each i =1,... k.

Fact 2.16. Let G be a commutative definably connected definable subgroup of
GL,,(R) where R is a definable real closed field. Then the following three conditions
hold:

(1) [24, Fact 3.1] if G is semialgebraic, it is semialgebraically isomorphic to a
group of the form SO2(R)™ x (R%)! x (R4)*;

(2) [24, Lemma 3.9] every definably connected definable subgroup H of G has
a definable complement in G;

(3) [24, Special case of Proposition 3.10] G is definably isomorphic to a linear
semealgebraic group over R.

Fact 2.17. [24, Lemma 3.4 (ii)] Let R be a definable real closed field, and let G be
a definable subgroup of GLy,(R) for an integer n. If G is a definable subgroup of a
semialgebraic group of the form (Ry)F, then G is semialgebraic.

Corollary 2.18. Let R be a definable real closed field, and let G be a definable
subgroup of GLy,(R) for an integer n. If G is a definable subgroup of a semialgebraic
unipotent group U, then G is semialgebraic.

Proof. We proceed by induction on the dimension of G. Since U is unipotent, it
is torsion-free and its definable subgroups are definably connected. Let M be a
maximal proper definable subgroup of G. By induction hypothesis, M is semial-
gebraic. Then G/M 1is a definable subgroup of the semialgebraic unipotent group
Ny(M)/M. Thus, if M is non-trivial, G/M is semialgebraic by induction hypoth-
esis, so (G is semialgebraic. Hence we may assume that M is trivial. Now G is
abelian (Fact 2.12), and it is a definable subgroup of Z(Cy(G)). Since Z(Cy(G))
is an abelian semialgebraic unipotent group, it is of the form (Ry)*, and G is
semialgebraic by Fact 2.17. ]

Lemma 2.19. Let R and S be two definable real closed fields. If the groups R4
and Sy are definably isomorphic, then the fields R and S are definably isomorphic.

Proof. Let f : Ry — S be a definable isomorphism. In particular f(1) is non-zero
and we may consider the map g : R — S defined by g(z) = f(z)f(1)~!. Then g is
a definable isomorphism from R and Sy such that g(1) = 1.

Now, for each o € R, the subset A, = {z € R | g(za) = g(x)g(a)} of R is a
definable subgroup of R, containing 1. So we obtain A, = R for each a € R and
g is a field isomorphism. O

Proposition 2.20. Let Z = (R,+, -) and & = (S,®, ) be two definable real
closed fields. If there is an infinite definable Z-linear group H definably isomorphic
to an L-linear group, then the fields Z# and ¥ are definably isomorphic.
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Proof. We may assume that H has no proper infinite definable subgroup. In par-
ticular, H is abelian (Fact 2.12). Then H is definably isomorphic either to SO2(R)
or to RY; or to Ry (Fact 2.16 (1) and (3)). By the same way and by Lemma 2.19,
we may assume that H is definably isomorphic either to SO2(S) or to S%,.

(1) If H is definably isomorphic to SO2(R), then it has torsion and it is de-
finably isomorphic to SO2(S). We consider the semi-direct product G =
(R3 x S%) x H where H ~ SO3(R) acts %-linearly on R% and such that
H ~ SO4(S) acts .-linearly on S%. In particular, G is centerless and
it has no decomposition H = A x B as a direct product of two proper
subgroups. By Fact 2.15, there is a definable real closed field 7 = (T, ---)
and a definably linear group K < GL,(T") definably isomorphic to G.

We note that the derived subgroup G’ of G = (R3 x 53 )x H is definable,
definably connected, and definably isomorphic to Ri X Si.

Let L be the smallest semialgebraic subgroup of GL,,(T) containing K.
This subgroup L exists by descending chain condition on semialgebraic
subgroups of GL, (7). Since K is definably connected, Proposition 2.11
shows that K has no proper subgroup of finite index, so L is semialge-
braically connected. Moreover, since K ~ G is 2-solvable, L is 2-solvable
too (see [10, Lemma 6.7]). Now L’ is contained in a semialgebraic unipo-
tent group U (see [2, Theorem 10.6 (1)]), and since K’ ~ G’ is a definable
subgroup of L’ < U, the subgroup K’ is semialgebraic (Corollary 2.18).
Thus K’ < U is a semialgebraic unipotent abelian group, and K’ is semi-
algebraically isomorphic to T'7* for an integer m. But K’ is definably iso-
morphic to G’ ~ R% x S%. Hence the groups R, S} and T are definably
isomorphic, so the fields #Z and . are definably isomorphic by Lemma
2.19.

(2) Hence we may assume that H is torsion-free. If it is definably isomorphic to
R%, and to 5%, we consider the semi-direct product G = (R4 x S4) x H
where H ~ RY, acts Z-linearly on R, and such that H ~ 5%, acts ./~
linearly on S;. As in the previous case, Fact 2.15 provides a definable
real closed field .7 = (T,---) and a definably linear group K < GL,(T)
definably isomorphic to G, and we conclude that the groups Ry, Sy and Ty
are definably isomorphic, so the fields Z and . are definably isomorphic
by Lemma 2.19.

(3) Thus we may assume that H is not definably isomorphic to R%, and that
H, Ri,and 5% are definably isomorphic. The group H x Ry ~ R. x R%,
acts Z-linearly on Ry x R4 where the action is defined by (a,t) - (x,y) =
(tz, atx +ty). In other words, we consider the natural action of the abelian

group

HXR;ON{<8 tf>|teR>0, aGR}
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R+><R+~{<z>|(:c,y)€R2}

Thus, the semi-direct product (R4 x Ry) x (H x R%,) is centerless, and
has no decomposition as a direct product of two proper subgroups. Then
we consider the semi-direct product G = ((R4+ x Ry) x Sy) % (H x R%)
where H x RY acts as above on R x R, the group RY, acts trivially on
S4, and H ~ 5% acts .-linearly on S;. Again G is centerless and has no
decomposition as a direct product of two proper subgroups, so Fact 2.15
provides a definable real closed field 7 = (T,---) and a definably linear
group K < GL,,(T") definably isomorphic to G. As above we conclude that
the groups R4, S+ and T are definably isomorphic, so the fields &Z and
. are definably isomorphic by Lemma 2.19.

on the group

O

2.4. The structure of solvable groups by Edmundo. Edmundo gives in [10]
a precise description of the structure of solvable groups. His main results, namely
Facts 2.26 and 2.27, are very useful for a key result of the analysis of nilpotent
groups (Proposition 3.22). Before stating it, we specify the terminology.

In [26], Peterzil and Steinhorn introduced the notion of definable compactness
in o-minimal structures.

Definition 2.21. Let G be a definable group. We say that G is definably compact
if for every definable continuous embedding o : (a,b) € M — G, where —oo < a <
b < +o0, there are ¢,d € G such that lim,_,,+ o(x) = ¢ and lim,_,;- o(x) = d,
where the limits are taken with respect to the topology on G.

We recall that a semisimple group is defined to be a definably connected
definable group with no infinite abelian normal subgroup (Definition 6.1).

Fact 2.22. [10, Corollary 4.8] (see also [25, Corollary 5.4]) Let G be a definably
connected definably compact definable group. Then G is either abelian or G/Z(G)
is a definably semisimple definable group. In particular, if G is solvable then it is
abelian.

Fact 2.23. [10, Lemma 3.14] Let A be a normal definable subgroup of a definable
group U. Then U is definably compact if and only if A and U/A are definably

compact.

Fact 2.24. [26, Proof of Theorem 4.1] (see also Fact 2.14) Let % = (K, +,0, -) be
an infinite definable ring without zero divisors. Then K is not definably compact.

Any one dimensional definable and definably connected torsion-free group
(A, +) is abelian, and has a definable expansion (A, +, <) to an o-minimal ordered
abelian group. Miller and Starchenko [18] characterized the groups of this form
which have definable expansions to real closed fields (A4, +, -, <), in terms of a
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“growth dichotomy”; for our purposes it will suffice to take their highly nontrivial
result as the definition (for more details, see the introduction of [10], p. 104).

Fact 2.25. (Theorem/Definition) [18] A definable group (G, +) is linearly bounded
if and only if it is one dimensional, torsion-free, and there is no expansion of G

to a real closed field (G,+, -) with - definable.

In Edmundo’s structure theorem for definable, definably connected solvable
groups (Fact 2.26 below) a strengthening of linear boundedness occurs, which
he refers to as semi-boundedness. For the sake of accuracy in quoting Edmundo’s
results, we will use this term where it is appropriate, but it suffices for our purposes
to know that such groups are linearly bounded in the sense just mentioned.

We quote Edmundo’s structure theory with some minor details not needed
later suppressed. We will apply this only in the abelian case.

Fact 2.26. [10, Theorems 5.8] Let U be a definably connected definable solvable
group. Then U has a definable normal subgroup Uy such that

o U/Uy is definably compact

o Uy=KxV xW with K definably compact, V a product of semi-bounded
groups, and W a product of groups W; which are definable in o-minimal
expansions S; of real closed fields S;, and have no S;-definably compact
parts.

Fact 2.27. [10, Theorems 5.10] Let S = (S,+, -, <, -+) be an o-minimal ex-
pansion of a real closed field and let W be an S-definable solvable group with no
S-definably compact part. Then W = W, x X where W, is a product of linearly
bounded groups and X is a group whose center Z(X) has a definable subgroup Z
with the following properties.

o 7Z(X)/Z is a direct product of linearly bounded groups.
o There is a chain of definable subgroups 1 < Z1 < --+ < Z,, = Z such that
each quotient Z;/Z;_1 is definably isomorphic to (S,+).

Furthermore, X/Z(X) is definably S-linear'.

Remarks. A key ingredient of Edmundo’s structure theory is the following, coupled
with a number of results which give complements to one dimensional subgroups
in certain cases. In the abelian case one can simplify the argument very slightly
by omitting any discussion of normality, and the quotient X/Z(X), but the ideas
are the same.

Fact 2.28. ([26, Lemma 1.2] or [10, Theorem 5.7]) Let G be a definable group
which is not definably compact. Then G has a one-dimensional torsion-free ordered
definable subgroup.

INot used, but for the sake of clarity worth keeping
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3. NILPOTENT GROUPS

The structure of solvable groups by Edmundo [10] (see §2.4) provides valuable
information on nilpotent groups definable in an o-minimal structure. By using
these results together with methods from groups of finite Morley rank, we obtain
a new decomposition of nilpotent groups based on pseudo-tori and Ug-groups
(Definitions 3.1 and 3.9, Theorem 3.29).

