
HAL Id: hal-03704180
https://univ-poitiers.hal.science/hal-03704180

Submitted on 14 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algebraic �-groups as abstract groups
Olivier Frécon

To cite this version:
Olivier Frécon. Algebraic �-groups as abstract groups. Memoirs of the American Mathematical Society,
2018, 255 (1219), �10.1090/memo/1219�. �hal-03704180�

https://univ-poitiers.hal.science/hal-03704180
https://hal.archives-ouvertes.fr


Algebraic Q-groups as abstract groups

Olivier Frécon
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Abstract. We analyze the abstract structure of algebraic groups over an
algebraically closed field K.

For K of characteristic zero and G a given connected affine algebraic Q-
group, the main theorem describes all the affine algebraic Q-groups H such

that the groups H(K) and G(K) are isomorphic as abstract groups. In the

same time, it is shown that for any two connected algebraic Q-groups G and
H, the elementary equivalence of the pure groups G(K) and H(K) implies
that they are abstractly isomorphic.

In the final section, we apply our results to characterize the connected
algebraic groups all of whose abstract automorphisms are standard, when K

is either Q or of positive characteristic. In characteristic zero, a fairly general
criterion is exhibited.
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CHAPTER 1

Introduction

The present paper takes up systematically the following two questions, one
coming from algebra and the other from logic.

(1) When are two algebraic groups isomorphic as abstract groups ?
(2) When are two algebraic groups elementarily equivalent ?

There is a considerable body of prior work in the area, at least as far as the purely
algebraic problem is concerned, from a variety of points of view. Our approach is
general in the sense that we impose no purely structural conditions on the groups
considered, but restrictive in the sense that we always work over an algebraically
closed field, and our main result (Theorem 1.0.2 below) applies to groups defined
over Q (more precisely, to the groups of K-rational points of such groups, with K
a field of characteristic zero).

We also obtain results in positive characteristic. In particular, in §10 we charac-
terize the algebraic groups over algebraically closed fields of positive characteristic,
all of whose automorphisms are standard (Theorems 10.0.1 and 10.1.5). Here an
automorphism is called standard if it is rational up to an automorphism of the base
field. We also obtain a fairly general criterion for the same property in characteristic
zero (Theorem 10.2.1).

Our main results on abstract isomorphism and elementary equivalence of alge-
braic groups may be stated as follows. On the algebraic side, we have the following.

Corollary 9.0.7. – Let K and L be algebraically closed fields of characteristic
zero, and let G and H be connected affine algebraic groups defined over Q. Suppose
that neither G(K) nor H(L) can be decomposed as a central product of two infinite
closed subgroups with finite intersection. If G(K) and H(L) are isomorphic as
abstract groups, then G and H are isomorphic as algebraic groups.

Here we allow ourselves a significant structural condition on the groups in-
volved. As we will see, the corresponding statement in full generality is considerably
more subtle.

We can deal with elementary equivalence quite simply in considerable general-
ity.

Theorem 1.0.1. – Let K be an algebraically closed field of characteristic zero,
and let G and H be connected algebraic groups defined over Q. If G(K) and H(K)
are elementarily equivalent, then they are isomorphic.

Both Corollary 9.0.7 and Theorem 1.0.1 are derived from the following general
result.

Main Theorem 1.0.2. – Let G be a connected affine algebraic group defined
over Q, and K an algebraically closed field of characteristic zero. Then one may
find
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2 1. INTRODUCTION

• a connected algebraic group DG defined over Q;
• a finite central subgroup F of DG(K);
• an integer r ≥ 0

such that

G(K) is isomorphic to [DG(K)/F ]×Kr
+

and such that the algebraic groups H(K) which are abstractly isomorphic to G(K)
are precisely those which are isomorphic as algebraic groups to a group of the form

[DG(K)/α(F )]×Ks
+

where α is a quasi-standard automorphism of DG(K), and s is an admissible expo-
nent.

There is much to be explained here, namely what is meant by quasi-standard,
which exponents are admissible, and (more substantially) how the group DG may
be found.

We may dispose of the first two points at once. First, the term Ks
+ is absent

(i.e., the only admissible s is zero) if Z(G(K))◦ ≤ G(K)′; and otherwise all expo-
nents are admissible. Second, an isomorphism between direct products G1×· · ·×Gn

and H1 × · · · ×Hn is quasi-standard if it is induced by standard isomorphisms be-
tween the factors.

