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LINEARITY OF GROUPS DEFINABLE IN O-MINIMAL

STRUCTURES

OLIVIER FRÉCON

Abstract. We consider an arbitrary o-minimal structure M and a defin-
ably connected definable group G. The main theorem provides definable real
closed fields R1, . . . , Rk such that G/Z(G) is definably isomorphic to a direct
product of definable subgroups of GLn1

(R1), . . . ,GLnk
(Rk), where Z(G) de-

notes the center of G. From this we derive a Levi decomposition for G, and
show that [G,G]Z(G)/Z(G) is definable and definably isomorphic to a direct
product of semialgebraic linear groups over R1, . . . , Rk.

1. Introduction

The theory of o-minimal structures provides a general framework for studying
semi-algebraic, semi-analytic and sub-analytic sets. It has been introduced in the
early 1980’s, and can be viewed as a realization of Grothendieck’s idea of tame
topology in “Esquisse d’un programme” ([17], 1984). The ordered field (R, <,+, · )
of real numbers is a typical example of o-minimal structure. In this structure,
a subset of Rn is definable if and only if it is a semi-algebraic set. Many other
structures are o-minimal, and a remarkable example is given by a difficult theorem
of Wilkie showing the o-minimality of the real exponential field [32]. For more
details on o-minimal structures, we refer to Van Den Dries’ book [30].

An ordered structure M = (M,<, · · · ) is o-minimal if every definable subset
of M is a finite union of intervals and points. This paper is concerned with groups
definable in an arbitrary o-minimal structure. The main example of such a group is
obtained by taking a real closed field R = (R,<,+, · ) as o-minimal structure and
a group of the form H(R) where H is an algebraic group defined over the field R.
For the converse, in a famous paper on groups definable in o-minimal structures
[22], Peterzil, Pillay and Starchenko obtain an o-minimal analogue of Cherlin’s
conjecture (Fact 2.8): suppose that G is a nonabelian group definable in an o-
minimal structure, and that G has no proper nontrivial normal (G, · )-definable
subgroup. Then G is isomorphic to a semialgebraic subgroup of finite index of a
group of the form H(R), where R is a real closed field and H is a simple algebraic
group over R.
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For nonnecessarily simple groups, a result of Otero, Peterzil and Pillay [21]
shows that, if a group G is definable in an o-minimal expansion R of a real closed
field (R,<,+, · ), and if G is definably connected, then G/Z(G) is definably iso-
morphic to a definable subgroup of GLn(R) for an integer n (Fact 5.1).

Moreover, Peterzil, Pillay and Starchenko [22] show that, in an arbitrary o-
minimal structure, any centerless definably connected definable group is definably
isomorphic to a direct product of definable subgroups of GLn1

(R1), . . .GLnk
(Rk)

for definable real closed fields R1, . . . , Rk and integers n1, . . . , nk (Fact 2.15).

1.1. Main Theorem. In this paper, we work inside a fixed arbitrary o-minimal
structure M = (M,<, · · · ), and definable means M-definable (with parameters).
The aim of this paper is to unify the previous two theorems, namely Facts 5.1 and
2.15. First it is important to note that the centerless hypothesis is fully used in
the step 3.2.1 of [22]. Our strategy is the following: rather than wishing to find an
alternative proof, we will use intensively Facts 5.1 and 2.15, and as a result, we
will prove the following.

Main Theorem 5.15. Let G be a definably connected definable group. Then
G/Z(G) is the direct product of definable groups H1, . . . , Hk such that for every
i ∈ {1, . . . , k} there are a definable real closed field Ri, an integer ni and a definable
isomorphism between Hi and a definable subgroup of GLni

(Ri).

The proof uses numerous results on groups definable in o-minimal structures,
such as Facts 2.8, 2.15 and 5.1 above. The main new ingredients come from the
theory of groups of finite Morley rank, namely pseudo-tori, UR-groups for a de-
finable real closed field R, and U -groups (Definitions 3.1, 3.9 and 3.23). Thanks
to these notions, we can provide two results on the structure of definable groups,
which are important for the main result.

Theorem 3.29. Any nilpotent definably connected definable group G is the central
product of a pseudo-torus by a U -group.

We recall that a group is said to be definably simple if it has no proper
non-trivial normal definable subgroup.

Theorem 4.9. Let G be a definably connected definable group. Then G has a
normal U -group U such that G/U is a central extension of a direct product of
definably simple definable groups.

We note that, in Theorem 5.15, the subgroups Hi of GLni
(Ri) are not neces-

sarily semialgebraic. Indeed, such a subgroup Hi is not necessarily semialgebraic
and, even, it may not be abstractly isomorphic to a semialgebraic group (see the
introduction of [23] for a counter-example). However, by using the analysis of lin-
ear groups in [24], we may obtain a structure result, closer to semialgebraicity and
Fact 2.8 .
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Corollary 5.17. If G is a definably connected definable group, then G′Z(G)/Z(G)
is a direct product of definably connected definable groups H1, . . . , Hk such that
for every i ∈ {1, . . . , k} there is a definable real closed field Ri and a definable
isomorphism between Hi and a semialgebraic linear group over Ri.

1.2. Levi decomposition. In the last section, we show that, thanks to our main
result, we may generalize the Levi decomposition, obtained by Conversano and
Pillay [6] for groups definable in an o-minimal expansion of a real closed field, to
groups definable in an arbitrary o-minimal structure.

There is a difficulty with semisimple groups. Indeed, a semisimple group is
defined to be a definably connected definable group with no infinite abelian normal
subgroup (Definition 6.1). However, Conversano exhibited a definably connected
definable group G with no semisimple subgroup S such that G = RS for a normal
solvable subgroup R. In order to remedy to this problem, Conversano and Pillay
introduced in [6] ind-definable semisimple subgroups, and they provide the Levi
decomposition with these subgroups (Fact 6.3).

In this paper, we introduce quasi-semisimple groups as definably connected
definable groups with no decomposition of the form RH for a normal definable
solvable subgroup R and a proper definable subgroup H (Definition 6.1). For such
a group S, the derived subgroup is perfect and S/Z(S) is semisimple. Then we
provide a Levi decomposition for any definably connected definable group (Theo-
rem 6.6 below). Furthermore, we show that if G is any definably connected group
definable in an o-minimal expansion of a real closed field, its maximal ind-definable
semisimple subgroups are precisely the derived subgroups of its maximal quasi-
semisimple subgroups (Corollary 6.7).

Theorem 6.6. Let G be a definably connected definable group. Then G has a
maximal quasi-semisimple subgroup S, unique up to conjugacy in G. Moreover,
there is a normal solvable definable subgroup R such that G = RS and G ∩ S ≤
Z(S).

The organization of this paper is as follows. In §2, we recall known results and
give some useful corollaries. The purpose of §3 is the analysis of nilpotent groups
(Theorem 3.29). In particular, we introduce pseudo-tori, UR-groups and U -groups,
which are fundamental notions for this paper. In §4, we study the group actions
on a solvable group, and then we obtain a structure theorem for any definably
connected definable group (Theorem 4.9). In §5, we prove the main result of this
paper (Theorem 5.15). In §6, we apply the main result to Levi decomposition
(Theorem 6.6).

2. Preliminaries

The basic reference for o-minimal structures is [29] (see [19] for a survey on
groups definable in an o-minimal structure).
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By [11], in an arbitrary o-minimal structure, every interpretable group is
definably isomorphic to a definable one. Actually, any group definable in an o-
minimal structure eliminates imaginaries. More precisely, the following result is
due to M. Edmundo.

Fact 2.1. [10, Theorem 7.2] Let G be a definable group, and let {T (x) : x ∈ X} be
a definable family of non-empty definable subsets of G. Then there is a definable
function t : X → G such that for all x, y ∈ X we have t(x) ∈ T (x) and if
T (x) = T (y) then t(x) = t(y).

2.1. Nilpotent definable groups. We recall two general results on nilpotent
groups definable in an o-minimal structure, and more generally. Any group de-
finable in an o-minimal structure N satisfies the descending chain condition on
N -definable subgroups [27, Remark 2.13 (ii)]. In particular, it is an Mc-group,
that is a group with descending chain condition on centralizers. Thus, by the fol-
lowing fact, any nilpotent group definable in an o-minimal structure has infinite
center.

For every group G, we denote by Z0(G) = 1 the trivial group, and we define
Zi(G) for each integer i by Zi+1(G)/Zi(G) = Z(G/Zi(G)).

Fact 2.2. [12, Lemma 3.7.10] Any infinite nilpotent Mc-group has infinite center.
More generally, if a group G has a finite subset X such that Z(G) = CG(X),

and if H is a normal subgroup such that H ∩ Zk(G) is infinite for an integer k,
then Z(G) ∩H is infinite.

Proof. There is a smallest integer j such that B = Zj+1(G) ∩H is infinite. Then
[g,B] is contained in the finite subgroup Zj(G)∩H for each g ∈ G, and the index
of CB(g) in B is finite. Thus B/CB(X) is finite, and Z(G) ∩B has finite index in
B, so Z(G) ∩H = Z(G) ∩B is infinite. �

We note that, if we consider an algebraically closed field K of characteristic
p > 0 and a subgroup H of finite index in the center of G = UT3(K) and proper
in Z(G), then G/H is an infinite nilpotent group such that Z(G/H) = Z(G)/H
is finite.

Moreover, if M is a maximal abelian subgroup of G and A a complement
to Z(G) in M , then the index of AH in NG(AH) = M is finite whereas AH has
infinite index in G.

However, by Fact 2.3, in a nilpotent group G definable in an o-minimal struc-
ture, any definable subgroup of infinite index has infinite index in its normalizer.

Fact 2.3. (see [28, Proposition 1.12] for a special case) Let H be a subgroup of
infinite index in a nilpotent group G. Let X = {x ∈ G | [H : H ∩Hx] < +∞} and
K = ∩x∈XHx. If K has finite index in H, then H has infinite index in NG(H).

Proof. We note that K is a normal subgroup of NG(H) and that K ≤ H ≤
NG(H) ⊆ X ⊆ NG(K). We show that the index of K in NG(K) is infinite.
Otherwise H has finite index in NG(K), so NG(NG(K)) is contained in X ⊆
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NG(K). Since G is nilpotent, we obtain NG(K) = G and H has finite index in G,
contradicting our hypothesis. Thus K has infinite index in NG(K).

Since K has finite index in H , the subgroup H/K is finite in the infinite
nilpotent group NG(K)/K. Thus it is sufficient to show that any finite subgroup
F of an infinite nilpotent group N has an infinite centralizer CN (F ). We proceed
by induction on the nilpotence class of N . We may assume that Z(N) is finite.
Then, by induction hypothesis, C/Z(N) = CN/Z(N)(FZ(N)/Z(N)) is infinite.
But for each f ∈ F , the map uf : C → Z(N) defined by uf(x) = [f, x] is a group
homomorphism with kernel CC(f). Since Z(N) and F are finite, C/CC(F ) is finite
too. Hence CC(F ) ≤ CN (F ) is infinite, as desired. �

2.2. Connected component. For every definable group G, we denote by G◦ the
definably connected component (of the identity) in G. It is the smallest definable
subgroup of G of finite index in G [27, Proposition 2.12]. A group G is said to be
definably connected if G = G◦.

In this section, we show that for any definable group G, this subgroup G◦

is definable in the pure group (G, · ), and has no proper subgroup of finite index:
every subgroup of finite index is definable and G◦ is the smallest subgroup of finite
index (Proposition 2.11 below). In particular, the definably connected component
of a definable group is independant from the language.

The proof of Proposition 2.11 requires several facts.
By [27], any definable group G has a largest definably connected definable

solvable normal subgroup R(G), called the solvable radical of G. However, another
definition of solvable radical is used in [1].

Fact 2.4. [1, Lemma 4.5] Let G be a definable group. The subgroup generated by
all normal solvable subgroups of G is definable and solvable.

Moreover, by [7], any definable group G has a largest nilpotent normal sub-
group F (G), and this subgroup is definable by [10, Lemma 6.7].

For each group G, we denote by G′ = [G,G] the derived subgroup. We recall
that, for a definable group G, this subgroup is not necessarily definable (Conver-
sano exhibits a counter-example [5, Example 3.1.7]). However, Baro, Jaligot and
Otero [1] show its definability for a large class of definable groups.

The derived subgroup of a solvable definably connected definable group has
been studied in [10, Theorem 6.9], and a precision is given in [1, Proposition 5.5].

Fact 2.5. Let G be a solvable definably connected definable group. Then the fol-
lowing two conditions are satisfied:

• [10, Theorem 6.9] its derived subgroup G′ is contained in F (G);
• [1, Proposition 5.5] the group G/F (G)◦ is abelian and divisible.