The structure of nilpotent groups in this new language is very effective for
the study of group actions in §4.

3.1. Pseudo-tori. Cherlin defined in [4] a good torus and a decent torus as ana-
logues of an algebraic torus for groups of finite Morley rank. These groups are
defined from torsion, and a more general notion of a torus was introduced in [16]:
a pseudo-torus whose definition for the finite Morley rank context is very close to
the following definition.

Definition 3.1. A pseudo-torusis a definably connected nilpotent definable group
T such that no definable quotient group 7'/N is definably isomorphic to the addi-
tive group R4 of a definable real closed field R.

Remark 3.2. Any definable quotient T'/N of a pseudo-torus 7' is a pseudo-torus.

The following result gives examples of pseudo-tori, which encompasse defin-
ably compact groups, linearly bounded groups and semi-bounded groups (see §2.4).
It will be useful for the proof of Proposition 3.22.

Lemma 3.3. Let G be a solvable definably connected definable group. Suppose that
the group G satisfies one of the following three conditions:

e (G is definably compact;

e (G is linearly bounded;

o GG is semi-bounded.

Then G is a pseudo-torus.

Proof. If G is definably compact, then it is abelian by Fact 2.22. Now, since any
definable quotient of G is definably compact (Fact 2.23), Fact 2.24 shows that G
is a pseudo-torus.

If the group G is linearly bounded or semi-bounded, then G is one dimensional
and torsion-free (Fact 2.25), so G is abelian (Fact 2.12) and any definable quotient
group G/N of G is either trivial or definably isomorphic to G. Since G is not
definably isomorphic to the additive group of a definable real closed field (Fact
2.25), it is a pseudo-torus. O

We start our study of pseudo-tori. The following result is used in the proof
of Lemma 3.5.

Fact 3.4. [10, Corollary 7.3 (1)] (see also [25, Theorem 1.1] and Fact 2.14) Let
A and B be two definable abelian groups. If there is an infinite definable family of
definable homomorphisms from A into B, then there is a definable real closed field
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whose additive group is definably isomorphic to a definable subgroup of B and a
quotient of definable subgroups of A.

Lemma 3.5. Let T be a pseudo-torus and B be a nilpotent definable group. Then
any definable family <7 of homomorphisms from T to B is finite.

Proof. We proceed by induction on the dimension of B. Since for each o € &7,
the image Ima ~ T'/Kera of « is definably connected, we have Ima < B° and
we may assume that B is definably connected. We assume toward a contradiction
that <7 is infinite. In particular, B is infinite.

We assume toward a contradiction that B has a proper infinite normal de-
finable subgroup A. By Fact 2.2, we may assume that A is central in B. For each
a € &/, we consider @ : T — B/A defined by @(t) = «a(t)A. Then the definable
family {@ | « € &/} is finite by induction hypothesis, and there exists a € & such
that the definable family £ = {8 € & | § = @} is infinite. For each 3 € 4, the
map ug : T — A defined by ug(t) = B(t)a(t)~! is a definable group homomor-
phism, and since A is infinite, the definable family {ug | 8 € %} is infinite too,
contradicting our induction hypothesis. Hence B has no proper infinite normal de-
finable subgroup. In particular B is abelian (Fact 2.2), so it has no proper infinite
definable subgroup.

Let K be the intersection of the subgroups Ker a for « € &7. Since T'/Ker o ~
Im«a < B is abelian for each non-zero element . € &7, the quotient group T'/K is
abelian. For each a € &7, we consider & : T/K — B defined by @(tK) = «(t). Since
o/ is infinite, &7 = {@ | o € o7} is infinite too. Then by Fact 3.4 there is a definable
subgroup By of B such that By is definably isomorphic to the additive group R, of
a definable real closed field R. In particular, By is infinite and we obtain B = By by
the previous paragraph. But 7 is infinite, so there is a non-zero element & € 7,
and its image Ima = Ima ~ T/Kera is definably connected. Hence Im « is
an infinite definable subgroup of B and « is a surjective homomorphism by the
previous paragraph. Thus we have T/Ker o ~ Im o = B ~ R, contradicting that
T is a pseudo-torus and that R is real closed, so & is finite. (|

Corollary 3.6. Let T be a pseudo-torus and G be a definably connected definable
group acting definably on T. Then G centralizes T'. In particular, T is abelian.

Proof. By Lemma 3.5, the quotient group G/Cq(T) is finite, and since G is de-
finably connected, G centralizes T'. In particular, the case where G = T acts by
conjugation on T' shows that T is abelian. (|

Proposition 3.7. Any nilpotent definable group G has a unique mazximal pseudo-
torus T(G). In particular, any pseudo-torus of G is central in G.

Proof. We proceed by induction on the dimension of G. We may assume that G
is definably connected. Let S and T" be two maximal pseudo-tori of G.

We show that S and T are central in G. If Ng(T) < G, we have T =
T(N¢(T)) by induction hypothesis, therefore T' is a definably characteristic sub-
group of N¢(T) and we obtain Ng(Ng(T)) = Ng(T). But G is nilpotent, hence
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we have Ng(T') = G contradicting Ng(T') < G. This proves that T is normal in
G, and T is central in G by Corollary 3.6. In the same way, S is central in G.
We assume toward a contradiction that ST is not a pseudo-torus. Then ST
has a definable subgroup N such that ST/N is definably isomorphic to the additive
group R4 of a definable real closed field R. In particular, the quotient group T'S/N
is torsion-free and it has dimension one by Fact 2.13. If T" is not contained in N,
we have T'S = TN and T/(T N N) is definably isomorphic to T'S/N ~ R,,
contradicting that T is a pseudo-torus. Thus T is contained in N, and in the
same way, S is contained in N, contradicting N < ST'. This proves that ST is a
pseudo-torus, and that T(G) = S =T is well defined. O

Proposition 3.8. Let G be a nilpotent definable group, and N be a normal defin-
able subgroup of G. Then T(G/N)=T(G)N/N.

Proof. We proceed by induction on the dimension of G. Since a definable quotient
of a pseudo-torus is a pseudo-torus, T(G/N) contains T(G)N/N and we may
assume that G/N = T(G/N) is a pseudo-torus.

Let T' be a minimal definable subgroup of G among the ones satisfying G =
TN. Since G/N is a pseudo-torus, G/N is definably connected and we have G =
T°N. Thus T is definably connected by minimality of T

We assume toward a contradiction that 7T is not a pseudo-torus. Then T
has a definable quotient T'/M definably isomorphic to R4 for a real closed field
R. In particular, T/M is torsion-free and has dimension 1 by Fact 2.13. Since
(TNMN)/M is a definable subgroup of T'/M, it is either equal to T'/M or trivial,
so we have either TN MN = M or T < MN. In the first case we have

(G/N)/(MN/N)~ G/MN =TN/MN ~T/M ~ R,

contradicting that G/N is a pseudo-torus. In the second case we have G = TN =
M N, contradicting the minimality of 7. Hence T is a pseudo-torus, and we obtain
T<T(G)and G=T(G)N. O

3.2. Ug-groups. Burdges introduced Up ,-groups in [3] as a concept of unipotence
for groups of finite Morley rank. This notion is very effective for the study of groups
of finite Morley rank. Another analogue of unipotent algebraic groups, namely the
homogeneous Uy .-groups, was proposed in [13] in order to remedy to a weakness
of Uy, -groups, since they are not necessarily preserved by passage to definable
subgroups. Later, a more precise unipotence notion was introduced in [14, §3.2],
very close to Definitions 3.9 and 3.15. This last notion, together with pseudo-tori
and the homogeneity of [13], is a crucial tool for some analysis as [14].

We note that N is a normal subgroup of G in the following definition (Fact
2.3).

Definition 3.9. Let R be a definable real closed field. A Ug-group is a nilpo-
tent definable group G such that, for every maximal proper definably connected
definable subgroup N, the quotient group G/N is definably isomorphic to R .

Remark 3.10. Any Ug-group is definably connected.
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Proposition 3.11. Let R be a definable real closed field, and G be a nilpotent
definable group. Then any family of Ur-subgroups of G generates a Ug-subgroup.
In particular, G has a unique mazimal Ug-subgroup.

Proof. We have just to show that any non-necessarily definable subgroup H of G
contains a unique maximal Ug-subgroup. Indeed, in this case, if Hy is a subgroup
generated by a family of Ug-subgroups, the unique maximal Ug-subgroup of Hy
is necessarily Hy, and we are done.

We proceed by induction on the dimension of G. Since any Ug-group is
definably connected, we may assume that G is definably connected. Let U and V
be two maximal Ug-subgroups of H.

We show that U is normal in H. We may assume that U is not normal in G. By
induction hypothesis, U is the unique maximal Ug-subgroup of Ny (U) < Ng(U) <
G, therefore U is normal in Ng(Ny(U)) and we obtain Ny (Ny(U)) = Ng(U).
But H is nilpotent, hence Ny (U) = H and U is normal in H. In particular, UV
is a definably connected definable subgroup of H.

We may assume that UV is infinite, therefore UV has a maximal proper
definably connected definable subgroup N. If UN = UV, we have U/(U N N) ~
UV/N and by maximality of N in UV, the group (U N N)° is a maximal proper
definably connected definable subgroup of U. Since U is a Ug-group, the group
U/(UNN)° ~ R, is torsion-free and U N N is definably connected, so we obtain
UV/N ~U/(UNN) =~ R,. In the same way, if VN = UV the groups UV/N and
Ry are definably isomorphic. But N is proper in UV, so we have either U £ N or
V £ N, and by maximality of N we have either UN = UV or VN = UV. Hence
UV/N is definably isomorphic to R4, and UV is a Ug-group. Now by maximality
of U and V', we obtain UV =U =V = Ugr(H), as desired. O

Thus we may define a radical Ugr(-) for each definable real closed field R.

Definition 3.12. Let R be a definable real closed field. For each definable group
G, we denote by Ug(G) the unique maximal Ug-subgroup of F(G).

Lemma 3.13. Let G be a definable group with a normal definable subgroup N such
that G/N s definably isomorphic to Ry for a real closed field R. Then N NG° is
definably connected and G = UN for an abelian Ug-subgroup U.

Proof. Since G/N =~ R, is torsion-free, it is definably connected and G/N is
definably isomorphic to G°/(N N G°). Therefore the torsion part of G°/N° is
(N NG°)/N°, so it is finite, and Fact 2.6 (1) gives N N G° = N°.