The definition of the algebraic group DG is subtle and motivated by develop-
ments in model theory, specifically the theory of groups of finite Morley rank. In
Poizat’s discussion of the Borel-Tits theorem, which will be reviewed below, one en-
counters issues of interpretability and definable isomorphism of algebraically closed
fields. Here one encounters similar issues involving finitely many fields interpreted
in the groupG, with no two definably isomorphic, and we must study their interplay
with the structure of G.

In addition, a critical point will be the existence of a natural category of groups
intermediate between the category of abstract groups and the category of algebraic
groups. We refer to G with this intermediate structure as the expanded pure group
G. The expanded pure group has more structure than an abstract group, but less
than an algebraic group. We will illustrate all this in §3 with a solvable algebraic
group whose maximal tori cannot be defined in the abstract group language, but
which become definable in the expanded pure group. This group will play a further
role as a critical configuration for the proof of our main theorem.

We remark further that the expanded pure group is designed to be invariant
under abstract automorphisms of the group G, and hence it is well suited to our
present purpose.

1.1. Related work

1.1.1. Abstract isomorphisms. The study of abstract isomorphisms of al-
gebraic groups is a classical subject of geometry and algebra. Among the earliest
works in the field, O. Schreier and B. L. Van Der Waerden considered projective
special linear groups [32], and showed that every isomorphism between two groups
of this class over infinite fields is effected by a collineation of the underlying projec-
tive spaces. Then isomorphisms between classical groups were studied, and most of
the theorems roughly say that such an isomorphism is composed of an isomorphism
of the ground fields and a linear isomorphism [15].
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Later, R. Steinberg investigated automorphisms of Chevalley groups over a
perfect field.

Fact 1.1.1. [33, Theorem 30, p.158] (see also [34]) Let G be a Chevalley group
such that Σ is an indecomposable root system and k is a perfect field. Then any
automorphism of G can be expressed as the product of an inner, a diagonal, a graph
and a field automorphism.

The analysis of abstract isomorphisms of algebraic groups culminates with the
work of A. Borel and J. Tits [4]. Initially, their aim is the study of automorphisms
of the group G(k) of rational points of an almost simple connected k-group, when k
is an infinite field, and the k-rank of G is > 0. More generally, in their article they
determinate homomorphisms from a large subgroup of G(k) to an almost simple
connected k′-group for a field k′. Roughly speaking, these homomorphisms are
composed of an homomorphism of ground fields and an isogeny. Some particular
cases were not treated in the article and were then considered by other authors.

Then there were some works on abstract isomorphisms of algebraic groups
not supposed be of Chevalley type or almost simple. This subject was mainly
studied by J. Tits [35] for perfect algebraic groups over R, and by A.A. Sharomet
and K.N. Ponomarëv [36, 29] for minimal solvable algebraic groups over fields of
characteristic zero. The problem is that, in this context, the techniques used for
simple groups are not effective.

More recently, generalizations of the Borel-Tits Theorem have been studied,
such as the homomorphisms from a simple algebraic group over a field of charac-
teristic zero to a non-reductive algebraic group [25]. Above all, P.-E. Caprace and
B. Mühlherr analyzed abstract isomorphisms between Kac-Moody groups, and the
main result was first stated for Kac-Moody groups over an algebraically closed field
[12], before being generalized [13, 11].

The present paper is a continuation of these works, with some notable features.

(1) In this article, no structural assumption on groups is made. Thus the
algebraic groups are not supposed of Chevalley type or almost simple.

(2) Our purpose is not the description of abstract isomorphisms. Indeed, the
analysis of abstract isomorphisms appears less relevant in our context than
in the simple case, since Example 3.0.1 (3) provides a centerless perfect
algebraic group with an abstract automorphism which is not continuous
for the Zariski topology. Based on this observation, we mainly focus on a
closely related question: if G is a given connected algebraic group and K
a field, for which connected algebraic groups H and fields L, the groups of
rational points G(K) and H(L) are abstractly isomorphic ?

(3) The methods and tools used in this paper comes from model theory and
groups of finite Morley rank: B. I. Zilber [37] and B. Poizat [28] showed
that model theory is potentially effective for our subject (see Fact 1.3.2).

(4) The use of groups of finite Morley rank imposes an important restriction
to us. Indeed, since any infinite field of finite Morley rank is algebraically
closed (Fact 1.2.1), this paper concerns only algebraic groups over such a
field, and even, a large part concerns only Q (see §1.2).