Fact 2.6 describes the structure of nilpotent groups, where a group G is the
central product of two subgroups H and K if G = HK and [h, k] = 1 for each
(h, k) ∈ H ×K. We denote this by G = H ∗K.

Fact 2.6. Let G be a nilpotent definable group.
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(1) [10, Theorem 6.10] and [1, Lemma 3.10 (c)] G◦ is divisible and G has a
finite characteristic subgroup F such that G = G◦ ∗ F .

(2) [31, Theorem 4.12 (Chernikov)] and [8, Corollary 1.5.12] The torsion sub-
group of G◦ is central in G.

Corollary 2.7. Let G be a nilpotent definably connected definable group. Then
any definable subgroup of G containing Z(G) is definably connected.

Proof. Since Z(G) contains the torsion part ofG by Fact 2.6 (2), the groupG/Z(G)
is torsion-free. In particular, each definable subgroup of G/Z(G) is definably con-
nected. But G is divisible by Fact 2.6 (1), so the torsion part of Z(G) is divisible,
and Fact 2.6 (1) applied with Z(G) shows that Z(G) is definably connected. Hence,
for any definable subgroup H/Z(G) of G/Z(G), the subgroup Z(G) is contained
in H◦, and we have H = H◦Z(G) = H◦. �

The following result is a very important theorem for groups definable in an
o-minimal structure. It is used in the proof of Proposition 2.11 below.

Fact 2.8. [22, Theorem 4.1] Let G be an infinite (G, · )-definably connected de-
finable group. Assume G has no nontrivial abelian normal subgroup. Then G is
the direct product of (G, · )-definable subgroups H1, . . . , Hk such that for every
i ∈ {1, . . . , k} there is a definable real closed field Ri and a definable isomorphism
between Hi and a semialgebraic subgroup of GLni

(Ri). Moreover, Hi is (Hi, · )-
definably simple and H◦

i is definably simple.

Fact 2.9. [24, §6, Proof of Theorem 6.1 from Proposition 6.8] Let G be a semial-
gebraic, semialgebraically simple group over a real closed field R. Suppose that G
is not of compact type. Then there exists a simply connected almost R-simple al-
gebraic group G2 defined over R and a surjective homomorphism πR : G2(R) → G
defined over R with finite kernel.

Corollary 2.10. Let L be a definable definably simple group. Let n be a positive
integer and X = {xn | x ∈ L}. Then L = XX.

Proof. If L is of compact type, then L is divisible by [20], so L = X in this case and
we may assume that L is not of compact type. By Fact 2.8, there is a definable
real closed field R and a definable isomorphism between L and a semialgebraic
subgroup of GLn(R). By Fact 2.9, there exists a simply connected almost R-
simple algebraic group G2 defined overR and a definable surjective homomorphism
πR : G2(R) → L with finite kernel.

We consider x ∈ L and g ∈ G2(R) such that πR(g) = x. Then g ∈ G2(R)
is the product of a semisimple element s ∈ G2(R) and a unipotent element u ∈
G2(R). But s is contained in a maximal algebraic torus T of G2(R) and u is
contained in a unipotent algebraic subgroup U of G2(R). In particular T and U
are divisible, hence x belongs to πR(T )πR(U) ⊆ XX , as desired. �

Proposition 2.11. Let G be definable group. Then G◦ is definable in the pure
group (G, · ). Moreover, G◦ has no proper subgroup of finite index.
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Proof. Every (G, · )-definable subgroup of G is definable, so G has a smallest
(G, · )-definable subgroup of finite index. In particular, this subgroup is definable,
contains G◦ as a subgroup of finite index, and it has no proper (G, · )-definable
subgroup of finite index. So we may assume that G is (G, · )-definably connected,
and we have just to prove that G has no proper subgroup of finite index.

Let N be a subgroup of G of finite index n. We show that N = G. We may
assume that N is contained in G◦. Moreover, since the index of N in G is finite,
N contains a G-normal subgroup of finite index, and we may assume that N is
normal in G. Let X = {xn | x ∈ G}. In particular, X is a definable subset of N .

We show that XX contains R(G). By Fact 2.6 (1), the definable subgroup
F (G)◦ is divisible, so it is contained in X . By Fact 2.5, the quotient group
R(G)/F (G)◦ is divisible, so XF (G)◦ ⊆ XX contains R(G).

Let Z be the subgroup of G◦ generated by all its normal solvable subgroups.
It is definable and solvable (Fact 2.4), so Z/R(G) is finite. In particular, G◦/Z
has no non-trivial abelian normal subgroup, and Fact 2.8 implies that G◦/Z is
the direct product of definable subgroups H1/Z, . . . , Hk/Z such that for every
i ∈ {1, . . . , k} there is a definable real closed field Ri and a definable isomorphism
fi between Hi/Z and a semialgebraic subgroup Li of GLni

(Ri), and such that
H◦

i Z/Z is definably simple. Moreover, since G◦/Z is definably connected, Hi/Z is
definably connected for each i, so Li ≃ Hi/Z is definably simple. Now Corollary
2.10 shows that Hi/Z is contained in XXZ/Z for each i. Thus eachHi is contained
in XXZ, and we obtain N ≤ G◦ ⊆ XXZ.

Since XX ⊆ N contains R(G) and since Z/R(G) is finite, there is a finite
subset W of Z ∩N such that Z ∩N = WR(G). Therefore we obtain

N = XXZ ∩N = XX(Z ∩N) = XXWR(G) ⊆ XXWXX

So N = XXWXX is (G, · )-definable, and N = G. �

2.3. Definable fields. The following fundamental results are due to Pillay (Facts
2.12 and 2.13), and Peterzil and Steinhorn (Fact 2.14). They are crucial for us.

Fact 2.12. [27, Corollary 2.15 (i)] Any infinite definable group has an infinite
definable abelian subgroup.

Fact 2.13. [27, Theorem 3.9 and Proposition 3.11] Let K be an infinite definable
field. Then K is real closed or algebraically closed. It is real closed if and only if
its dimension is 1.

Fact 2.14. [26, Theorem 4.1] Let K = (K,+, 0, · ) be an infinite definable ring
without zero divisors. Then K is a division ring and there is a one-dimensional
definable subring R of K which is a real closed field such that K is either R,
R(

√
−1), or the ring of quaternions over R.

Lemma 2.19 and Proposition 2.20 are very useful for this paper. The proof
of Proposition 2.20 is based on the following very important fact (Fact 2.15), and
on the study of abelian definable subgroups of the general linear group over a
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definable real closed field (Facts 2.16 and 2.17). Moreover, we note that the proof
of Fact 2.15 s based on the theory of nonorthogonality from [22].

Fact 2.15. [22, Theorems 3.1 and 3.2] Let G be a definably connected definable
centerless group. Then G is definably isomorphic to a direct product H1×· · ·×Hk,
where, for each i = 1, . . . , k, there is a definable real closed field Ri such that Hi

is a definable subgroup of GLni
(Ri) for each i = 1, . . . , k.

Fact 2.16. Let G be a commutative definably connected definable subgroup of
GLn(R) where R is a definable real closed field. Then the following three conditions
hold:

(1) [24, Fact 3.1] if G is semialgebraic, it is semialgebraically isomorphic to a
group of the form SO2(R)m × (R∗

>0)
l × (R+)

k;
(2) [24, Lemma 3.9] every definably connected definable subgroup H of G has

a definable complement in G;
(3) [24, Special case of Proposition 3.10] G is definably isomorphic to a linear

semialgebraic group over R.

Fact 2.17. [24, Lemma 3.4 (ii)] Let R be a definable real closed field, and let G be
a definable subgroup of GLn(R) for an integer n. If G is a definable subgroup of a
semialgebraic group of the form (R+)

k, then G is semialgebraic.

Corollary 2.18. Let R be a definable real closed field, and let G be a definable
subgroup of GLn(R) for an integer n. If G is a definable subgroup of a semialgebraic
unipotent group U , then G is semialgebraic.

Proof. We proceed by induction on the dimension of G. Since U is unipotent, it
is torsion-free and its definable subgroups are definably connected. Let M be a
maximal proper definable subgroup of G. By induction hypothesis, M is semial-
gebraic. Then G/M is a definable subgroup of the semialgebraic unipotent group
NU (M)/M . Thus, if M is non-trivial, G/M is semialgebraic by induction hypoth-
esis, so G is semialgebraic. Hence we may assume that M is trivial. Now G is
abelian (Fact 2.12), and it is a definable subgroup of Z(CU (G)). Since Z(CU (G))
is an abelian semialgebraic unipotent group, it is of the form (R+)

k, and G is
semialgebraic by Fact 2.17. �

Lemma 2.19. Let R and S be two definable real closed fields. If the groups R+

and S+ are definably isomorphic, then the fields R and S are definably isomorphic.

Proof. Let f : R+ → S+ be a definable isomorphism. In particular f(1) is non-zero
and we may consider the map g : R → S defined by g(x) = f(x)f(1)−1. Then g is
a definable isomorphism from R+ and S+ such that g(1) = 1.

Now, for each α ∈ R, the subset Aα = {x ∈ R | g(xα) = g(x)g(α)} of R is a
definable subgroup of R+ containing 1. So we obtain Aα = R for each α ∈ R and
g is a field isomorphism. �

Proposition 2.20. Let R = (R,+, · ) and S = (S,⊕, ∗) be two definable real
closed fields. If there is an infinite definable R-linear group H definably isomorphic
to an S -linear group, then the fields R and S are definably isomorphic.
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Proof. We may assume that H has no proper infinite definable subgroup. In par-
ticular, H is abelian (Fact 2.12). Then H is definably isomorphic either to SO2(R)
or to R∗

>0 or to R+ (Fact 2.16 (1) and (3)). By the same way and by Lemma 2.19,
we may assume that H is definably isomorphic either to SO2(S) or to S∗

>0.

(1) If H is definably isomorphic to SO2(R), then it has torsion and it is de-
finably isomorphic to SO2(S). We consider the semi-direct product G =
(R2

+ × S2
+)⋊H where H ≃ SO2(R) acts R-linearly on R2

+ and such that

H ≃ SO2(S) acts S -linearly on S2
+. In particular, G is centerless and

it has no decomposition H = A × B as a direct product of two proper
subgroups. By Fact 2.15, there is a definable real closed field T = (T, · · · )
and a definably linear group K ≤ GLn(T ) definably isomorphic to G.

We note that the derived subgroupG′ of G = (R2
+×S2

+)⋊H is definable,

definably connected, and definably isomorphic to R2
+ × S2

+.
Let L be the smallest semialgebraic subgroup of GLn(T ) containing K.

This subgroup L exists by descending chain condition on semialgebraic
subgroups of GLn(T ). Since K is definably connected, Proposition 2.11
shows that K has no proper subgroup of finite index, so L is semialge-
braically connected. Moreover, since K ≃ G is 2-solvable, L is 2-solvable
too (see [10, Lemma 6.7]). Now L′ is contained in a semialgebraic unipo-
tent group U (see [2, Theorem 10.6 (1)]), and since K ′ ≃ G′ is a definable
subgroup of L′ ≤ U , the subgroup K ′ is semialgebraic (Corollary 2.18).
Thus K ′ ≤ U is a semialgebraic unipotent abelian group, and K ′ is semi-
algebraically isomorphic to Tm

+ for an integer m. But K ′ is definably iso-
morphic to G′ ≃ R2

+×S2
+. Hence the groups R+, S+ and T+ are definably

isomorphic, so the fields R and S are definably isomorphic by Lemma
2.19.

(2) Hence we may assume thatH is torsion-free. If it is definably isomorphic to
R∗

>0 and to S∗

>0, we consider the semi-direct product G = (R+ ×S+)⋊H
where H ≃ R∗

>0 acts R-linearly on R+ and such that H ≃ S∗

>0 acts S -
linearly on S+. As in the previous case, Fact 2.15 provides a definable
real closed field T = (T, · · · ) and a definably linear group K ≤ GLn(T )
definably isomorphic toG, and we conclude that the groupsR+, S+ and T+

are definably isomorphic, so the fields R and S are definably isomorphic
by Lemma 2.19.