Let U be a minimal definable subgroup of G among the ones satisfying U £
N. For any u € U \ N the subgroup Z(Cy(u)) is definable, abelian and contains
u, so Z(Cy(u)) = U by minimality of U, and U is abelian. Since G/N ~ R, is
torsion-free, and since its dimension is 1 (Fact 2.13), we have G = UN.

We show that U is a Ug-group. Since G/N ~ R, is definably connected, we
have G = U°N, and U is definably connected by minimality of U. Now the first
paragraph applied with U and U/(U N N) ~ R, shows that U N N is definably
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connected. But, again by minimality of U, each proper definable subgroup of U
is contained N. Hence U N N is the unique maximal proper definably connected
definable subgroup of U. Thus U is a Ug-group. O

Proposition 3.14. Let R be a definable real closed field, G be a nilpotent definable
group, and N be a normal definable subgroup of G. Then

Ur(G/N) =Ur(G)N/N

Proof. We show that Ur(G/N) contains Ur(G)N/N. Let M/N be a maximal
proper definably connected definable subgroup of Ur(G)N/N. Then the group
Ur(G)N/M ~ Ug(G)/(Ur(G)N M) has no non-trivial proper definably connected
definable subgroup, and (Ur(G) N M)° is a maximal proper definably connected
definable subgroup of Ur(G). Thus Ur(G)/(Ur(G) N M)? is definably isomorphic
to Ry and, by Lemma 3.13, the subgroup Ur(G) N M is definably connected.
Therefore Ur(G)N/M ~ Ur(G)/(Ur(G) N M) is definably isomorphic to R4, so
Ur(G)N/N is a Ug-group and it is contained in Ur(G/N).

We show that Ur(G/N) = Ur(G)N/N. We denote by U the preimage in
G of Ur(G/N). For each maximal proper definably connected definable subgroup
M/N of Ur(G/N), the group U/M is definably isomorphic to R4, so Lemma 3.13
gives U = Ur(G)M. Consequently Ugr(G)N/N is contained in no proper definably
connected definable subgroup of Ur(G/N). Now by definable connectedness of
Ur(G)N/N, we obtain Ur(G/N) = Ur(G)N/N, as desired. O

3.3. Homogeneous Ugr-groups. Similarly to the groups of finite Morley rank,
we define an homogeneous Ur-group [13]. The purpose of this section is to show
that any Ug-group is homogeneous (Proposition 3.22).

Definition 3.15. Let R be a definable real closed field. A Ug-group is said to be
homogeneous if its definable subgroups are Ug-groups.

Remark 3.16. If R is a definable real closed field, then any homogeneous Ug-
group is definably connected and torsion-free.

Lemma 3.17. Let R be a definable real closed field. If a nilpotent definable group
G has a normal homogeneous Ur-subgroup U such that G/U is a homogeneous
Ug-group, then G is a homogeneous Ug-group.

Proof. Let H be a definable subgroup of G. Since G/U is a homogeneous Ug-group,
HU/U is a Ug-group, and by Proposition 3.14, we have H = Ugr(H)(H NU). But
U is a homogeneous Ug-group, hence H NU and H are Ugr-groups. O

For the proof of Lemma 3.20, we need G-minimal subgroups.

Definition 3.18. Let G be a definable group. A subgroup of G is said to be
G-minimal if it is definable, infinite, normal, and minimal for these conditions.

Remark 3.19.
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e By the descending chain condition on definable subgroups of G [27, Remark
2.13 (ii)], any infinite normal definable subgroup H of a definable group
G contains a G-minimal subgroup.

e In a definable group G, every G-minimal subgroup is definably connected.

Lemma 3.20. Let R and S be definable real closed fields, and let G be a nilpotent
definable group. If R and S are not definably isomorphic, then [Ug(G),Us(G)] = 1.

Proof. We proceed by induction on the dimension of G. We may assume that
G is infinite. In particular, Z(G) is infinite (Fact 2.2) and contains a G-minimal
subgroup A. Since A is G-minimal and central in G, it has no proper infinite
definable subgroup. By induction hypothesis and by Proposition 3.14, the commu-
tator [Ur(G),Us(G)] is contained in A. We assume toward a contradiction that
there exist v € Ur(G) and v € Ug(G) such that [u,v] is not trivial. We consider
the maps f : Us(G) — A and g : Ur(G) — A defined by f(x) = [u,z] and
g(x) = [x,v]. Since [u,v] # 1, they are two non-zero definable homomorphisms.
Consequently, by minimality of A and since Ur(G) and Ug(G) are definably con-
nected, the maps f and g are surjective. Now A is both a Ug-group and a Ug-group
by Proposition 3.14, and since A has no proper infinite definable subgroup, it is
definably isomorphic to R4 and S;, contradicting Lemma 2.19. Thus we obtain
[Ur(G),Us(G)] = 1. O

Lemma 3.21. Let R be a definable real closed field. If G is a Ug-group, then G’
s a homogeneous Ug-group.

Proof. First we show that G/Z(G) is a homogeneous Ug-group. Let H/Z(G) be
a definable subgroup of G/Z(G). We show that H/Z(G) is a Ug-group. We may
assume that H/Z(G) is non-trivial. Let M/Z(G) be a maximal proper definably
connected definable subgroup of H/Z(G). Then H and M are definably connected
(Corollary 2.7). By Proposition 3.7, the group T'(H) < T'(G) is contained in Z(G),
and H/M is not a pseudo-torus (Proposition 3.8). Then there is a normal defin-
able subgroup N/M of H/M such that H/N is definably isomorphic to Sy for a
definable real closed field S. By Lemma 3.13 and the maximality of M, we obtain
M = N and H = Ug(H)M. In particular, Us(G) > Us(H) is not central in G,
and Lemma 3.20 says that the fields R and S are definably isomorphic. Thus H/M
is definably isomorphic to Ry and G/Z(G) is a homogeneous Ug-group.

We show by induction on the dimension of G' that G’ is a homogeneous Ug-
group. We may assume that G is not abelian, and we consider g € Z3(G) \ Z(G).
Then the map f : G — Z(G) defined by f(z) = [g,z] is a definable group
homomorphism, and Ker f contains Z(G). Hence, by the previous paragraph,
Im f ~(G/Z(G))/(Ker f/Z(G)) is a non-trivial homogeneous Ug-subgroup of G'.
Now G’/Im f is a homogeneous Ug-group by induction hypothesis, and Lemma
3.17 provides the result. (I

Proposition 3.22. For any definable real closed field R, every Ug-group is ho-
mogeneous. In particular, such a group is torsion-free.
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Proof. Let G be a Ug-group. We proceed by induction on the dimension of G. By
Lemmas 3.17 and 3.21, we may suppose that G is abelian.

We apply Edmundo’s structure theory. By Lemma 3.3, G has no definably
compact definable quotient. Thus after applying Fact 2.26 of Edmundo, G has the
form

VxW

with V' a product of semi-bounded groups and W is a product of groups W; of the
sort described in Fact 2.26.

Now a Ug-group can have no linearly bounded factors, hence no semi-bounded
ones, so we find that G = W, and it suffices to deal with the case of a single factor
G=W,.

So we write W for W; and S for S;, and apply Fact 2.27 of Edmundo. By
the same argument W, is trivial. As we are in the abelian case, we now have
G = X = Z(X), and as there is no linearly bounded definable quotient, even
G=17.

Now the one dimensional group (S,+) is a homogeneous Ug-group and it
follows that G is a homogeneous Ug-group. As G is also a Ug-group, the fields
R and S are definably isomorphic by Lemma 2.19. Thus G is a homogeneous
Ug-group, and, in particular, is torsion-free (Remark 3.16). O

3.4. Decomposition of nilpotent groups. In this section, we state our main
result on nilpotent groups (Theorem 3.29). From Ug-groups, we introduced U-
groups as an analogue of unipotent subgroups of algebraic groups.

Definition 3.23. A nilpotent definable group G is said to be a U-group if it is
generated by U, (G),...,Ur,(G) for definable real closed fields R, ..., Rj.

Remark 3.24.

e A U-group is generated by definably connected definable subgroup, so any
U-group is definably connected.

e Since, for any definable real closed field R, every definable quotient group
of a Ugr-group is a Ur-group, every definable quotient of a U-group is a
U-group.

Lemma 3.25. Every definable group G has a unique mazximal normal U -subgroup

U(G).

Proof. Let U be a maximal normal U-subgroup of G. If V is another normal
U-subgroup of G, then UV is a normal nilpotent definably connected definable
subgroup of G. Since U and V are U-groups, UV is a U-group too. O

Lemma 3.26. In a nilpotent definable group G, the subgroup U(G) contains all
the U-subgroups of G.

Proof. For each definable real closed field R, the subgroup Ug(G) is definable,
definably connected and normal in G, so U(G) contains Ug(G) for each definable
real closed field R, and the result follows. (I
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Proposition 3.27. For every U-group G, there are finitely many definable real
closed fields Ry, ..., Ry such that

G:URI(G) X XURk(G)

In particular, G is torsion-free. Moreover, for each definable real closed R, if R is
not definably isomorphic to R; fori € {1,...,k}, then Ur(G) is trivial.

Proof. We proceed by induction on the smallest integer k such that G is gener-
ated by Ug, (G),...,Ur,(G) for definable real closed fields Ry,...,Rj. In par-
ticular, the fields R;,..., Ry are not definably isomorphic. We consider H =
Ur,(G) - Ugr,_,(G). By induction hypothesis, Ur(H) is trivial for each real closed
field R not definably isomorphic to R; for ¢ € {1,...,k — 1}, and

H=Ug (G) x -+ xUg,_,(G)

In particular, Ug, (H) is trivial, so we have H N Ug, (G) = 1 and G is the direct
product of Ug, (G),...,Ur,(G).

Let R be a definable real closed field. We show that if R is not definably iso-
morphic to R; for i € {1,...,k}, then Ug(G) is trivial. By the previous paragraph
and Proposition 3.22, the group Ur(G)H/H < G/H ~ Ug, (G) is a Ug,-group.
But by Proposition 3.14, it is a Ug-group, hence it is trivial by Lemma 2.19, and
Ur(G) = Ug(H) is trivial, as desired. O

Corollary 3.28. For any U-group G, we have T(G) = 1.