1.1.2. Elementary equivalence. The study of elementary properties of alge-
braic groups was initiated in 1961 by A. I. Maltsev [26]. It showed that the algebraic
groups G(m,K) and G(n, L), with G ∈ {GL, PG, SL, PSL} and m ≥ n ≥ 3, are
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elementarily equivalent if and only if m = n and the fields K and L are elementarily
equivalent.

More recently, E. I. Bunina and A.V. Mikhalev analyzed the elementary equiv-
alence of Chevalley groups.

Fact 1.1.2. [8, Theorem 6.10] Suppose that Chevalley groups G1 and G2 are
generated by algebraically closed fields K1 and K2 of characteristic not equal to
2, simple Lie algebras L1 and L2, and lattices L and M . Let L/L0 ≃ ϕ1 and
M/M0 ≃ ϕ2, where L0 and M0 are the sublattices of L and M generated by all
roots, and ϕ1 and ϕ2 are finite groups. Then G1 ≡ G2 if and only if K1 ≡ K2,
L1 ≃ L2, and ϕ1 ≃ ϕ2.

This result was generalized in [6] to all the infinite fields of characteristic not
equal to 2, and to local rings in [7]. While the statement of Theorem 1.0.1 concerns
elementary properties too, there are some differencies with previous works, since
remarks (1), (3) and (4) above apply to it.

1.2. The field of definition

1.2.1. An algebraically closed field. The methods and tools that will be
used in this paper come from the theory of groups of finite Morley rank. Indeed,
the geometric and algebraic classical methods seem not appropriate for the study
of the abstract structure of possibly non-simple groups. However, the use of groups
of finite Morley rank imposes several strong restrictions. Mainly, any infinite field
of finite Morley rank is algebraically closed (Fact 1.2.1 below), and consequently all
the algebraic groups in this article will be defined over an algebraically closed field.

Fact 1.2.1. [5, Theorem 8.1] A field definable in a structure of finite Morley
rank is either finite or algebraically closed.

1.2.2. A field of characteristic zero. Although we obtain various results
in positive characteristic, most of the article concerns algebraic groups over a field
of characteristic zero. Indeed, our knowledge of the abstract structure of alge-
braic groups in positive characteristic is insufficient, notably for unipotent groups.
Lemma 3.0.11 is a basic result concerning the abstract structure of algebraic groups
in characteristic zero.

Lemma 3.0.11. – LetG a connected (nonnecessarily affine) algebraic group over
an algebraically closed field K of characteristic zero. Let H be another algebraic
group defined over another algebraically closed field L. IfH is abstractly isomorphic
to G, and if G is nonabelian, there is a field isomorphism between K and L.

To our knowledge, such a result is out of reach in positive characteristic, as
exemplified by Baudisch [3] who constructs a connected nilpotent group of class
two and of finite Morley rank in which no infinite field can be interpreted. However,
the Baudisch example does not present an unsurmontable obstacle to extend our
analysis to nonzero characteristic since this group is not algebraic. Moreover, the
theorems of Rabinovich [30] and of Hrushovski and Zilber [23] allow to interpret
an infinite field of positive characteristic in some algebraic groups with a rather
poor structure. Nevertheless, these results do not cover all connected non-abelian
groups of finite Morley rank, and the complexity of arguments involved in [30] and
in [23] makes it clear that this is a very difficult question.
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Even so, in the presence of a perfect group or a centerless group, the above
problem does not arise, and one is able to obtain strong results on abstract auto-
morphisms of algebraic groups in positive characteristic, because nilpotent groups
are not necessarily involved in these cases. Thus, our main result on abstract auto-
morphisms is the following, where as in the rest of this paper, we denote by Z(G)
the center of any group G and by G′ its derived subgroup, and where the algberaic
group G defined over the field K is identified with the group of rational points
G(K) over K.

Theorem (Special case of Theorems 10.0.1 and 10.1.5). – LetG be a connected
algebraic group over an algebraically closed field K of positive characteristic. Then
the following three conditions are equivalent:

• any automorphism of G is standard;
• the algebraic group G and the pure group G are bi-interpretable;
• (1) the center Z(G) has no nontrivial torus;

(2) either G/G′ is a torus, or Z(G) has no nontrivial unipotent element;
(3) and the group G is not a central product of two proper closed sub-

groups U and V with U ∩ V finite.