(3) Thus we may assume that H is not definably isomorphic to R∗

>0, and that
H , R+, and S∗

>0 are definably isomorphic. The groupH×R∗

>0 ≃ R+×R∗

>0

acts R-linearly on R+ ×R+ where the action is defined by (a, t) · (x, y) =
(tx, atx+ ty). In other words, we consider the natural action of the abelian
group

H ×R∗

>0 ≃
{(

t ta
0 t

)

| t ∈ R>0, a ∈ R

}
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on the group

R+ ×R+ ≃
{(

y
x

)

| (x, y) ∈ R2

}

Thus, the semi-direct product (R+ × R+)⋊ (H ×R∗

>0) is centerless, and
has no decomposition as a direct product of two proper subgroups. Then
we consider the semi-direct product G = ((R+ ×R+)× S+)⋊ (H ×R∗

>0)
where H×R∗

>0 acts as above on R+×R+, the group R∗

>0 acts trivially on
S+, and H ≃ S∗

>0 acts S -linearly on S+. Again G is centerless and has no
decomposition as a direct product of two proper subgroups, so Fact 2.15
provides a definable real closed field T = (T, · · · ) and a definably linear
group K ≤ GLn(T ) definably isomorphic to G. As above we conclude that
the groups R+, S+ and T+ are definably isomorphic, so the fields R and
S are definably isomorphic by Lemma 2.19.

�

2.4. The structure of solvable groups by Edmundo. Edmundo gives in [10]
a precise description of the structure of solvable groups. His main results, namely
Facts 2.26 and 2.27, are very useful for a key result of the analysis of nilpotent
groups (Proposition 3.22). Before stating it, we specify the terminology.

In [26], Peterzil and Steinhorn introduced the notion of definable compactness
in o-minimal structures.

Definition 2.21. Let G be a definable group. We say that G is definably compact
if for every definable continuous embedding σ : (a, b) ⊆ M → G, where −∞ ≤ a <
b ≤ +∞, there are c, d ∈ G such that limx→a+ σ(x) = c and limx→b− σ(x) = d,
where the limits are taken with respect to the topology on G.

We recall that a semisimple group is defined to be a definably connected
definable group with no infinite abelian normal subgroup (Definition 6.1).

Fact 2.22. [10, Corollary 4.8] (see also [25, Corollary 5.4]) Let G be a definably
connected definably compact definable group. Then G is either abelian or G/Z(G)
is a definably semisimple definable group. In particular, if G is solvable then it is
abelian.

Fact 2.23. [10, Lemma 3.14] Let A be a normal definable subgroup of a definable
group U . Then U is definably compact if and only if A and U/A are definably
compact.

Fact 2.24. [26, Proof of Theorem 4.1] (see also Fact 2.14) Let K = (K,+, 0, · ) be
an infinite definable ring without zero divisors. Then K is not definably compact.

Any one dimensional definable and definably connected torsion-free group
(A,+) is abelian, and has a definable expansion (A,+, <) to an o-minimal ordered
abelian group. Miller and Starchenko [18] characterized the groups of this form
which have definable expansions to real closed fields (A,+, · , <), in terms of a



LINEARITY OF GROUPS IN O-MINIMAL STRUCTURES 11

“growth dichotomy”; for our purposes it will suffice to take their highly nontrivial
result as the definition (for more details, see the introduction of [10], p. 104).

Fact 2.25. (Theorem/Definition) [18] A definable group (G,+) is linearly bounded
if and only if it is one dimensional, torsion-free, and there is no expansion of G
to a real closed field (G,+, · ) with · definable.

In Edmundo’s structure theorem for definable, definably connected solvable
groups (Fact 2.26 below) a strengthening of linear boundedness occurs, which
he refers to as semi-boundedness. For the sake of accuracy in quoting Edmundo’s
results, we will use this term where it is appropriate, but it suffices for our purposes
to know that such groups are linearly bounded in the sense just mentioned.

We quote Edmundo’s structure theory with some minor details not needed
later suppressed. We will apply this only in the abelian case.

Fact 2.26. [10, Theorems 5.8] Let U be a definably connected definable solvable
group. Then U has a definable normal subgroup U0 such that

• U/U0 is definably compact
• U0 = K × V ×W with K definably compact, V a product of semi-bounded
groups, and W a product of groups Wi which are definable in o-minimal
expansions Si of real closed fields Si, and have no Si-definably compact
parts.

Fact 2.27. [10, Theorems 5.10] Let S = (S,+, · , <, · · · ) be an o-minimal ex-
pansion of a real closed field and let W be an S-definable solvable group with no
S-definably compact part. Then W = W∗ × X where W∗ is a product of linearly
bounded groups and X is a group whose center Z(X) has a definable subgroup Z
with the following properties.

• Z(X)/Z is a direct product of linearly bounded groups.
• There is a chain of definable subgroups 1 < Z1 < · · · < Zm = Z such that
each quotient Zi/Zi−1 is definably isomorphic to (S,+).

Furthermore, X/Z(X) is definably S-linear1.

Remarks. A key ingredient of Edmundo’s structure theory is the following, coupled
with a number of results which give complements to one dimensional subgroups
in certain cases. In the abelian case one can simplify the argument very slightly
by omitting any discussion of normality, and the quotient X/Z(X), but the ideas
are the same.

Fact 2.28. ([26, Lemma 1.2] or [10, Theorem 5.7]) Let G be a definable group
which is not definably compact. Then G has a one-dimensional torsion-free ordered
definable subgroup.

1Not used, but for the sake of clarity worth keeping
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3. Nilpotent groups

The structure of solvable groups by Edmundo [10] (see §2.4) provides valuable
information on nilpotent groups definable in an o-minimal structure. By using
these results together with methods from groups of finite Morley rank, we obtain
a new decomposition of nilpotent groups based on pseudo-tori and UR-groups
(Definitions 3.1 and 3.9, Theorem 3.29).

The structure of nilpotent groups in this new language is very effective for
the study of group actions in §4.

3.1. Pseudo-tori. Cherlin defined in [4] a good torus and a decent torus as ana-
logues of an algebraic torus for groups of finite Morley rank. These groups are
defined from torsion, and a more general notion of a torus was introduced in [16]:
a pseudo-torus whose definition for the finite Morley rank context is very close to
the following definition.

Definition 3.1. A pseudo-torus is a definably connected nilpotent definable group
T such that no definable quotient group T/N is definably isomorphic to the addi-
tive group R+ of a definable real closed field R.

Remark 3.2. Any definable quotient T/N of a pseudo-torus T is a pseudo-torus.

The following result gives examples of pseudo-tori, which encompasse defin-
ably compact groups, linearly bounded groups and semi-bounded groups (see §2.4).
It will be useful for the proof of Proposition 3.22.

Lemma 3.3. Let G be a solvable definably connected definable group. Suppose that
the group G satisfies one of the following three conditions:

• G is definably compact;
• G is linearly bounded;
• G is semi-bounded.

Then G is a pseudo-torus.

Proof. If G is definably compact, then it is abelian by Fact 2.22. Now, since any
definable quotient of G is definably compact (Fact 2.23), Fact 2.24 shows that G
is a pseudo-torus.

If the groupG is linearly bounded or semi-bounded, thenG is one dimensional
and torsion-free (Fact 2.25), so G is abelian (Fact 2.12) and any definable quotient
group G/N of G is either trivial or definably isomorphic to G. Since G is not
definably isomorphic to the additive group of a definable real closed field (Fact
2.25), it is a pseudo-torus. �

We start our study of pseudo-tori. The following result is used in the proof
of Lemma 3.5.

Fact 3.4. [10, Corollary 7.3 (1)] (see also [25, Theorem 1.1] and Fact 2.14) Let
A and B be two definable abelian groups. If there is an infinite definable family of
definable homomorphisms from A into B, then there is a definable real closed field
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whose additive group is definably isomorphic to a definable subgroup of B and a
quotient of definable subgroups of A.

Lemma 3.5. Let T be a pseudo-torus and B be a nilpotent definable group. Then
any definable family A of homomorphisms from T to B is finite.

Proof. We proceed by induction on the dimension of B. Since for each α ∈ A ,
the image Imα ≃ T/Kerα of α is definably connected, we have Imα ≤ B◦ and
we may assume that B is definably connected. We assume toward a contradiction
that A is infinite. In particular, B is infinite.

We assume toward a contradiction that B has a proper infinite normal de-
finable subgroup A. By Fact 2.2, we may assume that A is central in B. For each
α ∈ A , we consider α : T → B/A defined by α(t) = α(t)A. Then the definable
family {α | α ∈ A } is finite by induction hypothesis, and there exists α ∈ A such

that the definable family B = {β ∈ A | β = α} is infinite. For each β ∈ B, the
map uβ : T → A defined by uβ(t) = β(t)α(t)−1 is a definable group homomor-
phism, and since B is infinite, the definable family {uβ | β ∈ B} is infinite too,
contradicting our induction hypothesis. Hence B has no proper infinite normal de-
finable subgroup. In particular B is abelian (Fact 2.2), so it has no proper infinite
definable subgroup.

Let K be the intersection of the subgroups Kerα for α ∈ A . Since T/Kerα ≃
Imα ≤ B is abelian for each non-zero element α ∈ A , the quotient group T/K is
abelian. For each α ∈ A , we consider α̃ : T/K → B defined by α̃(tK) = α(t). Since
A is infinite, A = {α̃ | α ∈ A } is infinite too. Then by Fact 3.4 there is a definable
subgroup B0 of B such that B0 is definably isomorphic to the additive group R+ of
a definable real closed field R. In particular, B0 is infinite and we obtain B = B0 by
the previous paragraph. But A is infinite, so there is a non-zero element α̃ ∈ A ,
and its image Im α̃ = Imα ≃ T/Kerα is definably connected. Hence Imα is
an infinite definable subgroup of B and α is a surjective homomorphism by the
previous paragraph. Thus we have T/Kerα ≃ Imα = B ≃ R+, contradicting that
T is a pseudo-torus and that R is real closed, so A is finite. �

Corollary 3.6. Let T be a pseudo-torus and G be a definably connected definable
group acting definably on T . Then G centralizes T . In particular, T is abelian.

Proof. By Lemma 3.5, the quotient group G/CG(T ) is finite, and since G is de-
finably connected, G centralizes T . In particular, the case where G = T acts by
conjugation on T shows that T is abelian. �

Proposition 3.7. Any nilpotent definable group G has a unique maximal pseudo-
torus T (G). In particular, any pseudo-torus of G is central in G.

Proof. We proceed by induction on the dimension of G. We may assume that G
is definably connected. Let S and T be two maximal pseudo-tori of G.

We show that S and T are central in G. If NG(T ) < G, we have T =
T (NG(T )) by induction hypothesis, therefore T is a definably characteristic sub-
group of NG(T ) and we obtain NG(NG(T )) = NG(T ). But G is nilpotent, hence
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we have NG(T ) = G contradicting NG(T ) < G. This proves that T is normal in
G, and T is central in G by Corollary 3.6. In the same way, S is central in G.

We assume toward a contradiction that ST is not a pseudo-torus. Then ST
has a definable subgroupN such that ST/N is definably isomorphic to the additive
group R+ of a definable real closed field R. In particular, the quotient group TS/N
is torsion-free and it has dimension one by Fact 2.13. If T is not contained in N ,
we have TS = TN and T/(T ∩ N) is definably isomorphic to TS/N ≃ R+,
contradicting that T is a pseudo-torus. Thus T is contained in N , and in the
same way, S is contained in N , contradicting N < ST . This proves that ST is a
pseudo-torus, and that T (G) = S = T is well defined. �

Proposition 3.8. Let G be a nilpotent definable group, and N be a normal defin-
able subgroup of G. Then T (G/N) = T (G)N/N .

Proof. We proceed by induction on the dimension of G. Since a definable quotient
of a pseudo-torus is a pseudo-torus, T (G/N) contains T (G)N/N and we may
assume that G/N = T (G/N) is a pseudo-torus.

Let T be a minimal definable subgroup of G among the ones satisfying G =
TN . Since G/N is a pseudo-torus, G/N is definably connected and we have G =
T ◦N . Thus T is definably connected by minimality of T .

We assume toward a contradiction that T is not a pseudo-torus. Then T
has a definable quotient T/M definably isomorphic to R+ for a real closed field
R. In particular, T/M is torsion-free and has dimension 1 by Fact 2.13. Since
(T ∩MN)/M is a definable subgroup of T/M , it is either equal to T/M or trivial,
so we have either T ∩MN = M or T ≤ MN . In the first case we have

(G/N)/(MN/N) ≃ G/MN = TN/MN ≃ T/M ≃ R+

contradicting that G/N is a pseudo-torus. In the second case we have G = TN =
MN , contradicting the minimality of T . Hence T is a pseudo-torus, and we obtain
T ≤ T (G) and G = T (G)N . �

3.2. UR-groups. Burdges introduced U0,r-groups in [3] as a concept of unipotence
for groups of finite Morley rank. This notion is very effective for the study of groups
of finite Morley rank. Another analogue of unipotent algebraic groups, namely the
homogeneous U0,r-groups, was proposed in [13] in order to remedy to a weakness
of U0,r-groups, since they are not necessarily preserved by passage to definable
subgroups. Later, a more precise unipotence notion was introduced in [14, §3.2],
very close to Definitions 3.9 and 3.15. This last notion, together with pseudo-tori
and the homogeneity of [13], is a crucial tool for some analysis as [14].