Proof. By Proposition 3.27, there are finitely many definable real closed fields
Ry,..., Ry such that G is the direct product of Ug,(G),...,Ug,(G). We pro-
ceed by induction on k. By induction hypothesis, the group T(G/Ug,(G)) =~
T(Ug,(G) X ... x Ug,(G)) is trivial, and Proposition 3.8 gives T(G) < Ug, (G).
Then T(G) is a Ug,-group (Proposition 3.22), so T(G) is trivial. O

Theorem 3.29. Any nilpotent definably connected definable group G is the central
product of T(G) by U(G). More precisely, the following decomposition holds

G =T(G)* (Ur,(G) x - x Ur, (G))

for definable real closed fields Ry, ..., Ry such that Ur(G) = 1 for each definable
real closed field not definably isomorphic to R; fori=1,...,k. Moreover, Ug,(Q)
is a homogeneous U, -group for each i =1,... k.

Proof. Proposition 3.7 shows that T(G) is central in G, so the group T(G)U(G)
is the central product of T'(G) by U(G). We assume toward a contradiction that
G # T(G)U(G). Let M be a maximal definably connected definable subgroup
of G containing T(G)U(G). Since M contains U(G), it contains Ur(G) for each
definable real closed field R, and Proposition 3.14 shows that no definable quotient
of G/M is definably isomorphic to R4 for a definable real closed field R. Thus G/M
is a pseudo-torus and Proposition 3.8 gives G = T(G)M, contradicting that M
contains T'(G). Hence we have G = T(G)U(G), and the decomposition of G follows
from Propositions 3.22 and 3.27. (|
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Corollary 3.30. A nilpotent definably connected definable group G is a U-group
if and only if T(G) is trivial.

Proof. This follows from Corollary 3.28 and Theorem 3.29. O
Corollary 3.31. FEwvery definable subgroup H of a U-group G is a U-group.

Proof. The group G is torsion-free by Proposition 3.27, so H is definably connected
and this follows from Corollary 3.30. (|

Corollary 3.32. The derived subgroup G’ of a definably connected definable nilpo-
tent group G is a U-group.

Proof. This follows from Theorem 3.29, Corollary 3.6 and Lemma 3.21. (|

4. STRUCTURE OF DEFINABLE GROUPS

The purpose of this section is to describe the structure of any definably
connected definable group G modulo U(G). We show that G/U(G) is a central
extension of a direct product of definably simple definable groups (Theorem 4.9).
The proof is based on the structure of nilpotent groups (Theorem 3.29), and on
the study of group actions on a solvable group.

Lemma 4.1. Let G be a solvable definably connected definable group. Then G’ is
contained in U(G).

Proof. By Fact 2.5, the group G’ is contained in F(G). Since G is definably con-
nected and F(G)/F(G)° is finite, G centralizes F(G)/F(G)°. By Proposition 3.8
and Theorem 3.29, the group T' = F(G)°/U(G) is a pseudo-torus, so G centralizes
T too (Corollary 3.6). Consequently, G /U (G) is a nilpotent definably connected de-
finable group, and by Corollary 3.32, its derived subgroup is a normal U-subgroup
of F(G)/U(G).

Let R be a definable real closed field. By Proposition 3.14, we have

Ur(F(G)/U(G)) = Ur(F(G)U(G)/U(G),
and since U(G) = U(F(G)) contains Ur(F(G)), the groups Ugr(F(G)/U(G)) and
U(F(G)/U(G)) are trivial. But G'U(G)/U(G) is contained in U(F(G)/U(G)) by
the previous paragraph, hence G’ is contained in U(G), as desired. (I

Lemma 4.3 generalizes Fact 2.5. Thanks to Lemma 4.2, its proof is slightly
simpler than the one of [13, Theorem 6.10].

Lemma 4.2. Let G be a definably connected definable group. If H is a normal
definable subgroup such that G/H is solvable, then G = R(G)H.

Proof. By Fact 2.4, the subgroup R generated by all normal solvable subgroups
of G is definable and solvable. Then we have R(G) = R°, and G/R satisfies the
hypotheses of Fact 2.8. Thus G/R is the direct product of definable subgroups
Hy/R,..., Hy;/R such that for every i € {1,...,k} there is a definable real closed
field R; and a definable isomorphism between H;/R and a semialgebraic subgroup
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of GL,, (R;). Moreover, H’R/R is definably simple. Since G/R is definably con-
nected, H;/R is definably connected for each 4. In particular, H;/R = H{R/R is
definably simple for each i, and G/R has no proper definable subgroup N such
that (G/R)/N is solvable. Thus we obtain G = RH, and since G is definably
connected and R(G) = R°, this implies G = R(G)H. O

Lemma 4.3. Let G and H be two definably connected definable groups. We assume
that H is solvable. If G acts definably by conjugation on H, then |G, H] is contained
in U(H).

Proof. We consider a minimal counter-example G acting on H. By minimality of
G and Fact 2.12, the group G = G/Ce(H/U(H)) is abelian. By Lemma 4.2, we
have G = R(G)Cq(H/U(H)), so G = R(G) is solvable by minimality of G. We
consider the semi-direct product H x G where G acts by conjugation on H. It is a
solvable definably connected definable group. Then [G, H] < (H x G)’ is contained
in U(H x G) N H by Lemma 4.1. Since U(H x G) N H is a normal U-subgroup of
H by Corollary 3.31, we obtain [G, H] < U(H), contradicting G # Cq(H/U(H)).
Thus [G, H] is contained in U(H). O

Lemma 4.4. Let H be a (non-necessarily definable) subgroup of a nilpotent de-
finable group G. Then H has a unique mazimal definably connected definable sub-
group.

Proof. We proceed by induction on the dimension of G. We may assume that G is
definably connected. Let M be a maximal definably connected definable subgroup
of H. We show that M is normal in H. We may assume that M is not normal in G.
By induction hypothesis, M is the unique maximal definably connected definable
subgroup of Ny (M) < Ng(M) < G, therefore M is normal in Ny (Ng(M)) and
we obtain Ny (Ng(M)) = Ng(M). But H is nilpotent, hence Ny (M) = H and
M is normal in H.

Now, if N is any definably connected definable subgroup of H, then NM is
a definably connected definable subgroup of H too, and it is contained in M by
maximality of M. This proves the uniqueness of M. ]

Corollary 4.5. In any nilpotent definable group G, every family of definably con-
nected definable subgroups of G generate a definably connected definable subgroup.

The following result and Corollary 4.8 are in the spirit of [1].

Proposition 4.6. Let G and H be two definably connected definable groups. We
assume that H is solvable. If G acts definably by conjugation on H, then |G, H] is
a U-subgroup of H. In particular, |G, H] is definable and definably connected.

Proof. By Lemma 4.3, the group [G, H]| is contained in U(H ), so we have just to
prove that [G, H| is definable and definably connected. We proceed by induction
on the dimension of H. Since [G, H] is contained in the nilpotent definable group
U(H), it has a unique maximal definably connected definable subgroup M (Lemma
4.4). If M is nontrivial, then [G, H]/M is definable and definably connected by
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induction hypothesis, so [G, H] is definable and definably connected. Thus we may
assume that [G, H| contains no non-trivial definably connected definable subgroup.

We show that [G, H] is central in U(H). We may assume that U(H) is non-
trivial. By induction hypothesis, [G, H|Z(U(H))/Z(U(H)) is definable and defin-
ably connected. Since U(H) is a U-group, it is torsion-free (Proposition 3.27),
so Z(U(H)) is definably connected and [G, H|Z(U(H)) is a definably connected
definable subgroup.

o IfU(H)=|G,H|Z(U(H)), then |G, H] contains U(H)'. By Corollary 3.32,
the subgroup U(H)' < [G, H] is definable and definably connected, so it
is trivial and U (H) is abelian.

o If [G,H|Z(U(H)) < U(H), then [U(H),|G,H]Z(U(H))| is a definably
connected definable subgroup by induction hypothesis, and since it is con-
tained in [G, H], it is trivial. Thus U(H) centralizes [G, H].

Now, for each g € G, the map ad, : U(H) — Z(U(H)) defined by ady(z) =
[g,z] is a definable group homomorphism. Since its image is a definably connected
definable subgroup of [G, H], it is trivial, so G centralizes U(H).

Thus, for each h € H, the map ady, : G — Z(U(H)) defined by adp(z) =
[z, h] is a definable group homomorphism. Since its image is a definably connected
definable subgroup of [G, H], it is trivial, we obtain [G,H] = 1 and [G, H] is a
definably connected definable subgroup of H. O

Corollary 4.7. Let G be a definably connected definable group acting definably
by conjugation on a nilpotent definable group H. Then [G,H| = [G,H®] is a U-
subgroup of H.

Proof. By Fact 2.6 (1), the group H has a finite characteristic subgroup F such
that H = H° % F. Since G is definably connected, it centralizes F' and we have
[G, H] =[G, H®]. Now we conclude by Proposition 4.6. O

The following result is not useful for Theorem 4.9. It will be used in the proof
of Theorem 5.15.

Corollary 4.8. Let G be a definably connected definable group acting definably by
conjugation on a solvable definable group H. Then |G, H| is a definably connected
definable subgroup of H.

Proof. We proceed by induction on the dimension of the group H x G where G
acts by conjugation on H. We may assume that G acts faithfully on H. If [G, H]
contains a non-trivial (H x G)-normal definably connected definable subgroup
A, then we may apply our induction hypothesis to H/A x G where G acts by
conjugation on H/A, and we obtain that [G, H] is a definably connected definable
subgroup of H. Thus we may assume that [G, H] contains no non-trivial (H x G)-
normal definably connected definable subgroup.

The group [G, H°] is definable and definably connected by Proposition 4.6, so
its H-conjugates too. Since [G, H°] is normal in H°, its H-conjugates too, so the
subgroup L generated by the H-conjugates of [G, H®] is definable and definably
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connected. But L is a subgroup of [G, H] normal in H x G. Hence it is trivial by
the previous paragraph, and G centralizes H°.

Since H/H® is finite and G is definably connected, [G, H] is contained in
H°. Then for each h € H, we may consider the map up : G — H° defined by
up(x) = [z, h]. Since G centralizes H®, the map wy, is a group homomorphism, and
its image is a definably connected definable subgroup of H°. Moreover, for each
a € H° and each x € GG, since G centralizes H® we have

up(z)® =[x, h] = [x,ailahflh] = [z, h]

So the image of up is central in H°, and the subgroup generated by Imwy for
h € H is a definably connected definable subgroup of Z(H®). But this subgroup
is equal to [G, H], and it is normalized by G and H. Hence it is trivial by the
first paragraph, and G centralizes H. Thus [G, H] = 1 is definable and definably
connected. (I

Theorem 4.9. Let G be a definably connected definable group. Then G/U(G) is
a central extension of a direct product of definably simple definable groups.