It should be noted that the statement of Theorem 10.0.1 can be extended to
the case where K = Q as well, provided that other technical conditions than (1)
and (2) above are satisfied (see Remark 10.0.2). But Theorem 10.0.1 does not hold
when K is of positive transcendance degree over Q (Examples 3.0.1 (1) and (3)),
and in this last case, we prove the following statement.

Theorem 10.2.1. – Let G be a connected algebraic group over an algebraically
closed field K of characteristic zero. Then all of its automorphisms are standard if
it satisfies the following three conditions:

(1) either G is perfect or Z(G) is finite;
(2) the group G is not a central product of two proper closed subgroups U

and V with U ∩ V finite;
(3) for each characteristic abelian closed closed subgroup A of G, and each

maximal torus T of G, the centralizer CA(T ) is central in G.

Furthermore, under these conditions, the algebraic group G and the pure group G
are bi-interpretable.

1.2.3. The group of rational points of an algebraic group over Q. If K
is an algebraically closed field of characteristic zero not isomorphic to Q, then it has
a non-zero derivation δ, and thanks to it we obtain a centerless and perfect algebraic
group G such that the group of rational points G(K) has an abstract automorphism
which is not continuous for the Zariski topology (Example 3.0.1 (3)). In particular,
such a pure group G(K) is not bi-interpretable with the field K. Therefore, if
K = Q, then the pure group G(Q) is not bi-interpretable with the field Q too.
Nevertheless, since there is no derivation over Q, any abstract automorphism over
such a group G(Q) is algebraic up to an automorphism of the field Q (Theorem
10.0.1). Consequently, the expanded pure group G(Q) is bi-interpretable with the
field Q (Theorem 10.1.4).

Thus, in this paper, we focus mainly on algebraic groups G defined over Q, and
on groups of rational points G(Q) over Q. However, thanks to a model theoretical
argument, we will extend our main results to groups of rational points G(K) over
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any algebraically closed field K of characteristic zero, where the algebraic group G
is defined over Q.

Remark 1.2.2. – At this stage, we need to clarify a point that can be confusing
to the reader. Indeed, in this paper, an algebraic group over an algebraically closed
field K means the group of rational points over K. In particular, it is a group in
the abstract sense.

However, in order to avoid any ambiguity, there are exceptions, as the statement
of our main results in the introduction, or the proof of Theorem 1.0.2 in §9, where
we consider algebraic Q-groups, and we use the notation G(K) for an algebraic
group G and a field K: in these cases, the algebraic group G is a functor, not a
group.

1.3. Overview of the paper

1.3.1. Expanded pure groups. In the 80’s, B.I. Zilber [37] then B. Poizat
[28] dealt with a model-theoretic proof of a special case of the Borel-Tits theorem
on abstract isomorphisms of simple algebraic groups.

Fact 1.3.1. [28, Corollaire 4.17] Every pure group isomorphism s between
G, a simple algebraic group over the algebraically closed field K, and H , a simple
algebraic group over the algebraically closed field L, can be decomposed into a
transfer of structures induced by an isomorphism between the fields K and L,
followed by a quasi-rational function relative to L.

As this paper, Poizat’s proof of Fact 1.3.1 above relies strongly on groups of
finite Morley rank. A brief introduction on these groups is given in §2, and for more
details, we may refer to [1, 5, 27, 28].

Besides, it is noteworthy that the main part of the proof of [28, Corollaire
4.17] does not deal with simple groups, and leads us to the following general result,
where an isomorphism is called standard if it is rational up to isomorphism of base
fields, and the pure group G is said to be definably linear over the field L if there is
a definable isomorphism from G to an algebraic group over L (see Definition 4.0.4
and Remark 4.0.5 (3)).

Fact 1.3.2. [28, Proof of Corollaire 4.17] Let G be an algebraic group over an
algebraically closed field K, and let H be an algebraic group over an algebraically
closed field L. If the pure group G is definably linear over an interpretable field
K1, then every pure group isomorphism s between G and H is standard.