We note that N is a normal subgroup of G in the following definition (Fact
2.3).

Definition 3.9. Let R be a definable real closed field. A UR-group is a nilpo-
tent definable group G such that, for every maximal proper definably connected
definable subgroup N , the quotient group G/N is definably isomorphic to R+.

Remark 3.10. Any UR-group is definably connected.
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Proposition 3.11. Let R be a definable real closed field, and G be a nilpotent
definable group. Then any family of UR-subgroups of G generates a UR-subgroup.

In particular, G has a unique maximal UR-subgroup.

Proof. We have just to show that any non-necessarily definable subgroup H of G
contains a unique maximal UR-subgroup. Indeed, in this case, if H0 is a subgroup
generated by a family of UR-subgroups, the unique maximal UR-subgroup of H0

is necessarily H0, and we are done.
We proceed by induction on the dimension of G. Since any UR-group is

definably connected, we may assume that G is definably connected. Let U and V
be two maximal UR-subgroups of H .

We show that U is normal inH . We may assume that U is not normal inG. By
induction hypothesis, U is the unique maximal UR-subgroup ofNH(U) ≤ NG(U) <
G, therefore U is normal in NH(NH(U)) and we obtain NH(NH(U)) = NH(U).
But H is nilpotent, hence NH(U) = H and U is normal in H . In particular, UV
is a definably connected definable subgroup of H .

We may assume that UV is infinite, therefore UV has a maximal proper
definably connected definable subgroup N . If UN = UV , we have U/(U ∩ N) ≃
UV/N and by maximality of N in UV , the group (U ∩N)◦ is a maximal proper
definably connected definable subgroup of U . Since U is a UR-group, the group
U/(U ∩N)◦ ≃ R+ is torsion-free and U ∩N is definably connected, so we obtain
UV/N ≃ U/(U ∩N) ≃ R+. In the same way, if V N = UV the groups UV/N and
R+ are definably isomorphic. But N is proper in UV , so we have either U � N or
V � N , and by maximality of N we have either UN = UV or V N = UV . Hence
UV/N is definably isomorphic to R+, and UV is a UR-group. Now by maximality
of U and V , we obtain UV = U = V = UR(H), as desired. �

Thus we may define a radical UR( · ) for each definable real closed field R.

Definition 3.12. Let R be a definable real closed field. For each definable group
G, we denote by UR(G) the unique maximal UR-subgroup of F (G).

Lemma 3.13. Let G be a definable group with a normal definable subgroup N such
that G/N is definably isomorphic to R+ for a real closed field R. Then N ∩G◦ is
definably connected and G = UN for an abelian UR-subgroup U .

Proof. Since G/N ≃ R+ is torsion-free, it is definably connected and G/N is
definably isomorphic to G◦/(N ∩ G◦). Therefore the torsion part of G◦/N◦ is
(N ∩G◦)/N◦, so it is finite, and Fact 2.6 (1) gives N ∩G◦ = N◦.

Let U be a minimal definable subgroup of G among the ones satisfying U �
N . For any u ∈ U \N the subgroup Z(CU (u)) is definable, abelian and contains
u, so Z(CU (u)) = U by minimality of U , and U is abelian. Since G/N ≃ R+ is
torsion-free, and since its dimension is 1 (Fact 2.13), we have G = UN .

We show that U is a UR-group. Since G/N ≃ R+ is definably connected, we
have G = U◦N , and U is definably connected by minimality of U . Now the first
paragraph applied with U and U/(U ∩ N) ≃ R+ shows that U ∩ N is definably
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connected. But, again by minimality of U , each proper definable subgroup of U
is contained N . Hence U ∩ N is the unique maximal proper definably connected
definable subgroup of U . Thus U is a UR-group. �

Proposition 3.14. Let R be a definable real closed field, G be a nilpotent definable
group, and N be a normal definable subgroup of G. Then

UR(G/N) = UR(G)N/N

Proof. We show that UR(G/N) contains UR(G)N/N . Let M/N be a maximal
proper definably connected definable subgroup of UR(G)N/N . Then the group
UR(G)N/M ≃ UR(G)/(UR(G)∩M) has no non-trivial proper definably connected
definable subgroup, and (UR(G) ∩M)◦ is a maximal proper definably connected
definable subgroup of UR(G). Thus UR(G)/(UR(G)∩M)◦ is definably isomorphic
to R+ and, by Lemma 3.13, the subgroup UR(G) ∩ M is definably connected.
Therefore UR(G)N/M ≃ UR(G)/(UR(G) ∩M) is definably isomorphic to R+, so
UR(G)N/N is a UR-group and it is contained in UR(G/N).

We show that UR(G/N) = UR(G)N/N . We denote by U the preimage in
G of UR(G/N). For each maximal proper definably connected definable subgroup
M/N of UR(G/N), the group U/M is definably isomorphic to R+, so Lemma 3.13
gives U = UR(G)M . Consequently UR(G)N/N is contained in no proper definably
connected definable subgroup of UR(G/N). Now by definable connectedness of
UR(G)N/N , we obtain UR(G/N) = UR(G)N/N , as desired. �

3.3. Homogeneous UR-groups. Similarly to the groups of finite Morley rank,
we define an homogeneous UR-group [13]. The purpose of this section is to show
that any UR-group is homogeneous (Proposition 3.22).

Definition 3.15. Let R be a definable real closed field. A UR-group is said to be
homogeneous if its definable subgroups are UR-groups.

Remark 3.16. If R is a definable real closed field, then any homogeneous UR-
group is definably connected and torsion-free.

Lemma 3.17. Let R be a definable real closed field. If a nilpotent definable group
G has a normal homogeneous UR-subgroup U such that G/U is a homogeneous
UR-group, then G is a homogeneous UR-group.

Proof. LetH be a definable subgroup of G. SinceG/U is a homogeneous UR-group,
HU/U is a UR-group, and by Proposition 3.14, we have H = UR(H)(H ∩U). But
U is a homogeneous UR-group, hence H ∩ U and H are UR-groups. �

For the proof of Lemma 3.20, we need G-minimal subgroups.

Definition 3.18. Let G be a definable group. A subgroup of G is said to be
G-minimal if it is definable, infinite, normal, and minimal for these conditions.

Remark 3.19.
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• By the descending chain condition on definable subgroups ofG [27, Remark
2.13 (ii)], any infinite normal definable subgroup H of a definable group
G contains a G-minimal subgroup.

• In a definable group G, every G-minimal subgroup is definably connected.

Lemma 3.20. Let R and S be definable real closed fields, and let G be a nilpotent
definable group. If R and S are not definably isomorphic, then [UR(G), US(G)] = 1.

Proof. We proceed by induction on the dimension of G. We may assume that
G is infinite. In particular, Z(G) is infinite (Fact 2.2) and contains a G-minimal
subgroup A. Since A is G-minimal and central in G, it has no proper infinite
definable subgroup. By induction hypothesis and by Proposition 3.14, the commu-
tator [UR(G), US(G)] is contained in A. We assume toward a contradiction that
there exist u ∈ UR(G) and v ∈ US(G) such that [u, v] is not trivial. We consider
the maps f : US(G) → A and g : UR(G) → A defined by f(x) = [u, x] and
g(x) = [x, v]. Since [u, v] 6= 1, they are two non-zero definable homomorphisms.
Consequently, by minimality of A and since UR(G) and US(G) are definably con-
nected, the maps f and g are surjective. Now A is both a UR-group and a US-group
by Proposition 3.14, and since A has no proper infinite definable subgroup, it is
definably isomorphic to R+ and S+, contradicting Lemma 2.19. Thus we obtain
[UR(G), US(G)] = 1. �

Lemma 3.21. Let R be a definable real closed field. If G is a UR-group, then G′

is a homogeneous UR-group.

Proof. First we show that G/Z(G) is a homogeneous UR-group. Let H/Z(G) be
a definable subgroup of G/Z(G). We show that H/Z(G) is a UR-group. We may
assume that H/Z(G) is non-trivial. Let M/Z(G) be a maximal proper definably
connected definable subgroup of H/Z(G). Then H and M are definably connected
(Corollary 2.7). By Proposition 3.7, the group T (H) ≤ T (G) is contained in Z(G),
and H/M is not a pseudo-torus (Proposition 3.8). Then there is a normal defin-
able subgroup N/M of H/M such that H/N is definably isomorphic to S+ for a
definable real closed field S. By Lemma 3.13 and the maximality of M , we obtain
M = N and H = US(H)M . In particular, US(G) ≥ US(H) is not central in G,
and Lemma 3.20 says that the fields R and S are definably isomorphic. Thus H/M
is definably isomorphic to R+ and G/Z(G) is a homogeneous UR-group.

We show by induction on the dimension of G that G′ is a homogeneous UR-
group. We may assume that G is not abelian, and we consider g ∈ Z2(G) \ Z(G).
Then the map f : G → Z(G) defined by f(x) = [g, x] is a definable group
homomorphism, and Ker f contains Z(G). Hence, by the previous paragraph,
Im f ≃ (G/Z(G))/(Ker f/Z(G)) is a non-trivial homogeneous UR-subgroup of G′.
Now G′/Im f is a homogeneous UR-group by induction hypothesis, and Lemma
3.17 provides the result. �

Proposition 3.22. For any definable real closed field R, every UR-group is ho-
mogeneous. In particular, such a group is torsion-free.
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Proof. Let G be a UR-group. We proceed by induction on the dimension of G. By
Lemmas 3.17 and 3.21, we may suppose that G is abelian.

We apply Edmundo’s structure theory. By Lemma 3.3, G has no definably
compact definable quotient. Thus after applying Fact 2.26 of Edmundo, G has the
form

V ×W

with V a product of semi-bounded groups and W is a product of groups Wi of the
sort described in Fact 2.26.

Now a UR-group can have no linearly bounded factors, hence no semi-bounded
ones, so we find that G = W , and it suffices to deal with the case of a single factor
G = Wi.

So we write W for Wi and S for Si, and apply Fact 2.27 of Edmundo. By
the same argument W∗ is trivial. As we are in the abelian case, we now have
G = X = Z(X), and as there is no linearly bounded definable quotient, even
G = Z.

Now the one dimensional group (S,+) is a homogeneous US-group and it
follows that G is a homogeneous US-group. As G is also a UR-group, the fields
R and S are definably isomorphic by Lemma 2.19. Thus G is a homogeneous
UR-group, and, in particular, is torsion-free (Remark 3.16). �

3.4. Decomposition of nilpotent groups. In this section, we state our main
result on nilpotent groups (Theorem 3.29). From UR-groups, we introduced U -
groups as an analogue of unipotent subgroups of algebraic groups.

Definition 3.23. A nilpotent definable group G is said to be a U -group if it is
generated by UR1

(G), . . . , URk
(G) for definable real closed fields R1, . . . , Rk.

Remark 3.24.

• A U -group is generated by definably connected definable subgroup, so any
U -group is definably connected.

• Since, for any definable real closed field R, every definable quotient group
of a UR-group is a UR-group, every definable quotient of a U -group is a
U -group.

Lemma 3.25. Every definable group G has a unique maximal normal U -subgroup
U(G).

Proof. Let U be a maximal normal U -subgroup of G. If V is another normal
U -subgroup of G, then UV is a normal nilpotent definably connected definable
subgroup of G. Since U and V are U -groups, UV is a U -group too. �

Lemma 3.26. In a nilpotent definable group G, the subgroup U(G) contains all
the U -subgroups of G.

Proof. For each definable real closed field R, the subgroup UR(G) is definable,
definably connected and normal in G, so U(G) contains UR(G) for each definable
real closed field R, and the result follows. �
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Proposition 3.27. For every U -group G, there are finitely many definable real
closed fields R1, . . . , Rk such that

G = UR1
(G)× · · · × URk

(G)

In particular, G is torsion-free. Moreover, for each definable real closed R, if R is
not definably isomorphic to Ri for i ∈ {1, . . . , k}, then UR(G) is trivial.

Proof. We proceed by induction on the smallest integer k such that G is gener-
ated by UR1

(G), . . . , URk
(G) for definable real closed fields R1, . . . , Rk. In par-

ticular, the fields R1, . . . , Rk are not definably isomorphic. We consider H =
UR1

(G) · · ·URk−1
(G). By induction hypothesis, UR(H) is trivial for each real closed

field R not definably isomorphic to Ri for i ∈ {1, . . . , k − 1}, and
H = UR1

(G) × · · · × URk−1
(G)

In particular, URk
(H) is trivial, so we have H ∩ URk

(G) = 1 and G is the direct
product of UR1

(G), . . . , URk
(G).