More precisely, G has a normal solvable definable subgroup R such that the
following three conditions hold:

e R contains all the normal solvable subgroups of G;

e [G,R] is a U-group and |G, R] = [G, R°];

o (see Fact 2.8) G/R is the direct product of definably simple definable sub-
groups Hy, ..., Hy such that for every i € {1,...,k} there is a definable
real closed field R; and a definable isomorphism between H; and a semial-
gebraic subgroup of GL,, (R;).

Proof. By Fact 2.4, the subgroup R generated by all normal solvable subgroups
of G is definable and solvable. Then we have R(G) = R°, and G/R satisfies the
hypotheses of Fact 2.8. Thus, the first and the third assertions are satisfied.
Now, since [G, R°] is a U-group (Proposition 4.6), we have just to prove
that [G, R] = [G, R°]. Since G is definably connected and since R/R° is finite, G
centralizes R/R°. In particular, R/R° is abelian. Moreover, since [G, R°] contains
[R, R°], the group R centralizes R°/[G, R°], so the group R/[G, R°] is nilpotent.
Then Corollary 4.7 shows that the commutator [G/[G, R°], R/[G, R°]] is trivial
and we obtain [G, R] = [G, R°]. O

5. LINEARITY OF DEFINABLE GROUPS

We prove the main theorem in this section (Theorem 5.15). Its proof is based
on the previous sections, on the study of definably linear groups (Definition 5.10
and Fact 5.4) and on the analysis of groups definable in an o-minimal expansion of
a real closed field. In particular, the following two results are crucial for the proof
of Theorem 5.15.
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Fact 5.1. [21, Proof of Corollary 3.1] Let Z = (R, <,---) be an o-minimal expan-
sion of a real closed field. If G is definable in %, then G/Z(G) can be definably
embedded into GL,,(R).

Proposition 5.2. Let Zy = (R, <,+, -) be a definable real closed field, and let
Z be a definable expansion of %y such that, for each integer n, all the definable
relations of R™ are Z-definable. Let H be a normal definable subgroup of a definable
group G. If H and G/H are definably isomorphic to an %-definable group, then
G is definably isomorphic to an Z-definable group.

Proof. First we assume that G° is definably isomorphic to an #Z-definable group.
We may apply the method of Borovik and Cherlin [15, Proposition 4.3]. Let W be
the wreath product of G° by G/G°. It is definably isomorphic to an %Z-definable
group, and we have just to find a definable group monomorphism from G to W. We
consider a left transversal T = {¢1,...,¢,} to G° in G. For each x € G and each
1€ {1,...,r}, we denote by n;(x) the unique element of G° such that n;(x)g;x € T,
and we define a map u: G — W by u(z) = ((n1(z),...,nr(z)),2G°). The map u
is definable, and it is a group homomorphism (see the proof of [9, Theorem 18.9
p.68]). Moreover, if 2 belongs to Ker y, the last coordinate gives 2 € G°, and since
g1z € {g1,...,9+}, we obtain g1 = g1 and = 1. Thus p is a definable group
monomorphism from G to W, as desired. Hence we may assume that G is definably
connected.

Now we proceed by induction on the dimension of H. By the structure of
H° described in Theorem 4.9, we may assume that either H is finite, or H has no
non-trivial normal abelian subgroup, or H is abelian, or H is a U-group. Suppose
that H has no non-trivial normal abelian subgroup. By Theorem 4.9, the group G
has a normal solvable definable subgroup R such that the following two conditions
hold:

e R contains all the normal solvable subgroups of G;

e G/R is the direct product of definably simple definable subgroups.
Consequently, since HR/R is a normal definable subgroup of G/R, the group
HR/R is a direct product of some subgroups Hi, ..., H;, and G/R has a normal
definable subgroup S/R such that G/R = HR/R x S/R. Thus we have G = HS
and H NS < R. But R is solvable and H has no non-trivial normal abelian
subgroup, so R N H is trivial, and since H and S are normal in GG, we obtain
G = H x S. Hence G ~ H x G/H is definably isomorphic to an Z-definable
group. Thus we may assume that either H is finite, or H is abelian, or H is a
U-group.

However, if H is finite, then since G is definably connected, G centralizes H,
and H is abelian. Moreover, if H is a non-abelian U-group, then H’ is infinite and
definable (Corollary 3.32), and the induction hypothesis applied with H/H’ and
H'’ shows that G is definably isomorphic to an %-definable group. Hence we may
assume that H is abelian.

For each g € G, we denote by g = gH the left coset of ¢ modulo H. By Fact
2.1, there is a definable function ¢ : G — G such that for all x,y € G, we have
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r € zH and if vH = yH then t(x) = t(y). We define a map ® : G x G — H by
®(xH,yH) = t(zy)~'t(z)t(y). In particular, the map ® is definable, so its graph is
a definable subset of G x G x H C R" for an integer n, and ® is %-definable by our
hypothesis over Z. We consider the set L = G/H x H and the group ¥ = (L, ®)
where for every (g,h) € L and (¢/,h’) € L, the product (g,h) ® (¢’,h’') is defined
by
(@.h) ® (¢, 1) = (39, b '2(5.9))

We note that, since the groups G/H and H are definably isomorphic to %Z-definable
groups, and since ® is Z-definable too, the group . = (L,®) is definably iso-
morphic to an Z-definable group. Moreover the map f : G — L defined by
f(g) = (9,t(g)"tg) is a definable group isomorphism, so G is definably isomor-
phic to an #Z-definable group. O

Corollary 5.3. Let Zy = (R,<,+, -) be a definable real closed field, and let
Z be a definable expansion of %y such that, for each integer n, all the definable
relations of R™ are Z-definable. Then every Ug-group is definably isomorphic to
an Z-definable group.

Proof. This follows from Propositions 3.22 and 5.2. (|

The definable subgroups of GL,(R) are studied in [24] whose main result is
Fact 5.4. We provide below some useful complements. In particular, we show that
a definable quotient of a definably connected subgroup of GL,(R) is definably
isomorphic to a subgroup of GL,,(R) (Proposition 5.9).

Fact 5.4. [24, Theorem 4.1] Let % be an o-minimal expansion of a real closed
field (R, <,---), and let G be a Z-definably connected Z-definable subgroup of
GL,(R) for an integer n. Then there are semialgebraic subgroups Gy and Ga of
GL,,(R) such that Go < G < G1, Go is a normal subgroup of G1 and G1/Gs2 is
abelian. Moreover, there are abelian, %Z-definable, Z-definably connected subgroups

Aq,..., Ax of G such that G=Gs- Ay --- Ag.

We recall that a semisimple group is defined to be a definably connected
definable group with no infinite abelian normal subgroup (Definition 6.1).

Fact 5.5. [24, Theorem 4.5] Let R be a definable real closed field, and let G be
a definably connected definable subgroup of GLy(R) for an integer n. Then G =
NH for a normal solvable definable subgroup N and a semialgebraic semisimple
subgroup H such that N N H s finite.

Lemma 5.6. Any semisimple group S is perfect and satisfies R(S) = 1.

Proof. Since S is a semisimple group, Z(U(S)) is finite, and U(S) is finite too by
Fact 2.2. But U(S) is a U-group, so it is definably connected, and consequently
it is trivial. Hence R(S) is abelian (Proposition 4.6), and since S is semisimple,
R(S) is finite. Thus, since R(S) is definably connected, R(S) is trivial.

Let R be the subgroup of S generated by all normal solvable subgroups of G.
It is definable and solvable (Fact 2.4), so R° = R(S) is trivial and R is finite. Now
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S/R has no non-trivial normal abelian subgroup, and Fact 2.8 with Proposition
2.11 shows that S/R is perfect. Thus we have S = S’R and S’ has finite index in
S, so Proposition 2.11 gives S = 5’. O

Lemma 5.7. Let R be a definable real closed field, and let G be a definably con-
nected definable subgroup of GL,(R) for an integer n. Then G' = U x S for a
semialgebraic unipotent group U and a semialgebraic semisimple group S. In par-
ticular, G’ is semialgebraic.

Proof. By Fact 5.5, we have G = N H for a normal solvable definable subgroup N
and a semialgebraic semisimple subgroup H such that N N H is finite. Since G is
definably connected, we may assume that N is definably connected. Moreover, we
have R(H) =1 and H is perfect (Lemma 5.6). Thus we have G’ = N'[H, N|H' =
N'[H,N]H, and U = N'[H, N] is a U-group by Proposition 4.6. In particular, U
is a definable subgroup of N, and it is torsion-free (Proposition 3.27),so UNH <
N N H is trivial.

Let N be the smallest semialgebraic subgroup of GL,,(R) containing N. Then

N is semialgebraically connected by Proposition 2.11. Moreover, N is contained in
N by Fact 5.4, so N is solvable. This implies that N isa semialgebraic unipotent
group. Since H is definably connected, it is semialgebraically connected, and then
[H, N] is a semialgebraic unipotent group too. Now N [H, N] is a semialgebraic
unipotent group. Since U = N'[H, N] is a definable subgroup of N [H, N], Corol-
lary 2.18 shows that U is semialgebraic, and we have the decomposition G’ = U x S
with S = H. 0

Corollary 5.8. Let R be a definable real closed field, and let G be a definably con-
nected definable subgroup of GL,,(R) for an integer n. Then any normal definable
subgroup H of G’ is semialgebraic.

Proof. We may assume that H is definably connected. By Fact 5.5, we have H =
NT for a normal solvable definable subgroup N and a semialgebraic semisimple
subgroup T such that N N7 is finite. Since H is definably connected, we have
H = N°T. Moreover, by Lemma 5.7, there are a semialgebraic unipotent group U
and a semialgebraic semisimple group S such that G’ = U % S. In particular, since
R(S) = 1 (Lemma 5.6), we have R(G') = U. Thus N° is a definable subgroup
of R(H) < R(G') = U, and Corollary 2.18 implies that N° is semialgebraic. So
H = N°T is semialgebraic. (I

Proposition 5.9. Let R be a definable real closed field, and let G be a definably
connected definable subgroup of GL,(R) for an integer n. If H is a normal defin-
able subgroup of G, then G/H is definably isomorphic to a definable subgroup of
GL,,(R) for an integer m.

Proof. By Corollary 5.8, the group H N G’ is semialgebraic, so Nqr,, (ry(H N
G")/(H N G’) definably embeds into GL;(R) for an integer [, and G/(HNG') <
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Ner,(r(H N G')/(H N G') is definably isomorphic to a definable subgroup of
GL;(R). Thus we may assume that H N G’ is trivial.