Thus, by studying an algebraic group G as a pure group, we can prove in some
cases that any pure group automorphism of G is standard. However, Examples
3.0.1 (2) and (3) provide centerless algebraic groups over Q all of whose automor-
phisms are standard, but not verifying the assumptions of Fact 1.3.2. Then we
introduce the expanded pure group (Definition 3.0.2). Roughly speaking, a subset
of an algebraic group G is definable in the expanded pure group if its image by any
algebraic isomorphism from G to another algebraic group is closed. Usually, the
two most natural ways for a model theorist to view an algebraic group is as a pure
group, or as a group, interpretable in a pure field, and the expanded pure group
is an intermediate notion between them: any definable subset of the pure group is
definable in the expanded pure group, and any definable subset of the expanded
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pure group is definable in the ground field. This notion is central for this article,
and the following result exemplifies its strength.

Theorem (Special case of Theorem 10.1.4). – Let G be a nontrivial connected
affine algebraic group over an algebraically closed field K. Then the following
conditions are equivalent:

• the expanded pure group G is definably linear over an interpretable field;
• every pure group isomorphism s between G and another algebraic group
H over an algebraically closed field L is standard.

1.3.2. A critical configuration. The group below has a central role in our
paper:

Gcrit(K) =









t a u
0 t v
0 0 1


 | t ∈ K, (a, u, v) ∈ K3




 ,

where K denotes an algebraically closed field of characteristic zero. In this special
centerless algebraic group, the maximal tori are not definable in the abstract group;
they are invariant under the abstract group automorphisms when the ground field
is K = Q, and not generally because the derivations on Q are trivial (Lemma 3.0.8
and Corollary 3.0.9). This makes them definable in the expanded pure group.

Theorem 3.0.12. – The maximal tori of Gcrit(Q) are definable in the expanded
pure group Gcrit(Q).

For this special group, the intermediate language is actually the full algebraic
language (Propositions 6.0.2).

Thanks to the critical configuration above, we can prove the following theorem.

Theorem 4.0.6. – Let G be a connected nilpotent algebraic group over Q.
Then, in the expanded pure group G, the quotient G/Z(G) is definably linear
(eventually over several fields, in the sense of Definition 4.0.4).

In the proof, we interpret the critical configuration above in a minimal counter-
example, and we apply Theorem 3.0.12 above to obtain a contradiction. The core
of the proof is largely based on the Burdges’ unipotence theory [9], and its im-
provements in [17] and [18, §3.2] (see §2.4 for a summary). Another key point of
this proof is the Hochschild-Mostow Theorem (Fact 4.0.8), for which we provide a
model-theoretic proof in the special case used here.

Fact (Special case of Fact 4.0.8). – If G is an affine algebraic group over
an algebraically closed field K of characteristic zero, and if G is generated by its
unipotent elements, then the holomorph of G, in the algebraic sense, inherits an
affine algebraic group structure.

1.3.3. ACF -groups. In order to generalize Theorem 4.0.6 to non-nilpotent
groups, in inductive processes we have to consider some algebraic groups neither
as pure groups, nor as expanded pure groups, nor as algebraic groups. Indeed,
if we consider the pure group - or the expanded pure group - associated with an
algebraic group G defined over an algebraically closed field K, then the structure
induced by G on a definable quotient G/H is intermediate between the pure group
- or the expanded pure group - associated with the algebraic group G/H , and the
algebraic group structure G/H . We encompass all these reducts of algebraic group
structures, by introducing an ACF -group as a reduct G = (G, · ,−1 , 1, · · · ) of the
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algebraic group structure of G (Definition 4.0.1). In particular, any ACF -group is
a group of finite Morley rank, and each interpretable group in an ACF -group is an
ACF -group too.

Furthemore, it appears that the notion of a definably linear group is not suf-
ficient to continue our analysis, since a definable quotient of a definably linear
group is not necessarily definably linear (Lemma 5.1.1). Therefore we introduce a
slightly weaker concept: the definably affine groups (Definition 5.1.2). They are the
definable quotients of definably linear groups.

The general study of ACF -groups provides the following results.

• Any ACF -group G has a largest connected definably affine subgroup de-
noted by A(G) (Corollary 5.2.2).

• Any ACF -group G has a smallest normal definable subgroup denoted by
W (G) such that G/W (G) is definably affine (Corollary 5.3.6). Moreover,
W (G) is nilpotent (Corollary 7.2.7).

1.3.4. Algebraic groups over Q. We saw in §1.3.2 above that for each con-
nected nilpotent algebraic group G over Q, the quotient group G/Z(G) is definably
linear, eventually over several fields, in the expanded pure group associated to G.
Following a thorough analysis of ACF -groups and of expanded pure groups asso-
ciated with a connected algebraic group over Q, we can prove the following result.