Let R be a definable real closed field. We show that if R is not definably iso-
morphic to Ri for i ∈ {1, . . . , k}, then UR(G) is trivial. By the previous paragraph
and Proposition 3.22, the group UR(G)H/H ≤ G/H ≃ URk

(G) is a URk
-group.

But by Proposition 3.14, it is a UR-group, hence it is trivial by Lemma 2.19, and
UR(G) = UR(H) is trivial, as desired. �

Corollary 3.28. For any U -group G, we have T (G) = 1.

Proof. By Proposition 3.27, there are finitely many definable real closed fields
R1, . . . , Rk such that G is the direct product of UR1

(G), . . . , URk
(G). We pro-

ceed by induction on k. By induction hypothesis, the group T (G/UR1
(G)) ≃

T (UR2
(G) × . . . × URk

(G)) is trivial, and Proposition 3.8 gives T (G) ≤ UR1
(G).

Then T (G) is a UR1
-group (Proposition 3.22), so T (G) is trivial. �

Theorem 3.29. Any nilpotent definably connected definable group G is the central
product of T (G) by U(G). More precisely, the following decomposition holds

G = T (G) ∗ (UR1
(G)× · · · × URk

(G))

for definable real closed fields R1, . . . , Rk such that UR(G) = 1 for each definable
real closed field not definably isomorphic to Ri for i = 1, . . . , k. Moreover, URi

(G)
is a homogeneous URi

-group for each i = 1, . . . , k.

Proof. Proposition 3.7 shows that T (G) is central in G, so the group T (G)U(G)
is the central product of T (G) by U(G). We assume toward a contradiction that
G 6= T (G)U(G). Let M be a maximal definably connected definable subgroup
of G containing T (G)U(G). Since M contains U(G), it contains UR(G) for each
definable real closed field R, and Proposition 3.14 shows that no definable quotient
of G/M is definably isomorphic to R+ for a definable real closed field R. ThusG/M
is a pseudo-torus and Proposition 3.8 gives G = T (G)M , contradicting that M
contains T (G). Hence we have G = T (G)U(G), and the decomposition of G follows
from Propositions 3.22 and 3.27. �
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Corollary 3.30. A nilpotent definably connected definable group G is a U -group
if and only if T (G) is trivial.

Proof. This follows from Corollary 3.28 and Theorem 3.29. �

Corollary 3.31. Every definable subgroup H of a U -group G is a U -group.

Proof. The groupG is torsion-free by Proposition 3.27, soH is definably connected
and this follows from Corollary 3.30. �

Corollary 3.32. The derived subgroup G′ of a definably connected definable nilpo-
tent group G is a U -group.

Proof. This follows from Theorem 3.29, Corollary 3.6 and Lemma 3.21. �

4. Structure of definable groups

The purpose of this section is to describe the structure of any definably
connected definable group G modulo U(G). We show that G/U(G) is a central
extension of a direct product of definably simple definable groups (Theorem 4.9).
The proof is based on the structure of nilpotent groups (Theorem 3.29), and on
the study of group actions on a solvable group.

Lemma 4.1. Let G be a solvable definably connected definable group. Then G′ is
contained in U(G).

Proof. By Fact 2.5, the group G′ is contained in F (G). Since G is definably con-
nected and F (G)/F (G)◦ is finite, G centralizes F (G)/F (G)◦. By Proposition 3.8
and Theorem 3.29, the group T = F (G)◦/U(G) is a pseudo-torus, so G centralizes
T too (Corollary 3.6). Consequently,G/U(G) is a nilpotent definably connected de-
finable group, and by Corollary 3.32, its derived subgroup is a normal U -subgroup
of F (G)/U(G).

Let R be a definable real closed field. By Proposition 3.14, we have

UR(F (G)/U(G)) = UR(F (G))U(G)/U(G),

and since U(G) = U(F (G)) contains UR(F (G)), the groups UR(F (G)/U(G)) and
U(F (G)/U(G)) are trivial. But G′U(G)/U(G) is contained in U(F (G)/U(G)) by
the previous paragraph, hence G′ is contained in U(G), as desired. �

Lemma 4.3 generalizes Fact 2.5. Thanks to Lemma 4.2, its proof is slightly
simpler than the one of [13, Theorem 6.10].

Lemma 4.2. Let G be a definably connected definable group. If H is a normal
definable subgroup such that G/H is solvable, then G = R(G)H.

Proof. By Fact 2.4, the subgroup R generated by all normal solvable subgroups
of G is definable and solvable. Then we have R(G) = R◦, and G/R satisfies the
hypotheses of Fact 2.8. Thus G/R is the direct product of definable subgroups
H1/R, . . . , Hk/R such that for every i ∈ {1, . . . , k} there is a definable real closed
field Ri and a definable isomorphism between Hi/R and a semialgebraic subgroup
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of GLni
(Ri). Moreover, H◦

i R/R is definably simple. Since G/R is definably con-
nected, Hi/R is definably connected for each i. In particular, Hi/R = H◦

i R/R is
definably simple for each i, and G/R has no proper definable subgroup N such
that (G/R)/N is solvable. Thus we obtain G = RH , and since G is definably
connected and R(G) = R◦, this implies G = R(G)H . �

Lemma 4.3. Let G and H be two definably connected definable groups. We assume
that H is solvable. If G acts definably by conjugation on H, then [G,H ] is contained
in U(H).

Proof. We consider a minimal counter-example G acting on H . By minimality of
G and Fact 2.12, the group G = G/CG(H/U(H)) is abelian. By Lemma 4.2, we
have G = R(G)CG(H/U(H)), so G = R(G) is solvable by minimality of G. We
consider the semi-direct product H ⋊G where G acts by conjugation on H . It is a
solvable definably connected definable group. Then [G,H ] ≤ (H⋊G)′ is contained
in U(H ⋊G) ∩H by Lemma 4.1. Since U(H ⋊G) ∩H is a normal U -subgroup of
H by Corollary 3.31, we obtain [G,H ] ≤ U(H), contradicting G 6= CG(H/U(H)).
Thus [G,H ] is contained in U(H). �

Lemma 4.4. Let H be a (non-necessarily definable) subgroup of a nilpotent de-
finable group G. Then H has a unique maximal definably connected definable sub-
group.

Proof. We proceed by induction on the dimension of G. We may assume that G is
definably connected. Let M be a maximal definably connected definable subgroup
of H . We show that M is normal in H . We may assume that M is not normal in G.
By induction hypothesis, M is the unique maximal definably connected definable
subgroup of NH(M) ≤ NG(M) < G, therefore M is normal in NH(NH(M)) and
we obtain NH(NH(M)) = NH(M). But H is nilpotent, hence NH(M) = H and
M is normal in H .

Now, if N is any definably connected definable subgroup of H , then NM is
a definably connected definable subgroup of H too, and it is contained in M by
maximality of M . This proves the uniqueness of M . �

Corollary 4.5. In any nilpotent definable group G, every family of definably con-
nected definable subgroups of G generate a definably connected definable subgroup.

The following result and Corollary 4.8 are in the spirit of [1].

Proposition 4.6. Let G and H be two definably connected definable groups. We
assume that H is solvable. If G acts definably by conjugation on H, then [G,H ] is
a U -subgroup of H. In particular, [G,H ] is definable and definably connected.

Proof. By Lemma 4.3, the group [G,H ] is contained in U(H), so we have just to
prove that [G,H ] is definable and definably connected. We proceed by induction
on the dimension of H . Since [G,H ] is contained in the nilpotent definable group
U(H), it has a unique maximal definably connected definable subgroupM (Lemma
4.4). If M is nontrivial, then [G,H ]/M is definable and definably connected by
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induction hypothesis, so [G,H ] is definable and definably connected. Thus we may
assume that [G,H ] contains no non-trivial definably connected definable subgroup.

We show that [G,H ] is central in U(H). We may assume that U(H) is non-
trivial. By induction hypothesis, [G,H ]Z(U(H))/Z(U(H)) is definable and defin-
ably connected. Since U(H) is a U -group, it is torsion-free (Proposition 3.27),
so Z(U(H)) is definably connected and [G,H ]Z(U(H)) is a definably connected
definable subgroup.

• If U(H) = [G,H ]Z(U(H)), then [G,H ] contains U(H)′. By Corollary 3.32,
the subgroup U(H)′ ≤ [G,H ] is definable and definably connected, so it
is trivial and U(H) is abelian.

• If [G,H ]Z(U(H)) < U(H), then [U(H), [G,H ]Z(U(H))] is a definably
connected definable subgroup by induction hypothesis, and since it is con-
tained in [G,H ], it is trivial. Thus U(H) centralizes [G,H ].

Now, for each g ∈ G, the map adg : U(H) → Z(U(H)) defined by adg(x) =
[g, x] is a definable group homomorphism. Since its image is a definably connected
definable subgroup of [G,H ], it is trivial, so G centralizes U(H).

Thus, for each h ∈ H , the map adh : G → Z(U(H)) defined by adh(x) =
[x, h] is a definable group homomorphism. Since its image is a definably connected
definable subgroup of [G,H ], it is trivial, we obtain [G,H ] = 1 and [G,H ] is a
definably connected definable subgroup of H . �

Corollary 4.7. Let G be a definably connected definable group acting definably
by conjugation on a nilpotent definable group H. Then [G,H ] = [G,H◦] is a U -
subgroup of H.

Proof. By Fact 2.6 (1), the group H has a finite characteristic subgroup F such
that H = H◦ ∗ F . Since G is definably connected, it centralizes F and we have
[G,H ] = [G,H◦]. Now we conclude by Proposition 4.6. �

The following result is not useful for Theorem 4.9. It will be used in the proof
of Theorem 5.15.

Corollary 4.8. Let G be a definably connected definable group acting definably by
conjugation on a solvable definable group H. Then [G,H ] is a definably connected
definable subgroup of H.

Proof. We proceed by induction on the dimension of the group H ⋊ G where G
acts by conjugation on H . We may assume that G acts faithfully on H . If [G,H ]
contains a non-trivial (H ⋊ G)-normal definably connected definable subgroup
A, then we may apply our induction hypothesis to H/A ⋊ G where G acts by
conjugation on H/A, and we obtain that [G,H ] is a definably connected definable
subgroup of H . Thus we may assume that [G,H ] contains no non-trivial (H ⋊G)-
normal definably connected definable subgroup.

The group [G,H◦] is definable and definably connected by Proposition 4.6, so
its H-conjugates too. Since [G,H◦] is normal in H◦, its H-conjugates too, so the
subgroup L generated by the H-conjugates of [G,H◦] is definable and definably
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connected. But L is a subgroup of [G,H ] normal in H ⋊G. Hence it is trivial by
the previous paragraph, and G centralizes H◦.

Since H/H◦ is finite and G is definably connected, [G,H ] is contained in
H◦. Then for each h ∈ H , we may consider the map uh : G → H◦ defined by
uh(x) = [x, h]. Since G centralizes H◦, the map uh is a group homomorphism, and
its image is a definably connected definable subgroup of H◦. Moreover, for each
a ∈ H◦ and each x ∈ G, since G centralizes H◦ we have

uh(x)
a = [x, ha] = [x, a−1ah

−1

h] = [x, h]

So the image of uh is central in H◦, and the subgroup generated by Imuh for
h ∈ H is a definably connected definable subgroup of Z(H◦). But this subgroup
is equal to [G,H ], and it is normalized by G and H . Hence it is trivial by the
first paragraph, and G centralizes H . Thus [G,H ] = 1 is definable and definably
connected. �

Theorem 4.9. Let G be a definably connected definable group. Then G/U(G) is
a central extension of a direct product of definably simple definable groups.

More precisely, G has a normal solvable definable subgroup R such that the
following three conditions hold:

• R contains all the normal solvable subgroups of G;
• [G,R] is a U -group and [G,R] = [G,R◦];
• (see Fact 2.8) G/R is the direct product of definably simple definable sub-
groups H1, . . . , Hk such that for every i ∈ {1, . . . , k} there is a definable
real closed field Ri and a definable isomorphism between Hi and a semial-
gebraic subgroup of GLni

(Ri).

Proof. By Fact 2.4, the subgroup R generated by all normal solvable subgroups
of G is definable and solvable. Then we have R(G) = R◦, and G/R satisfies the
hypotheses of Fact 2.8. Thus, the first and the third assertions are satisfied.