By Lemma 5.7, the group G’ is semialgebraic, so Nqr,, (r)(G")/G" definably
embeds into GL(R) for an integer k, and G/G" < Nqr,, (r)(G")/G’ is definably
isomorphic to a definable subgroup of GL(R). But H°G’/G’ has a definable com-
plement C/G" in G/G’ by Fact 2.16 (2), and since C N H°® < G' N H is trivial,
G/H® is definably isomorphic to H°C/H® ~ C/(C N H°) ~ C. Hence we may
assume that H is finite. Then Ny, (ry(H)/H definably embeds into GL,,(R) for
an integer m, and G/H < Ngy,, (ry(H)/H is definably isomorphic to a definable
subgroup of GL,,(R), as desired. O

Definition 5.10. A definable group G is said to be definably linear (over finitely
many definable real closed fields Ry,..., Rg), if G has a definable faithful linear
representation over the ring R; & --- @ Ry.

In other words, G definably embeds in Hy X --- X Hy, where H; is a linear
semialgebraic group over R; for each i =1,... k.

Lemma 5.11. Let Ry,..., Ry be finitely many definable real closed fields. Any
definable group G has a smallest normal definable subgroup N such that G/N is
definably linear over Ry,..., Ry.

Proof. 1t is sufficient to show that, if A and B are two normal definable subgroups
of G such that G/A and G/B are definably linear, then G/(A N B) is definably
linear. Moreover, we may assume that AN B is trivial. We consider definable real
closed fields Ry, ..., Ry, S, . ..,S; such that G/A definably embeds in Hy X+ - -x H,
where H; is a linear semialgebraic group over R; for each ¢« = 1,... k, and such
that G/B definably embeds in K; x --- x K;, where K is a linear semialgebraic
group over S; for each j =1,...,1. Let f : G - G/A x G/B be the map defined
by f(x) = (xA,xB). Since f is a definable group monomorphism, G is definably
linear. (I

Lemma 5.12. Let Ry,..., Ry be finitely many definable real closed fields, and
let H; be a definable subgroup of a linear semialgebraic group over R; for each
i =1,...,k. If Ry,...,Rr are not definably isomorphic, then for any definably
connected definable subgroup L of Hy X --- x Hy, we have

L=(LNH;)x--x(LNHy)

In particular, if G is a definably connected definable group, and if G is definably
linear over finitely many definable real closed fields Ry, ..., Ry, then G is definably
isomorphic to a direct product of definable subgroups of GLy, (R1), ..., GLy, (Rk).

Proof. Since G is definably linear over Ry, ..., Rk, the group G definably embeds
into a direct product Hy X --- X Hy, where H; is a linear semialgebraic group over
R; for each ¢ = 1,... k. It is sufficient to show that, for any definably connected
definable subgroup L of Hy X --- x Hy, we have

L=(LNHy)x---x(LNHy)
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We assume toward a contradiction that L is a counter-example of minimal
dimension. Therefore, for each proper definably connected definable subgroup Lg
of L we have Lo = (Lo N Hy) X -+ x (Lo N Hy). This implies that, if we consider
K = (LNH;)x---x(LNHy), then K° contains all the proper definably connected
definable subgroups of L.

For eachi € {1,...,k}, we denote by p; : Hy x---x H}, — H; the i*" projection
map. Since K is proper in L, there is ¢ € {1,...,k} such that p;(L) is non-trivial.
If p;(L) is trivial for each j # ¢, then L is contained in H;, contradicting K < L.
Therefore there exists j # 4 such that p;(L) is non-trivial. We consider K; = Kerp;
and K; = Kerp;. They are proper subgroups of L, so K contains K7 and K7,
and K;K; is a proper normal definable subgroup of L. But L/K; and L/K; are
definably isomorphic to p;(L) < H; and p;(L) < H; respectively, so there exists
two integer m and n such that L/K;K; is definably isomorphic to a definable
subgroup P; of GL,,,(R;) and to a definable subgroup P; of GL, (R;). Hence the
fields R; and R; are definably isomorphic by Proposition 2.20, contradicting that
the fields Ry, ..., Ry are not definably isomorphic. O

Lemma 5.13. Let G be a definably connected definable group. If U(Z(Q)) is
trivial, then G/Z(G) is centerless.

Proof. We consider Z/Z(G) = Z(G/Z(@G)). The subgroup Z is definable, nilpotent
and normal in G. By Corollary 4.7, the group [G, Z] is a U-group, and since it is
contained in Z(G), the subgroup Z is central in G. Thus G/Z(G) is centerless. [0

Lemma 5.14. Let G be a definable group and let R be a definable real closed field.
Then G has a smallest normal definable subgroup K such that G/ K is a Ug-group.

Proof. We have just to prove that if A and B are two normal definable subgroups
such that G/A and G/B are Ug-groups, then G/(A N B) is a Ur-group. Since
G/A and G/B are nilpotent, G/(AN B) is nilpotent too. But AB/B is a definable
subgroup of G/B, so it is a homogeneous Ug-group by Proposition 3.22, and by
Proposition 3.22 again, G/A is a homogeneous Ugr-group. Hence, since A/(ANB) ~
AB/B, Lemma 3.17 shows that G/(A N B) is a homogeneous Ur-group. O

Theorem 5.15. Let G be a definably connected definable group. Then G/Z(G) is
the direct product of definable groups Hy, ..., Hy such that for everyi € {1,...,k}
there is a definable real closed field R;, an integer n; and a definable isomorphism
from H; to a definable subgroup of GLy, (R;).

Proof. By Lemma 5.12, we have just to prove that G/Z(G) is definably linear.
We proceed by induction on the dimension of G. By Fact 2.15, we may assume
G/Z(G) is not centerless. In particular, U(Z(G)) is non-trivial by Lemma 5.13.
Let R be a definable real closed field such that Ur(Z(G)) is non-trivial, and A be
a G-minimal subgroup of Ur(Z(G)) (Definition 3.18). In particular, A is torsion-
free (Proposition 3.22). Since A is G-minimal and central in G, it has no proper
non-trivial subgroup, and since it is a Ur-group, it is definably isomorphic to R .
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We show that we may assume that A is the unique G-minimal subgroup of G.
Indeed, if G has another G-minimal subgroup B # A, we consider Z4 /A = Z(G/A)
and Zp/B = Z(G/B). By induction hypothesis, the groups G/Z4 and G/Zp are
definably linear, so G/(Z4 N Zg) is definably linear by Lemma 5.11. Since A and
B are G-minimal, the group A N B is finite, and since G is definably connected,
ANB is central in G. Thus, for each z € Z4NZp, the map u, : G = ANB, defined
by u,(z) = [z,z], is a definable group homomorphism, and since G is definably
connected, its image is a definably connected subgroup of the finite subgroup ANDB.
Therefore z centralizes G and Z4 N Zp = Z(G). Now G/Z(Q) is definably linear,
and we may assume that A is the unique G-minimal subgroup of G. In particular,
U(QG) is a Ug-group (Proposition 3.27).

Let Z/A = Z(G/A). We show that Z = Ur(Z)Z(G) and that Z/Z(G) is a
Ug-group. By induction hypothesis, the group G/Z is definably linear. For each
g € G, the map u, : Z — A defined by uy4(z) = [g,2] is a group homomorphism,
and since A ~ R, we have either Keru, = Z or Z/Keruy ~ R;. By Lemma
5.14, the group Z/Z(G) is a Ug-group. Then, by Proposition 3.14, we have Z =
Ur(2)Z(G).

Since G/Z is definably linear, Lemma 5.12 says that G is definably isomorphic
to a direct product K1/Z x --- x Ky /Z, where K;/Z is a definably linear group
over a definable real closed field R; for each ¢ = 1,...,k. Since G is definably
connected, K;/Z is definably connected for each ¢ = 1,..., k. Moreover, we may
assume that R = Rj, and that the fields Ry, ..., Ry are not definably isomorphic.
We note that we do not say that K;/Z is non-trivial. We show that [K4, K] is
contained in Z(G) for each j # 1. For each ¢ € K; and each j # 1, the map
adeg : K; — Z/Z(G) defined by adeg(x) = [g, z] is a group homomorphism, and
K;/Ker adeg is definably isomorphic to a subgroup of Z/Z (@), so it is a Ug-group
(Proposition 3.22). Since Keraleg contains Z, either K; = Keraleg, or the group
K;/Z has a normal definable subgroup N/Z such that (K;/Z)/(N/Z) is definably
isomorphic to Ry. In the second case, since (K;/Z)/(N/Z) is definably isomorphic
to a definable linear group over R; by Proposition 5.9, the fields R; and R = R,
are definably isomorphic by Proposition 2.20, contradicting j # 1. Thus we have
K; = Ker@g, and [K1, K] is contained in Z(G) for each j # 1.

Let j # 1 and let H;/Z(G) be a definable subgroup of K;/Z(G) such that
K; = ZHj;, and minimal for this condition. We prove that K; centralizes Hj;.
Since Z/Z(QG) is a Ug-group, it is definably connected, and since K;/Z is defin-
ably connected too, the group K;/Z(G) is definably connected, so any subgroup
H;/Z(G) is definably connected. By the previous paragraph, for each g € K; and
each j # 1, we may define a group homomorphism ad;, : Hj — Z(G) by adjg(z) =
[g, z]. Therefore H;/Ker ad;, is definably isomorphic to the subgroup Im ad;, of
Z(G). In particular, H;/Kerad;, is abelian. Since Kerad;, contains Z(G) and
since H;/Z(QG) is definably connected, Lemma 4.2 gives H; = R;Ker ad;, where
R;/Z(G) = R(H;/Z(Q)). Now R; is a normal solvable subgroup of G, and [G, R;]
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is a U-group (Corollary 3.31 and Theorem 4.9). Thus, since U(G) is a Ug-group by
the second paragraph, [G, R;] and Imad;, are Ug-subgroups (Proposition 3.22).
So, if Im adjg ~ H,;/Ker adjg is non-trivial, then H,; /Ker adjg has a proper normal
definable subgroup N/Ker adjg such that H; /N is definably isomorphic to R1. By
minimality of H;, we have K; # ZN , so we obtain (Z N H;)N < H;, and since
H;/N ~ Ry has no non-trivial proper definable subgroup (Fact 2.13), we have
Z N H; < N. Thus we obtain

(K;/2)/(NZ/Z)~ K;/NZ = H;Z/NZ ~ H;/(H; N\NZ) = H; /N ~ R

Now, by Propositions 2.20 and 5.9, the fields R; = R and R; are definably iso-
morphic, contradicting j # 1. Consequently Im adjg is trivial and every g € K,
centralizes Hj;.