Theorem 7.3.2. – Let G be a connected algebraic group over Q. Then, in
the expanded pure group G, the quotient G/Z(G) is definably linear, and G′ is
definably affine.

This result is the final theorem of our preliminary analysis, and then we can
begin the proofs of main results, and in particular the construction of the group
DG in the main theorem, (Constructions 8.0.1, 8.0.3 and 8.0.12).

One of the difficult step for the proof of Theorem 7.3.2 is the definability of
tori in a solvable group G over an algebraically closed field of characteristic zero.
We approach this problem by using decent tori and pseudo-tori of groups of finite
Morley rank (Definition 2.3.1), a concept derived from tori of algebraic groups. In

particular, these notions are the basis of the analysis of Ũ -groups, and thus they
make use of the Burdges’ unipotence for algebraic groups. The central result on
the definability of tori is the following, to which §6 is dedicated. Again our critical
group Gcrit and Theorem 3.0.12 above are heavily used for a preliminary result
(Proposition 6.0.2).

Theorem 6.0.3. – Let G be a connected solvable algebraic group over Q. Then
T ∩ F (G) is central in G for each pseudo-torus T of the expanded pure group G.
where F (G) denotes the Fitting subgroup of G (see §2.3).

1.3.5. The group DG. The construction of the group DG in the main the-
orem is made in three steps in §8: Constructions 8.0.1, 8.0.3 and 8.0.12 (see also
Example 8.0.13). For any connected algebraic group G over Q, it goes as follows.
Based on the previous sections, and in particular on Theorem 7.3.2 above, we find
a canonical decomposition of G as a central product of connected algebraic sub-
groups C1, . . . , Cn and of a connected algebraic central subgroup Z such that the
intersections between the subgroups C1, . . . , Cn, Z are finite. Actually, for each
i = 1, . . . , n, there is a field Ki, interpretable in the expanded pure group G, such
that CiZ(G)/Z(G) is the largest connected subgroup of G/Z(G) definably linear



1.3. OVERVIEW OF THE PAPER 9

over Ki. The main problem for this step is that Ci depends on the algebraic group
G, not just on the pure group G.

For i = 1, . . . , n, we consider the (finite) torsion subgroup Xi of Z(G)◦ ∩ C′
i,

and we denote by ni its exponent. In a first crucial step, we show that the groups
Ci = Ci/Xi depend just on the pure group G (Corollary 8.0.11). Now we consider

a canonical extension Ci
∗
of Ci by a finite subgroup given by Lemma 8.0.2. This

algebraic group Ci
∗
depends just on the pure group G, and it has a finite normal

subgroup X of exponent ni such that, if H is any connected affine algebraic group
over Ki such that Ci and H are isomorphic as abstract groups, then there is an

algebraic surjective homomorphism from Ci
∗
to H with kernel in X .

The group DG is the direct product of groups C1
∗
, . . . , Cn

∗
and of an abelian

group T (G) which is Q+ if Z(G)◦G′/G′ is nontrival and torsion-free, and which

is (Q
∗
)r otherwise, where r is the Lie rank of Z(G)◦G′/G′. In particular, the

connected algebraic group DG depends just on the pure group G, and it has a
normal finite subgroup F such that G is algebraically isomorphic to DG/F × Q

s

for an integer s.
The last step is rather difficult: our problem is that F depends on the algebraic

structure of G, not just on its abstract structure (Remark 8.0.15). We have to show
that if H is any algebraic group over Q, abstractly isomorphic to G, then there is
a quasi-standard automorphism α of G such that H is algebraically isomorphic

to DG/α(F ) × Q
t
for an admissible integer t, i.e. t = 0 if Z(G)◦ ≤ G′, and

t is any integer otherwise, and where an isomorphism between direct products
G1 × · · · × Gn and H1 × · · · × Hn is said to be quasi-standard if it is induced by
standard isomorphisms between the factors.

Then we obtain the Main Theorem for K = Q (Theorem 8.0.18).