Now, since [G,R◦] is a U -group (Proposition 4.6), we have just to prove
that [G,R] = [G,R◦]. Since G is definably connected and since R/R◦ is finite, G
centralizes R/R◦. In particular, R/R◦ is abelian. Moreover, since [G,R◦] contains
[R,R◦], the group R centralizes R◦/[G,R◦], so the group R/[G,R◦] is nilpotent.
Then Corollary 4.7 shows that the commutator [G/[G,R◦], R/[G,R◦]] is trivial
and we obtain [G,R] = [G,R◦]. �

5. Linearity of definable groups

We prove the main theorem in this section (Theorem 5.15). Its proof is based
on the previous sections, on the study of definably linear groups (Definition 5.10
and Fact 5.4) and on the analysis of groups definable in an o-minimal expansion of
a real closed field. In particular, the following two results are crucial for the proof
of Theorem 5.15.
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Fact 5.1. [21, Proof of Corollary 3.1] Let R = (R,<, · · · ) be an o-minimal expan-
sion of a real closed field. If G is definable in R, then G/Z(G) can be definably
embedded into GLn(R).

Proposition 5.2. Let R0 = (R,<,+, · ) be a definable real closed field, and let
R be a definable expansion of R0 such that, for each integer n, all the definable
relations of Rn are R-definable. Let H be a normal definable subgroup of a definable
group G. If H and G/H are definably isomorphic to an R-definable group, then
G is definably isomorphic to an R-definable group.

Proof. First we assume that G◦ is definably isomorphic to an R-definable group.
We may apply the method of Borovik and Cherlin [15, Proposition 4.3]. Let W be
the wreath product of G◦ by G/G◦. It is definably isomorphic to an R-definable
group, and we have just to find a definable group monomorphism from G toW . We
consider a left transversal T = {g1, . . . , gr} to G◦ in G. For each x ∈ G and each
i ∈ {1, . . . , r}, we denote by ni(x) the unique element ofG◦ such that ni(x)gix ∈ T ,
and we define a map µ : G → W by µ(x) = ((n1(x), . . . , nr(x)), xG

◦). The map µ
is definable, and it is a group homomorphism (see the proof of [9, Theorem 18.9
p.68]). Moreover, if x belongs to Kerµ, the last coordinate gives x ∈ G◦, and since
g1x ∈ {g1, . . . , gr}, we obtain g1x = g1 and x = 1. Thus µ is a definable group
monomorphism from G toW , as desired. Hence we may assume that G is definably
connected.

Now we proceed by induction on the dimension of H . By the structure of
H◦ described in Theorem 4.9, we may assume that either H is finite, or H has no
non-trivial normal abelian subgroup, or H is abelian, or H is a U -group. Suppose
that H has no non-trivial normal abelian subgroup. By Theorem 4.9, the group G
has a normal solvable definable subgroup R such that the following two conditions
hold:

• R contains all the normal solvable subgroups of G;
• G/R is the direct product of definably simple definable subgroups.

Consequently, since HR/R is a normal definable subgroup of G/R, the group
HR/R is a direct product of some subgroups H1, . . . , Hk, and G/R has a normal
definable subgroup S/R such that G/R = HR/R× S/R. Thus we have G = HS
and H ∩ S ≤ R. But R is solvable and H has no non-trivial normal abelian
subgroup, so R ∩ H is trivial, and since H and S are normal in G, we obtain
G = H × S. Hence G ≃ H × G/H is definably isomorphic to an R-definable
group. Thus we may assume that either H is finite, or H is abelian, or H is a
U -group.

However, if H is finite, then since G is definably connected, G centralizes H ,
and H is abelian. Moreover, if H is a non-abelian U -group, then H ′ is infinite and
definable (Corollary 3.32), and the induction hypothesis applied with H/H ′ and
H ′ shows that G is definably isomorphic to an R-definable group. Hence we may
assume that H is abelian.

For each g ∈ G, we denote by g = gH the left coset of g modulo H . By Fact
2.1, there is a definable function t : G → G such that for all x, y ∈ G, we have
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x ∈ xH and if xH = yH then t(x) = t(y). We define a map Φ : G × G → H by
Φ(xH, yH) = t(xy)−1t(x)t(y). In particular, the map Φ is definable, so its graph is
a definable subset of G×G×H ⊆ Rn for an integer n, and Φ is R-definable by our
hypothesis over R. We consider the set L = G/H ×H and the group L = (L,⊗)
where for every (g, h) ∈ L and (g′, h′) ∈ L, the product (g, h)⊗ (g′, h′) is defined
by

(g, h)⊗ (g′, h′) = (gg′, hg′

h′Φ(g, g′))

We note that, since the groupsG/H andH are definably isomorphic to R-definable
groups, and since Φ is R-definable too, the group L = (L,⊗) is definably iso-
morphic to an R-definable group. Moreover the map f : G → L defined by
f(g) = (g, t(g)−1g) is a definable group isomorphism, so G is definably isomor-
phic to an R-definable group. �

Corollary 5.3. Let R0 = (R,<,+, · ) be a definable real closed field, and let
R be a definable expansion of R0 such that, for each integer n, all the definable
relations of Rn are R-definable. Then every UR-group is definably isomorphic to
an R-definable group.

Proof. This follows from Propositions 3.22 and 5.2. �

The definable subgroups of GLn(R) are studied in [24] whose main result is
Fact 5.4. We provide below some useful complements. In particular, we show that
a definable quotient of a definably connected subgroup of GLn(R) is definably
isomorphic to a subgroup of GLn(R) (Proposition 5.9).

Fact 5.4. [24, Theorem 4.1] Let R be an o-minimal expansion of a real closed
field (R,<, · · · ), and let G be a R-definably connected R-definable subgroup of
GLn(R) for an integer n. Then there are semialgebraic subgroups G1 and G2 of
GLn(R) such that G2 ≤ G ≤ G1, G2 is a normal subgroup of G1 and G1/G2 is
abelian. Moreover, there are abelian, R-definable, R-definably connected subgroups
A1, . . . , Ak of G such that G = G2 ·A1 · · ·Ak.

We recall that a semisimple group is defined to be a definably connected
definable group with no infinite abelian normal subgroup (Definition 6.1).

Fact 5.5. [24, Theorem 4.5] Let R be a definable real closed field, and let G be
a definably connected definable subgroup of GLn(R) for an integer n. Then G =
NH for a normal solvable definable subgroup N and a semialgebraic semisimple
subgroup H such that N ∩H is finite.

Lemma 5.6. Any semisimple group S is perfect and satisfies R(S) = 1.

Proof. Since S is a semisimple group, Z(U(S)) is finite, and U(S) is finite too by
Fact 2.2. But U(S) is a U -group, so it is definably connected, and consequently
it is trivial. Hence R(S) is abelian (Proposition 4.6), and since S is semisimple,
R(S) is finite. Thus, since R(S) is definably connected, R(S) is trivial.

Let R be the subgroup of S generated by all normal solvable subgroups of G.
It is definable and solvable (Fact 2.4), so R◦ = R(S) is trivial and R is finite. Now
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S/R has no non-trivial normal abelian subgroup, and Fact 2.8 with Proposition
2.11 shows that S/R is perfect. Thus we have S = S′R and S′ has finite index in
S, so Proposition 2.11 gives S = S′. �

Lemma 5.7. Let R be a definable real closed field, and let G be a definably con-
nected definable subgroup of GLn(R) for an integer n. Then G′ = U ⋊ S for a
semialgebraic unipotent group U and a semialgebraic semisimple group S. In par-
ticular, G′ is semialgebraic.

Proof. By Fact 5.5, we have G = NH for a normal solvable definable subgroup N
and a semialgebraic semisimple subgroup H such that N ∩H is finite. Since G is
definably connected, we may assume that N is definably connected. Moreover, we
have R(H) = 1 and H is perfect (Lemma 5.6). Thus we have G′ = N ′[H,N ]H ′ =
N ′[H,N ]H , and U = N ′[H,N ] is a U -group by Proposition 4.6. In particular, U
is a definable subgroup of N , and it is torsion-free (Proposition 3.27), so U ∩H ≤
N ∩H is trivial.

Let N be the smallest semialgebraic subgroup of GLn(R) containing N . Then

N is semialgebraically connected by Proposition 2.11. Moreover,N
′

is contained in

N by Fact 5.4, so N is solvable. This implies that N
′

is a semialgebraic unipotent
group. Since H is definably connected, it is semialgebraically connected, and then

[H,N ] is a semialgebraic unipotent group too. Now N
′

[H,N ] is a semialgebraic

unipotent group. Since U = N ′[H,N ] is a definable subgroup of N
′

[H,N ], Corol-
lary 2.18 shows that U is semialgebraic, and we have the decomposition G′ = U⋊S
with S = H . �

Corollary 5.8. Let R be a definable real closed field, and let G be a definably con-
nected definable subgroup of GLn(R) for an integer n. Then any normal definable
subgroup H of G′ is semialgebraic.

Proof. We may assume that H is definably connected. By Fact 5.5, we have H =
NT for a normal solvable definable subgroup N and a semialgebraic semisimple
subgroup T such that N ∩ T is finite. Since H is definably connected, we have
H = N◦T . Moreover, by Lemma 5.7, there are a semialgebraic unipotent group U
and a semialgebraic semisimple group S such that G′ = U ⋊S. In particular, since
R(S) = 1 (Lemma 5.6), we have R(G′) = U . Thus N◦ is a definable subgroup
of R(H) ≤ R(G′) = U , and Corollary 2.18 implies that N◦ is semialgebraic. So
H = N◦T is semialgebraic. �

Proposition 5.9. Let R be a definable real closed field, and let G be a definably
connected definable subgroup of GLn(R) for an integer n. If H is a normal defin-
able subgroup of G, then G/H is definably isomorphic to a definable subgroup of
GLm(R) for an integer m.

Proof. By Corollary 5.8, the group H ∩ G′ is semialgebraic, so NGLn(R)(H ∩
G′)/(H ∩ G′) definably embeds into GLl(R) for an integer l, and G/(H ∩ G′) ≤
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NGLn(R)(H ∩ G′)/(H ∩ G′) is definably isomorphic to a definable subgroup of
GLl(R). Thus we may assume that H ∩G′ is trivial.

By Lemma 5.7, the group G′ is semialgebraic, so NGLn(R)(G
′)/G′ definably

embeds into GLk(R) for an integer k, and G/G′ ≤ NGLn(R)(G
′)/G′ is definably

isomorphic to a definable subgroup of GLk(R). But H◦G′/G′ has a definable com-
plement C/G′ in G/G′ by Fact 2.16 (2), and since C ∩ H◦ ≤ G′ ∩ H is trivial,
G/H◦ is definably isomorphic to H◦C/H◦ ≃ C/(C ∩ H◦) ≃ C. Hence we may
assume that H is finite. Then NGLn(R)(H)/H definably embeds into GLm(R) for
an integer m, and G/H ≤ NGLn(R)(H)/H is definably isomorphic to a definable
subgroup of GLm(R), as desired. �

Definition 5.10. A definable group G is said to be definably linear (over finitely
many definable real closed fields R1, . . . , Rk), if G has a definable faithful linear
representation over the ring R1 ⊕ · · · ⊕Rk.

In other words, G definably embeds in H1 × · · · ×Hk, where Hi is a linear
semialgebraic group over Ri for each i = 1, . . . , k.

Lemma 5.11. Let R1, . . . , Rk be finitely many definable real closed fields. Any
definable group G has a smallest normal definable subgroup N such that G/N is
definably linear over R1, . . . , Rk.

Proof. It is sufficient to show that, if A and B are two normal definable subgroups
of G such that G/A and G/B are definably linear, then G/(A ∩ B) is definably
linear. Moreover, we may assume that A ∩B is trivial. We consider definable real
closed fieldsR1, . . . , Rk, S1, . . . , Sl such thatG/A definably embeds inH1×· · ·×Hk,
where Hi is a linear semialgebraic group over Ri for each i = 1, . . . , k, and such
that G/B definably embeds in K1 × · · · ×Kl, where Kj is a linear semialgebraic
group over Sj for each j = 1, . . . , l. Let f : G → G/A ×G/B be the map defined
by f(x) = (xA, xB). Since f is a definable group monomorphism, G is definably
linear. �

Lemma 5.12. Let R1, . . . , Rk be finitely many definable real closed fields, and
let Hi be a definable subgroup of a linear semialgebraic group over Ri for each
i = 1, . . . , k. If R1, . . . , Rk are not definably isomorphic, then for any definably
connected definable subgroup L of H1 × · · · ×Hk, we have

L = (L ∩H1)× · · · × (L ∩Hk)

In particular, if G is a definably connected definable group, and if G is definably
linear over finitely many definable real closed fields R1, . . . , Rk, then G is definably
isomorphic to a direct product of definable subgroups of GLn1

(R1), . . . ,GLnk
(Rk).