In particular, the previous paragraph shows that Hs,... Hy centralize Z <
K3, and since G = K1Hs--- Hi, we obtain Cz (K1) = Cz(G) = Z(G). Then,
for each j = 2,...k, we have H; N Z < Cz(K1) = Z(G), and by the previous
paragraph again, we have Ck, (K1) = Czp, (K1) = H;Cz(K1) = H;Z(G) = H;.
Consequently H; is a normal definable subgroup of G. Moreover, we note that
ZN(Hy--- Hy) is contained in ZNCg(K;) = Z(G). Thus, since G/Z is the direct
product of K1/Z,...Ky/Z, and since K; = ZH; for each i = 2,... k, we obtain

G/Z(G) = K1/Z(G) x Ho)Z(G) x -+ x Hy/Z(G)

But for each i = 2, ..., k, the group H;/Z(G) = H;/(H;NZ)~ H,Z|Z = K;/Z is
definably linear over R;. Hence we have just to prove that K;/Z(QG) is definably
linear over R.

Let U/Ur(G) = Ur(G/Ur(G)). We show that Cz(U) = Z(G). For each
z € Z, we consider the definable group homomorphism v, : G — A defined by
v.(x) = [, 2]. Since A is definably isomorphic to R4, the group G/Kerv, ~ Imwv,
is a Up-group for each z € Z, and G/Cx(Z) is a Ug-group by Lemma 5.14. More-
over, Lemma 4.2 shows that G = R(G)Cg(Z). In particular, R(G)/(R(G)NCq(Z))
is a nilpotent group. Let D = Ug(R(G) N Cg(Z)). Since R(G)/U(G) is abelian
(Proposition 4.6) and since U(G) is a Ug-group, the group [R(G), R(G) N Ce(Z))
is a definable subgroup of Ur(G) (Corollary 4.8), and it is contained in D (Propo-
sition 3.22). This implies that R(G)/D is a nilpotent group. Since R(G)/(R(G) N
Ca(2)) ~ G/Cq(Z) is a Ug-group and D is contained in R(G) N C¢(Z), Propo-
sition 3.14 shows that the subgroup V defined by V/D = Ugr(R(G)/D) covers
R(G)/(R(G) N Cg(Z)) and G/Cg(Z). Moreover, Ur(G) contains D and, since
Ur(G)/D is a Ug-group (Proposition 3.14), the group V/D contains Ug(G)/D,
and V/Ur(G) ~ (V/D)/(Ur(G)/D) is a normal Ug-subgroup of G/Ur(G). Thus
V is contained in U, and we obtain G = VCq(Z) = UCg(Z), so Cz(U) = Z(G).

Let Z be a definable expansion of (R, <,+, - ) such that, for each integer n,
all the definable relations of R™ are Z-definable. By Proposition 5.2 and Corol-
lary 5.3, the groups Ur(G), U and Z/Z(G) = Ur(G)Z(G)/Z(G) are definably
isomorphic to #Z-definable groups. Moreover, since K1/Z is definably linear over
R, Proposition 5.2 says that K7/Z(G) is definably isomorphic to an %Z-definable
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group. We consider the semi-direct product L = U x K1/Z(G) where K1/Z(G)
acts by conjugation on U. Then, by Proposition 5.2 again, the group L is defin-
ably isomorphic to an Z-definable group. Now L/Z(L) is definably linear over L
(Fact 5.1). Let N/Z(G) = Z(L)N K1/Z(G). Then K;/N is definably linear over
R. Moreover, since Cz(U) = Z(G) by the previous paragraph, Z(L) N Z/Z(G)
is trivial, so NN Z = Z(G). Since K1/Z and K;/N are definably linear over R,
Lemma 5.11 shows that K1/Z(G) is definably linear over R, and we conclude that
G/Z(G) is definably linear over R. O

We may state Theorem 5.15 under the following formulation.

Corollary 5.16. Let G be a definably connected definable group. Then G is the
central product of definable subgroups Hy,..., Hy such that for each i there is

a definable real closed field R;, an integer n; and a definable isomorphism from
H,Z(G)/Z(G) to a definable subgroup of GL,,(R;).

Proof. We may assume that G is w-saturated. We consider the groups H;/Z(G) =
H; in Theorem 5.15, and we assume that the fields Ry,..., Ry are not definably
isomorphic. We have just to prove that [H;, H;] = 1 for each j # i. We assume
toward a contradiction that [H;, H;] is non-trivial for j # i.

By Facts 2.6 (1) and 2.12, there are a € H; and b € H; such that [a, b] is of
infinite order. We consider the maps v : H; — Z(G) defined by u(z) = [a, z] and
v: H; = Z(QG) defined by v(x) = [z, b]. They are definable group homomorphisms,
and since I = Imu NImv contains [a, b], the group I is infinite. But Keru (resp.
Kerv) contains Z(G), so Imu (resp. Imv) is definably isomorphic to a definable
quotient of H;/Z(G) (resp. H;/Z(G)) which is definably isomorphic to a definable
subgroup of GLy,, (R;) (resp. GL,, (R;)). This implies that I is an infinite definable
group which is, by Proposition 5.9, definably linear over R; and definably linear
over I?;. Hence, by Proposition 2.20, the fields R; and R; are definably isomorphic,
contradicting our hypothesis over the fields Ry, ..., Rg. O

Corollary 5.17. If G is a definably connected definable group, then G'Z(G)/Z(QG)
is a definably connected definable group.

More precisely, it is a direct product of definably connected definable groups
Hy, ..., Hy such that for everyi € {1,...,k} there is a definable real closed field
R; and a definable isomorphism between H; and a semialgebraic linear group over
R;.

Proof. This follows from Theorem 5.15 and Lemma 5.7. O

6. A LEVI-LIKE DECOMPOSITION

Conversano exhibited a definably connected definable group G such that
R(G) = Z(G) and whose derived subgroup is not definable [5, Example 3.1.7].
Moreover, this group G has no semisimple subgroup S such that G = R(G)S. This
motivates the introduction of quasi-semisimple groups.
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Definition 6.1. Let S be a definably connected definable subgroup of a definable
group G.

e S is said to be semisimple if it has no infinite abelian normal subgroup;
e S is said to be quasi-semisimple if R(S)H < S for every proper definable
subgroup H of S.

Remark 6.2. By Lemma 5.6, any semisimple group S is quasi-semisimple.

Conversano and Pillay introduce in [6] ind-definable semisimple subgroups,
and they show their existence and conjugacy in every definably connected group
G definable in an o-minimal expansion Z of a real closed field.

We refer to [6] for the definition of an ind-definable semisimple subgroup, and
we provide just their main properties.

Fact 6.3. [6, Theorem 1.1] Let # be an o-minimal expansion of a real closed
field K, and let G be an Z-definably connected Z-definable group. Then G has
a mazximal ind-definable semisimple subgroup S, unique up to conjugacy in G.
Moreover G = R(G)S, and the center Z(S) of S is finitely generated and contains
R(G)NS.

Furthermore, the following properties are satisfied:

(1) [6, Lemma 2.7] any ind-definable semisimple subgroup of G is perfect;

(2) [6, Proof of Theorem 1.1] there is a mazimal semisimple subgroup T /Z(G)°
of G/Z(G)° such that S =T'.

(3) [6, Proofs of Lemmas 4.1 and 4.2] if G is a definable subgroup of GLy,(K)
for an integer n, the mazximal ind-definable semisimple subgroups of G are
precisely its mazximal semisimple subgroups.

We will show that, if S is a subgroup of an Z-definably connected Z-definable
group, then S is a maximal ind-definable semisimple subgroup if and only if it is
the derived subgroup of a maximal quasi-semisimple subgroup (Corollary 6.7).

Lemma 6.4. Let G be a definably linear definable group. If G is definably con-
nected, then G has a mazximal semisimple subgroup S, unique up to conjugacy in
G. Moreover, G = R(G)S and R(G)NS is finite and contained in the center of S.

Proof. By Lemma 5.12, we find finitely many definable real closed fields Ry, ..., Ry
such that G is definably isomorphic to a direct product Hy X - - - X Hy, where H; is a
definable subgroup of a linear algebraic group over R; for eachi =1,..., k. By Fact
5.5, for each i, we find in H; a maximal semisimple subgroup S; such that H; =
R(H;)S; and R(H;)NS; is finite. Then we have R(G) = R(H;) X - - - X R(H}), and
S =51 X -+ x S is a semisimple subgroup. In particular, we obtain G = R(G)S,
and R(G) NS is finite. Moreover, since S is definably connected, it centralizes the
finite normal subgroup R(G) N S.
Let T be a maximal semisimple subgroup of G. By Lemma 5.12, we have

T=(TNH)x---x(TNHy)
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In particular, for each 4, the subgroup T'N H; is a maximal semisimple subgroup
of H;, and by Fact 6.3, the subgroups S; and T'N H; are conjugate in H;. Thus S
and T are conjugate in G. O

Corollary 6.5. Let G be a definably linear definable group. Then G is semisimple
if and only if it is quasi-semisimple.

Proof. By Remark 6.2, we may assume that G is a quasi-semisimple group, and
we have just to prove that G is semisimple. By Lemma 6.4, the group G has a
semisimple subgroup S such that G = R(G)S. Since G is quasi-semisimple, this
implies that G = S is semisimple. O

For each subset X of a definable group G, the intersection of all definable
subgroups of G containing X is a definable subgroup by descending chain condition
on definable subgroups [27, Remark 2.13 (ii)]. This subgroup is denoted by d(X).

Theorem 6.6. Let G be a definably connected definable group. Then G has a
maximal quasi-semisimple subgroup S, unique up to conjugacy in G. Moreover

e G=R(G)S;

e R(G)N S is central in S.
Moreover, SZ(G)/Z(G) is a mazimal semisimple subgroup of G/Z(G), S’ is a
perfect group, S = d(S"), and S/Z(S) has no non-trivial normal abelian subgroup.

Proof. By Theorem 5.15, the group G/Z(G) is definably linear. By Corollary 6.5,
its semisimple subgroups are precisely its quasi-semisimple subgroups. By Lemma
6.4, it has a maximal quasi-semisimple subgroup Sy/Z(G), unique up to conjugacy
in G/Z(G). Moreover, we have

G/Z(G) = R(G/Z(G))S/2(G)

and R(G/Z(G)) N So/Z(G) is contained in the (finite) center of So/Z(G), and by
Lemma 5.6, the subgroup Sp/Z(G) is perfect.

We consider S = d(S)). Since So/Z(G) is perfect, we have Sy = S{Z(G) =
SUZ(G), so Sop = SZ(G) and S| = S’. In particular, we have S = d(S’). Moreover,
since So/S{ = Z(G)Sy /Sy is abelian, we obtain S’ = S} = S§ = S” and S’ is
perfect.

We show that S is a quasi-semisimple subgroup and that R(S) is contained
in Z(G) N S. Since SZ(G)/Z(G) = So/Z(G) is quasi-semisimple, it is definably
connected, and we have S = S°(SNZ(G)). Therefore Sy = S’ = (S5°) is contained
in S°, and S = d(S)) is contained in S° too, so S is definably connected. Since
S/(Z(G)NS)~SZ(G)/Z(G) = So/Z(G) is semisimple, the radical R(S/(Z(G)N
S)) is trivial (Lemma 5.6) and R(S) is contained in Z(G) N S. Thus, if H is a
definable subgroup of S such that R(S)H = S, then we have (Z(G)NS)H = S
and H' = S’ = S{. This implies that H contains S = d(S})) = d(H'), so H =8
and S is quasi-semisimple.

We show that any quasi-semisimple subgroup of G is contained in a conjugate
of S. Let T be such a subgroup. We may assume that no quasi-semisimple subgroup
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of G contains properly T. If H/Z(G) is a definable subgroup of TZ(G)/Z(G) such
that R(TZ(G)/Z(G))H/Z(G) = TZ(G)/Z(G), then we have

TZ(G) = R(TZ(G))H = R(T)H

and T = R(T) (TN H), so TNH = T because T is quasi-semisimple. There-
fore H contains T', we have H/Z(G) = TZ(G)/Z(G), and TZ(G)/Z(G) is quasi-
semisimple. Now TZ(G)/Z(G) is a semisimple subgroup of G/Z(G), and it is
contained in a conjugate of So/Z(G) = SZ(G)/Z(G) by Lemma 6.4, so we may
assume that TZ(G)/Z(Q) is contained in SZ(G)/Z(G). In particular, we have
T =(TZ(@)) <(SZ(GQ)) =5".But TZ(G)/Z(G) is a semisimple group, so it is
perfect (Lemma 5.6), and we obtain TZ(G) = T'Z(G) and

T =T(TNZG)) =dT')TNZ(G))° = d(T)R(T)

Hence, since T is quasi-semisimple, we have T = d(7T”) and T is contained in
d(S") < S, as desired.

We show that S/Z(.S) has no non-trivial normal abelian subgroup. If A/Z(S)
is a normal abelian subgroup of S/Z(S), then Z/Z(S) = Z(Cg/z(s)(A/Z(S))) is a
definable normal abelian subgroup of S/Z(S), and Z is a definable normal nilpotent
subgroup of S. But R(S) is contained in Z(G) NS, so we have Z° < Z(G). Hence
Corollary 4.7 implies that

[S’A] < [Sa Z] = [S’Zo] < [S’Z(G)] =1

and A is central in S. Thus S/Z(S) has no non-trivial normal abelian subgroup.
We prove that G = R(G)S and that R(G)NS is central in S. Since G/Z(G) =
R(G/Z(G))So/Z(G), we have G = R(G)Sy = R(G)SZ(G), and since G is de-
finably connected and R(G) contains Z(G)°, we obtain G = R(G)S. Moreover,
(R(G)N 8)Z(S)/Z(S) is a normal solvable subgroup of S/Z(S). Thus, since the
previous paragraph says that S/Z(S) has no non-trivial normal abelian subgroup,
R(G) N S is contained in Z(S). O

Corollary 6.7. Let Z be an o-minimal expansion of a real closed field, and let G
be an Z-definably connected Z-definable group. Then, for any subgroup S of G,
the following conditions are equivalent:

e S is a mazimal ind-definable semisimple subgroup (in the sense of [6]);
e S is the derived subgroup of a maximal quasi-semisimple subgroup.

Proof. Let S be a maximal ind-definable semisimple subgroup of G. By Fact 6.3
(2), there is a maximal semisimple subgroup T/Z(G)° of G/Z(G)° such that S =
T'. Since Z(G)/Z(G)° is finite, TZ(G)/Z(G) is a maximal semisimple subgroup of
G/Z(G). But the maximal semisimple subgroups of G/Z(G) are conjugate (Facts
5.1 and 6.3), so Theorem 6.6 provides a maximal quasi-semisimple subgroup L of
G such that TZ(G)/Z(G) = LZ(G)/Z(G). Hence we have

S=T =(TZ(G)) = (LZ(G)) = L'
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Now we derive the result from the conjugacy of the maximal ind-definable semisim-

ple

subgroups in G (Fact 6.3) and from the conjugacy of the maximal quasi-

semisimple subgroups in G (Theorem 6.6). O

[1]
2]

3]

(10]
(11]
(12]
13]
14]
(15]
[16]

(17]

18]
(19]
20]
(21]
(22]

23]

REFERENCES

E. Baro, E. Jaligot, and M. Otero. Commutators in groups definable in o-minimal structures.
Proc. Amer. Math. Soc., 140(10):3629-3643, 2012.

A. Borel. Linear algebraic groups. 2nd enlarged ed. New York etc.: Springer-Verlag, 2nd
enlarged ed. edition, 1991.

J. Burdges. A signalizer functor theorem for groups of finite Morley rank. J. Algebra,
274(1):215-229, 2004.

G. Cherlin. Good tori in groups of finite Morley rank. J. Group Theory, 8(5):613-621, 2005.
A. Conversano. On the connections between definable groups in o-minimal structures and
real Lie groups: the non-compact case. Ph. D. thesis, University of Siena. 2009.

A. Conversano and A. Pillay. On Levi subgroups and the Levi decomposition for groups
definable in o-minimal structures. Fund. Math., 222(1):49-62, 2013.

J. Derakhshan and F. O. Wagner. Nilpotency in groups with chain conditions. Quart. J.
Math. Ozford Ser. (2), 48(192):453-466, 1997.

M. R. Dixon. Sylow theory, formations and Fitting classes in locally finite groups, volume 2
of Series in Algebra. World Scientific Publishing Co., Inc., River Edge, NJ, 1994.

K. Doerk and T. Hawkes. Finite soluble groups, volume 4 of de Gruyter Expositions in
Mathematics. Walter de Gruyter & Co., Berlin, 1992.

M. J. Edmundo. Solvable groups definable in o-minimal structures. J. Pure Appl. Algebra,
185(1-3):103-145, 2003.

P. E. Eleftheriou, Y. Peterzil, and J. Ramakrishnan. Interpretable groups are definable. J.
Math. Log., 14(1):1450002, 47, 2014.

O. Frécon. Etude des groupes résolubles de rang de Morley fini. Ph. D. thesis, Université de
Lyon. 2000.

O. Frécon. Around unipotence in groups of finite Morley rank. J. Group Theory, 9(3):341—
359, 2006.

O. Frécon. Conjugacy of Carter subgroups in groups of finite Morley rank. J. Math. Log.,
8(1):41-92, 2008.

O. Frécon. Groupes géométriques de rang de Morley fini. J. Inst. Math. Jussieu, 7(4):751—
792, 2008.

O. Frécon. Pseudo-tori and subtame groups of finite Morley rank. J. Group Theory,
12(2):305-315, 2009.

A. Grothendieck. Esquisse d’un programme. In Geometric Galois actions, 1, volume 242
of London Math. Soc. Lecture Note Ser., pages 5—48. Cambridge Univ. Press, Cambridge,
1997. With an English translation on pp. 243-283.

C. Miller and S. Starchenko. A growth dichotomy for o-minimal expansions of ordered
groups. Trans. Amer. Math. Soc., 350(9):3505-3521, 1998.

M. Otero. A survey on groups definable in o-minimal structures. In Model theory with
applications to algebra and analysis. Vol. 2, volume 350 of London Math. Soc. Lecture Note
Ser., pages 177-206. Cambridge Univ. Press, Cambridge, 2008.

M. Otero. On divisibility in definable groups. Fund. Math., 202(3):295-298, 20009.

M. Otero, Y. Peterzil, and A. Pillay. On groups and rings definable in o-minimal expansions
of real closed fields. Bull. London Math. Soc., 28(1):7-14, 1996.

Y. Peterzil, A. Pillay, and S. Starchenko. Definably simple groups in o-minimal structures.
Trans. Amer. Math. Soc., 352(10):4397-4419, 2000.

Y. Peterzil, A. Pillay, and S. Starchenko. Simple algebraic and semialgebraic groups over
real closed fields. Trans. Amer. Math. Soc., 352(10):4421-4450, 2000.



36

(24]
25]
[26]
27]

28]

29]
(30]
(31]

(32]

OLIVIER FRECON

Y. Peterzil, A. Pillay, and S. Starchenko. Linear groups definable in o-minimal structures.
J. Algebra, 247(1):1-23, 2002.

Y. Peterzil and S. Starchenko. Definable homomorphisms of abelian groups in o-minimal
structures. Ann. Pure Appl. Logic, 101(1):1-27, 2000.

Y. Peterzil and C. Steinhorn. Definable compactness and definable subgroups of o-minimal
groups. J. London Math. Soc. (2), 59(3):769-786, 1999.

A. Pillay. On groups and fields definable in o-minimal structures. J. Pure Appl. Algebra,
53(3):239-255, 1988.

B. Poizat. Groupes stables. Nur al-Mantiq wal-Ma’rifah [Light of Logic and Knowledge], 2.
Bruno Poizat, Lyon, 1987. Une tentative de conciliation entre la géométrie algébrique et
la logique mathématique. [An attempt at reconciling algebraic geometry and mathematical
logic].

L. van den Dries. Tame topology and o-minimal structures, volume 248 of London Mathe-
matical Society Lecture Note Series. Cambridge University Press, Cambridge, 1998.

L. van den Dries. o-minimal structures and real analytic geometry. In Current developments
in mathematics, 1998 (Cambridge, MA), pages 105-152. Int. Press, Somerville, MA, 1999.
R. B. Warfield, Jr. Nilpotent groups. Lecture Notes in Mathematics, Vol. 513. Springer-
Verlag, Berlin-New York, 1976.

A. J. Wilkie. Model completeness results for expansions of the ordered field of real num-
bers by restricted Pfaffian functions and the exponential function. J. Amer. Math. Soc.,
9(4):1051-1094, 1996.

LABORATOIRE DE MATHEMATIQUES ET APPLICATIONS, UNIVERSITE DE POITIERS
Email address: olivier.frecon@math.univ-poitiers.fr