Proof. Since G is definably linear over R1, . . . , Rk, the group G definably embeds
into a direct product H1 × · · · ×Hk, where Hi is a linear semialgebraic group over
Ri for each i = 1, . . . , k. It is sufficient to show that, for any definably connected
definable subgroup L of H1 × · · · ×Hk, we have

L = (L ∩H1)× · · · × (L ∩Hk)
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We assume toward a contradiction that L is a counter-example of minimal
dimension. Therefore, for each proper definably connected definable subgroup L0

of L we have L0 = (L0 ∩H1) × · · · × (L0 ∩Hk). This implies that, if we consider
K = (L∩H1)×· · ·×(L∩Hk), then K◦ contains all the proper definably connected
definable subgroups of L.

For each i ∈ {1, . . . , k}, we denote by pi : H1×· · ·×Hk → Hi the i
th projection

map. Since K is proper in L, there is i ∈ {1, . . . , k} such that pi(L) is non-trivial.
If pj(L) is trivial for each j 6= i, then L is contained in Hi, contradicting K < L.
Therefore there exists j 6= i such that pj(L) is non-trivial. We considerKi = Ker pi
and Kj = Ker pj . They are proper subgroups of L, so K contains K◦

i and K◦

j ,
and KiKj is a proper normal definable subgroup of L. But L/Ki and L/Kj are
definably isomorphic to pi(L) ≤ Hi and pj(L) ≤ Hj respectively, so there exists
two integer m and n such that L/KiKj is definably isomorphic to a definable
subgroup Pi of GLm(Ri) and to a definable subgroup Pj of GLn(Rj). Hence the
fields Ri and Rj are definably isomorphic by Proposition 2.20, contradicting that
the fields R1, . . . , Rk are not definably isomorphic. �

Lemma 5.13. Let G be a definably connected definable group. If U(Z(G)) is
trivial, then G/Z(G) is centerless.

Proof. We consider Z/Z(G) = Z(G/Z(G)). The subgroup Z is definable, nilpotent
and normal in G. By Corollary 4.7, the group [G,Z] is a U -group, and since it is
contained in Z(G), the subgroup Z is central in G. Thus G/Z(G) is centerless. �

Lemma 5.14. Let G be a definable group and let R be a definable real closed field.
Then G has a smallest normal definable subgroup K such that G/K is a UR-group.

Proof. We have just to prove that if A and B are two normal definable subgroups
such that G/A and G/B are UR-groups, then G/(A ∩ B) is a UR-group. Since
G/A and G/B are nilpotent, G/(A∩B) is nilpotent too. But AB/B is a definable
subgroup of G/B, so it is a homogeneous UR-group by Proposition 3.22, and by
Proposition 3.22 again,G/A is a homogeneous UR-group. Hence, since A/(A∩B) ≃
AB/B, Lemma 3.17 shows that G/(A ∩B) is a homogeneous UR-group. �

Theorem 5.15. Let G be a definably connected definable group. Then G/Z(G) is
the direct product of definable groups H1, . . . , Hk such that for every i ∈ {1, . . . , k}
there is a definable real closed field Ri, an integer ni and a definable isomorphism
from Hi to a definable subgroup of GLni

(Ri).

Proof. By Lemma 5.12, we have just to prove that G/Z(G) is definably linear.
We proceed by induction on the dimension of G. By Fact 2.15, we may assume
G/Z(G) is not centerless. In particular, U(Z(G)) is non-trivial by Lemma 5.13.
Let R be a definable real closed field such that UR(Z(G)) is non-trivial, and A be
a G-minimal subgroup of UR(Z(G)) (Definition 3.18). In particular, A is torsion-
free (Proposition 3.22). Since A is G-minimal and central in G, it has no proper
non-trivial subgroup, and since it is a UR-group, it is definably isomorphic to R+.
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We show that we may assume that A is the unique G-minimal subgroup of G.
Indeed, if G has anotherG-minimal subgroupB 6= A, we consider ZA/A = Z(G/A)
and ZB/B = Z(G/B). By induction hypothesis, the groups G/ZA and G/ZB are
definably linear, so G/(ZA ∩ ZB) is definably linear by Lemma 5.11. Since A and
B are G-minimal, the group A ∩ B is finite, and since G is definably connected,
A∩B is central in G. Thus, for each z ∈ ZA∩ZB, the map uz : G → A∩B, defined
by uz(x) = [z, x], is a definable group homomorphism, and since G is definably
connected, its image is a definably connected subgroup of the finite subgroup A∩B.
Therefore z centralizes G and ZA ∩ ZB = Z(G). Now G/Z(G) is definably linear,
and we may assume that A is the unique G-minimal subgroup of G. In particular,
U(G) is a UR-group (Proposition 3.27).

Let Z/A = Z(G/A). We show that Z = UR(Z)Z(G) and that Z/Z(G) is a
UR-group. By induction hypothesis, the group G/Z is definably linear. For each
g ∈ G, the map ug : Z → A defined by ug(x) = [g, x] is a group homomorphism,
and since A ≃ R+, we have either Kerug = Z or Z/Kerug ≃ R+. By Lemma
5.14, the group Z/Z(G) is a UR-group. Then, by Proposition 3.14, we have Z =
UR(Z)Z(G).

Since G/Z is definably linear, Lemma 5.12 says that G is definably isomorphic
to a direct product K1/Z × · · · ×Kk/Z, where Ki/Z is a definably linear group
over a definable real closed field Ri for each i = 1, . . . , k. Since G is definably
connected, Ki/Z is definably connected for each i = 1, . . . , k. Moreover, we may
assume that R = R1, and that the fields R1, . . . , Rk are not definably isomorphic.
We note that we do not say that K1/Z is non-trivial. We show that [K1,Kj] is
contained in Z(G) for each j 6= 1. For each g ∈ K1 and each j 6= 1, the map
adjg : Kj → Z/Z(G) defined by adjg(x) = [g, x] is a group homomorphism, and

Kj/Ker adjg is definably isomorphic to a subgroup of Z/Z(G), so it is a UR-group

(Proposition 3.22). Since Ker adjg contains Z, either Kj = Ker adjg, or the group

Kj/Z has a normal definable subgroup N/Z such that (Kj/Z)/(N/Z) is definably
isomorphic to R+. In the second case, since (Kj/Z)/(N/Z) is definably isomorphic
to a definable linear group over Rj by Proposition 5.9, the fields Rj and R = R1

are definably isomorphic by Proposition 2.20, contradicting j 6= 1. Thus we have
Kj = Ker adjg, and [K1,Kj] is contained in Z(G) for each j 6= 1.

Let j 6= 1 and let Hj/Z(G) be a definable subgroup of Kj/Z(G) such that
Kj = ZHj, and minimal for this condition. We prove that K1 centralizes Hj .
Since Z/Z(G) is a UR-group, it is definably connected, and since Kj/Z is defin-
ably connected too, the group Kj/Z(G) is definably connected, so any subgroup
Hj/Z(G) is definably connected. By the previous paragraph, for each g ∈ K1 and
each j 6= 1, we may define a group homomorphism adjg : Hj → Z(G) by adjg(x) =

[g, x]. Therefore Hj/Ker adjg is definably isomorphic to the subgroup Im adjg of

Z(G). In particular, Hj/Ker adjg is abelian. Since Ker adjg contains Z(G) and

since Hj/Z(G) is definably connected, Lemma 4.2 gives Hj = RjKer adjg where

Rj/Z(G) = R(Hj/Z(G)). Now Rj is a normal solvable subgroup of G, and [G,Rj ]
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is a U -group (Corollary 3.31 and Theorem 4.9). Thus, since U(G) is a UR-group by
the second paragraph, [G,Rj ] and Im adjg are UR-subgroups (Proposition 3.22).

So, if Im adjg ≃ Hj/Keradjg is non-trivial, then Hj/Ker adjg has a proper normal

definable subgroup N/Keradjg such that Hj/N is definably isomorphic to R+. By

minimality of Hj , we have Kj 6= ZN , so we obtain (Z ∩ Hj)N < Hj , and since
Hj/N ≃ R+ has no non-trivial proper definable subgroup (Fact 2.13), we have
Z ∩Hj ≤ N . Thus we obtain

(Kj/Z)/(NZ/Z) ≃ Kj/NZ = HjZ/NZ ≃ Hj/(Hj ∩NZ) = Hj/N ≃ R+

Now, by Propositions 2.20 and 5.9, the fields R1 = R and Rj are definably iso-
morphic, contradicting j 6= 1. Consequently Im adjg is trivial and every g ∈ K1

centralizes Hj .
In particular, the previous paragraph shows that H2, . . . Hk centralize Z ≤

K1, and since G = K1H2 · · ·Hk, we obtain CZ(K1) = CZ(G) = Z(G). Then,
for each j = 2, . . . k, we have Hj ∩ Z ≤ CZ(K1) = Z(G), and by the previous
paragraph again, we have CKj

(K1) = CZHj
(K1) = HjCZ(K1) = HjZ(G) = Hj .

Consequently Hj is a normal definable subgroup of G. Moreover, we note that
Z ∩ (H2 · · ·Hk) is contained in Z ∩CG(K1) = Z(G). Thus, since G/Z is the direct
product of K1/Z, . . .Kk/Z, and since Ki = ZHi for each i = 2, . . . , k, we obtain

G/Z(G) = K1/Z(G)×H2/Z(G)× · · · ×Hk/Z(G)

But for each i = 2, . . . , k, the group Hi/Z(G) = Hi/(Hi ∩Z) ≃ HiZ/Z = Ki/Z is
definably linear over Ri. Hence we have just to prove that K1/Z(G) is definably
linear over R.

Let U/UR(G) = UR(G/UR(G)). We show that CZ(U) = Z(G). For each
z ∈ Z, we consider the definable group homomorphism vz : G → A defined by
vz(x) = [x, z]. Since A is definably isomorphic to R+, the group G/Ker vz ≃ Im vz
is a UR-group for each z ∈ Z, and G/CG(Z) is a UR-group by Lemma 5.14. More-
over, Lemma 4.2 shows that G = R(G)CG(Z). In particular,R(G)/(R(G)∩CG(Z))
is a nilpotent group. Let D = UR(R(G) ∩ CG(Z)). Since R(G)/U(G) is abelian
(Proposition 4.6) and since U(G) is a UR-group, the group [R(G), R(G) ∩CG(Z)]
is a definable subgroup of UR(G) (Corollary 4.8), and it is contained in D (Propo-
sition 3.22). This implies that R(G)/D is a nilpotent group. Since R(G)/(R(G) ∩
CG(Z)) ≃ G/CG(Z) is a UR-group and D is contained in R(G) ∩ CG(Z), Propo-
sition 3.14 shows that the subgroup V defined by V/D = UR(R(G)/D) covers
R(G)/(R(G) ∩ CG(Z)) and G/CG(Z). Moreover, UR(G) contains D and, since
UR(G)/D is a UR-group (Proposition 3.14), the group V/D contains UR(G)/D,
and V/UR(G) ≃ (V/D)/(UR(G)/D) is a normal UR-subgroup of G/UR(G). Thus
V is contained in U , and we obtain G = V CG(Z) = UCG(Z), so CZ(U) = Z(G).

Let R be a definable expansion of (R,<,+, · ) such that, for each integer n,
all the definable relations of Rn are R-definable. By Proposition 5.2 and Corol-
lary 5.3, the groups UR(G), U and Z/Z(G) = UR(G)Z(G)/Z(G) are definably
isomorphic to R-definable groups. Moreover, since K1/Z is definably linear over
R, Proposition 5.2 says that K1/Z(G) is definably isomorphic to an R-definable
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group. We consider the semi-direct product L = U ⋊ K1/Z(G) where K1/Z(G)
acts by conjugation on U . Then, by Proposition 5.2 again, the group L is defin-
ably isomorphic to an R-definable group. Now L/Z(L) is definably linear over L
(Fact 5.1). Let N/Z(G) = Z(L) ∩K1/Z(G). Then K1/N is definably linear over
R. Moreover, since CZ(U) = Z(G) by the previous paragraph, Z(L) ∩ Z/Z(G)
is trivial, so N ∩ Z = Z(G). Since K1/Z and K1/N are definably linear over R,
Lemma 5.11 shows that K1/Z(G) is definably linear over R, and we conclude that
G/Z(G) is definably linear over R. �

We may state Theorem 5.15 under the following formulation.

Corollary 5.16. Let G be a definably connected definable group. Then G is the
central product of definable subgroups H1, . . . , Hk such that for each i there is
a definable real closed field Ri, an integer ni and a definable isomorphism from
HiZ(G)/Z(G) to a definable subgroup of GLni

(Ri).

Proof. We may assume that G is ω-saturated. We consider the groups Hi/Z(G) =
Hi in Theorem 5.15, and we assume that the fields R1, . . . , Rk are not definably
isomorphic. We have just to prove that [Hi, Hj ] = 1 for each j 6= i. We assume
toward a contradiction that [Hi, Hj ] is non-trivial for j 6= i.

By Facts 2.6 (1) and 2.12, there are a ∈ Hi and b ∈ Hj such that [a, b] is of
infinite order. We consider the maps u : Hj → Z(G) defined by u(x) = [a, x] and
v : Hi → Z(G) defined by v(x) = [x, b]. They are definable group homomorphisms,
and since I = Imu ∩ Im v contains [a, b], the group I is infinite. But Keru (resp.
Ker v) contains Z(G), so Imu (resp. Im v) is definably isomorphic to a definable
quotient of Hi/Z(G) (resp. Hj/Z(G)) which is definably isomorphic to a definable
subgroup of GLni

(Ri) (resp. GLnj
(Rj)). This implies that I is an infinite definable

group which is, by Proposition 5.9, definably linear over Ri and definably linear
over Rj . Hence, by Proposition 2.20, the fields Ri and Rj are definably isomorphic,
contradicting our hypothesis over the fields R1, . . . , Rk. �

Corollary 5.17. If G is a definably connected definable group, then G′Z(G)/Z(G)
is a definably connected definable group.

More precisely, it is a direct product of definably connected definable groups
H1, . . . , Hk such that for every i ∈ {1, . . . , k} there is a definable real closed field
Ri and a definable isomorphism between Hi and a semialgebraic linear group over
Ri.

Proof. This follows from Theorem 5.15 and Lemma 5.7. �

6. A Levi-like decomposition

Conversano exhibited a definably connected definable group G such that
R(G) = Z(G) and whose derived subgroup is not definable [5, Example 3.1.7].
Moreover, this group G has no semisimple subgroup S such that G = R(G)S. This
motivates the introduction of quasi-semisimple groups.



32 OLIVIER FRÉCON

Definition 6.1. Let S be a definably connected definable subgroup of a definable
group G.

• S is said to be semisimple if it has no infinite abelian normal subgroup;
• S is said to be quasi-semisimple if R(S)H < S for every proper definable
subgroup H of S.

Remark 6.2. By Lemma 5.6, any semisimple group S is quasi-semisimple.

Conversano and Pillay introduce in [6] ind-definable semisimple subgroups,
and they show their existence and conjugacy in every definably connected group
G definable in an o-minimal expansion R of a real closed field.

We refer to [6] for the definition of an ind-definable semisimple subgroup, and
we provide just their main properties.

Fact 6.3. [6, Theorem 1.1] Let R be an o-minimal expansion of a real closed
field K, and let G be an R-definably connected R-definable group. Then G has
a maximal ind-definable semisimple subgroup S, unique up to conjugacy in G.
Moreover G = R(G)S, and the center Z(S) of S is finitely generated and contains
R(G) ∩ S.

Furthermore, the following properties are satisfied:

(1) [6, Lemma 2.7] any ind-definable semisimple subgroup of G is perfect;
(2) [6, Proof of Theorem 1.1] there is a maximal semisimple subgroup T/Z(G)◦

of G/Z(G)◦ such that S = T ′.
(3) [6, Proofs of Lemmas 4.1 and 4.2] if G is a definable subgroup of GLn(K)

for an integer n, the maximal ind-definable semisimple subgroups of G are
precisely its maximal semisimple subgroups.

We will show that, if S is a subgroup of an R-definably connected R-definable
group, then S is a maximal ind-definable semisimple subgroup if and only if it is
the derived subgroup of a maximal quasi-semisimple subgroup (Corollary 6.7).

Lemma 6.4. Let G be a definably linear definable group. If G is definably con-
nected, then G has a maximal semisimple subgroup S, unique up to conjugacy in
G. Moreover, G = R(G)S and R(G)∩S is finite and contained in the center of S.

Proof. By Lemma 5.12, we find finitely many definable real closed fields R1, . . . , Rk

such that G is definably isomorphic to a direct product H1×· · ·×Hk, whereHi is a
definable subgroup of a linear algebraic group over Ri for each i = 1, . . . , k. By Fact
5.5, for each i, we find in Hi a maximal semisimple subgroup Si such that Hi =
R(Hi)Si and R(Hi)∩Si is finite. Then we have R(G) = R(H1)×· · ·×R(Hk), and
S = S1 × · · · × Sk is a semisimple subgroup. In particular, we obtain G = R(G)S,
and R(G)∩S is finite. Moreover, since S is definably connected, it centralizes the
finite normal subgroup R(G) ∩ S.

Let T be a maximal semisimple subgroup of G. By Lemma 5.12, we have

T = (T ∩H1)× · · · × (T ∩Hk)
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In particular, for each i, the subgroup T ∩Hi is a maximal semisimple subgroup
of Hi, and by Fact 6.3, the subgroups Si and T ∩Hi are conjugate in Hi. Thus S
and T are conjugate in G. �

Corollary 6.5. Let G be a definably linear definable group. Then G is semisimple
if and only if it is quasi-semisimple.

Proof. By Remark 6.2, we may assume that G is a quasi-semisimple group, and
we have just to prove that G is semisimple. By Lemma 6.4, the group G has a
semisimple subgroup S such that G = R(G)S. Since G is quasi-semisimple, this
implies that G = S is semisimple. �

For each subset X of a definable group G, the intersection of all definable
subgroups of G containingX is a definable subgroup by descending chain condition
on definable subgroups [27, Remark 2.13 (ii)]. This subgroup is denoted by d(X).

Theorem 6.6. Let G be a definably connected definable group. Then G has a
maximal quasi-semisimple subgroup S, unique up to conjugacy in G. Moreover

• G = R(G)S;
• R(G) ∩ S is central in S.

Moreover, SZ(G)/Z(G) is a maximal semisimple subgroup of G/Z(G), S′ is a
perfect group, S = d(S′), and S/Z(S) has no non-trivial normal abelian subgroup.

Proof. By Theorem 5.15, the group G/Z(G) is definably linear. By Corollary 6.5,
its semisimple subgroups are precisely its quasi-semisimple subgroups. By Lemma
6.4, it has a maximal quasi-semisimple subgroup S0/Z(G), unique up to conjugacy
in G/Z(G). Moreover, we have

G/Z(G) = R(G/Z(G))S0/Z(G)

and R(G/Z(G)) ∩ S0/Z(G) is contained in the (finite) center of S0/Z(G), and by
Lemma 5.6, the subgroup S0/Z(G) is perfect.

We consider S = d(S′

0). Since S0/Z(G) is perfect, we have S0 = S′

0Z(G) =
S′′

0Z(G), so S0 = SZ(G) and S′

0 = S′. In particular, we have S = d(S′). Moreover,
since S0/S

′′

0 = Z(G)S′′

0 /S
′′

0 is abelian, we obtain S′ = S′

0 = S′′

0 = S′′ and S′ is
perfect.

We show that S is a quasi-semisimple subgroup and that R(S) is contained
in Z(G) ∩ S. Since SZ(G)/Z(G) = S0/Z(G) is quasi-semisimple, it is definably
connected, and we have S = S◦(S∩Z(G)). Therefore S′

0 = S′ = (S◦)′ is contained
in S◦, and S = d(S′

0) is contained in S◦ too, so S is definably connected. Since
S/(Z(G)∩ S) ≃ SZ(G)/Z(G) = S0/Z(G) is semisimple, the radical R(S/(Z(G)∩
S)) is trivial (Lemma 5.6) and R(S) is contained in Z(G) ∩ S. Thus, if H is a
definable subgroup of S such that R(S)H = S, then we have (Z(G) ∩ S)H = S
and H ′ = S′ = S′

0. This implies that H contains S = d(S′

0) = d(H ′), so H = S
and S is quasi-semisimple.

We show that any quasi-semisimple subgroup of G is contained in a conjugate
of S. Let T be such a subgroup. We may assume that no quasi-semisimple subgroup
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of G contains properly T . If H/Z(G) is a definable subgroup of TZ(G)/Z(G) such
that R(TZ(G)/Z(G))H/Z(G) = TZ(G)/Z(G), then we have

TZ(G) = R(TZ(G))H = R(T )H

and T = R(T )(T ∩ H), so T ∩ H = T because T is quasi-semisimple. There-
fore H contains T , we have H/Z(G) = TZ(G)/Z(G), and TZ(G)/Z(G) is quasi-
semisimple. Now TZ(G)/Z(G) is a semisimple subgroup of G/Z(G), and it is
contained in a conjugate of S0/Z(G) = SZ(G)/Z(G) by Lemma 6.4, so we may
assume that TZ(G)/Z(G) is contained in SZ(G)/Z(G). In particular, we have
T ′ = (TZ(G))′ ≤ (SZ(G))′ = S′. But TZ(G)/Z(G) is a semisimple group, so it is
perfect (Lemma 5.6), and we obtain TZ(G) = T ′Z(G) and

T = T ′(T ∩ Z(G)) = d(T ′)(T ∩ Z(G))◦ = d(T ′)R(T )

Hence, since T is quasi-semisimple, we have T = d(T ′) and T is contained in
d(S′) ≤ S, as desired.

We show that S/Z(S) has no non-trivial normal abelian subgroup. If A/Z(S)
is a normal abelian subgroup of S/Z(S), then Z/Z(S) = Z(CG/Z(S)(A/Z(S))) is a
definable normal abelian subgroup of S/Z(S), and Z is a definable normal nilpotent
subgroup of S. But R(S) is contained in Z(G)∩ S, so we have Z◦ ≤ Z(G). Hence
Corollary 4.7 implies that

[S,A] ≤ [S,Z] = [S,Z◦] ≤ [S,Z(G)] = 1

and A is central in S. Thus S/Z(S) has no non-trivial normal abelian subgroup.
We prove that G = R(G)S and that R(G)∩S is central in S. Since G/Z(G) =

R(G/Z(G))S0/Z(G), we have G = R(G)S0 = R(G)SZ(G), and since G is de-
finably connected and R(G) contains Z(G)◦, we obtain G = R(G)S. Moreover,
(R(G) ∩ S)Z(S)/Z(S) is a normal solvable subgroup of S/Z(S). Thus, since the
previous paragraph says that S/Z(S) has no non-trivial normal abelian subgroup,
R(G) ∩ S is contained in Z(S). �

Corollary 6.7. Let R be an o-minimal expansion of a real closed field, and let G
be an R-definably connected R-definable group. Then, for any subgroup S of G,
the following conditions are equivalent:

• S is a maximal ind-definable semisimple subgroup (in the sense of [6]);
• S is the derived subgroup of a maximal quasi-semisimple subgroup.

Proof. Let S be a maximal ind-definable semisimple subgroup of G. By Fact 6.3
(2), there is a maximal semisimple subgroup T/Z(G)◦ of G/Z(G)◦ such that S =
T ′. Since Z(G)/Z(G)◦ is finite, TZ(G)/Z(G) is a maximal semisimple subgroup of
G/Z(G). But the maximal semisimple subgroups of G/Z(G) are conjugate (Facts
5.1 and 6.3), so Theorem 6.6 provides a maximal quasi-semisimple subgroup L of
G such that TZ(G)/Z(G) = LZ(G)/Z(G). Hence we have

S = T ′ = (TZ(G))′ = (LZ(G))′ = L′
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Now we derive the result from the conjugacy of the maximal ind-definable semisim-
ple subgroups in G (Fact 6.3) and from the conjugacy of the maximal quasi-
semisimple subgroups in G (Theorem 6.6). �
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la logique mathématique. [An attempt at reconciling algebraic geometry and mathematical
logic].

[29] L. van den Dries. Tame topology and o-minimal structures, volume 248 of London Mathe-
matical Society Lecture Note Series. Cambridge University Press, Cambridge, 1998.

[30] L. van den Dries. o-minimal structures and real analytic geometry. In Current developments
in mathematics, 1998 (Cambridge, MA), pages 105–152. Int. Press, Somerville, MA, 1999.

[31] R. B. Warfield, Jr. Nilpotent groups. Lecture Notes in Mathematics, Vol. 513. Springer-
Verlag, Berlin-New York, 1976.

[32] A. J. Wilkie. Model completeness results for expansions of the ordered field of real num-

bers by restricted Pfaffian functions and the exponential function. J. Amer. Math. Soc.,
9(4):1051–1094, 1996.
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