1.3.6. The Main Theorem for K 6= Q. The end of the proof of Main Theo-
rem is based on the study of elementary substructures of the pure group associated
with a connected affine algebraic group G over Q. We prove that if (G∗, · , −1 , 1)
is such a substructure, then

G = G∗Z(G)◦ (Proposition 9.0.2)

Since the pure groupG is of finite Morley rank, the theory T of the pure groupG has
a prime model (Definition 9.0.4 and Fact 9.0.5), and it is unique up to isomorphism.
From this fact and from the equality G = G∗Z(G)◦ above, we can prove Theorem
1.0.1 for K = Q (Corollary 9.0.6).

Corollary 9.0.6. – Let G and H be connected algebraic groups defined over
Q. If G and H are elementarily equivalent, then they are isomorphic.

At this stage, we are ready to prove the Main Theorem. We consider an alge-
braically closed field K of characteristic zero, two connected affine algebraic groups
G and H defined over Q, and the groups of rational points G(K) and H(K).
We assume that the pure groups G(K) and H(K) are isomorphic, and even only
elementarily equivalent. Then the pure groups G(Q) and H(Q) are elementary
equivalent too, so they are isomorphic by Corollary 9.0.6 above. From now on, the
Main Theorem for K = Q (Theorem 8.0.18) gives the algebraic structure of H(Q)
in terms of DG. After checking that we can recover this structure for H(K), we
obtain the Main Theorem and Theorem 1.0.1 in full generality.
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We deduce from the main result several consequences, as Corollary 9.0.7 from
the beginning and Corollary 9.0.9 below.

Corollary 9.0.9. – Let G and H be two connected (nonnecessarily affine)
algebraic Q-groups and K be any algebraically closed field of characteristic zero.
If G(K) and H(K) are abstractly isomorphic, then they have a common algebraic
central extension.

1.3.7. Standard isomorphisms. In §10, we consider abstract isomorphisms
between algebraic groups over an algebraically closed field of any characteristic,
and the bi-interpretability of algebraic groups with their pure groups associated.
The proofs depend mainly on §5 and §7, and on the construction of non-standard
automorphisms.

Our aim is to determinate all the algebraic groupsG over an algebraically closed
field K all of whose automorphisms are standard. This aim is achieved when K is
of positive characteristic and when K ≃ Q.

Theorem 10.0.1. – Let G be (the group of rational points of) a nontrivial
connected algebraic group over an algebraically closed field K, such that K has no
nonzero derivation (i.e. either its characteristic p is positive, or K ≃ Q). Then the
following conditions are equivalent:

• any isomorphism α from G to another algebraic group over an alge-
braically closed field is standard;

• any automorphism of G is standard;
• (1) (a) either p > 0, the center Z(G) has no nontrivial torus, and

either G/G′ is a torus, or Z(G) has no nontrivial unipotent
element;

(b) or p = 0, and either G is perfect (G = G′), or Z(G) is finite.
(2) the group G is not central product of two proper closed subgroups U

and V with U ∩ V finite.

When K is not isomorphic to Q, then K has a nonzero derivation, and we can
build numerous non-standard automorphisms on algebraic groups over K. In par-
ticular, the conditions (1) and (2) above are necessary (Lemmas 10.1.2 and 8.0.6),
but not sufficient to have all standard automorphisms (Examples 3.0.1 (1) and (3)).
Our aim is not achieved in this case, but we obtain a fairly general criterion. In-
deed, we finish this paper to showing that, if a connected algebraic group G over
an algebraically closed field K of characteristic zero satisfies the conditions (1) and
(2) above, and the condition (3) below, then all its automorphisms are standard
(Theorem 10.2.1):

(3) for each characteristic abelian connected closed subgroup A of G, and each
maximal torus T of G, the centralizer CA(T ) is central in G,



CHAPTER 2

Background material

Our main reference for groups of finite Morley rank is [5]. In this section we
recall some definitions and known results.

2.1. Groups of finite Morley rank

For the convenience of readers not familiar with groups of finite Morley rank,
we devote this part to the introduction of these groups. We refer to [1, 5, 27, 28]
for details and many other information.

2.1.1. Definable sets. A structure M is an underlying set M equipped with

• a possibly empty family {ci | i ∈ IC} of distinguished elements of M ,
called constants;

• a possibly empty family {fi | i ∈ IF } of functions with fi : M
ni → M for

each i ∈ IF , where ni ∈ N∗ and depends only on fi;
• a family {Ri | i ∈ IR} of relations on Mki for each i ∈ IR, where ki ∈ N∗

and depends only on Ri.

The three sets IC , IF , IR are the families of indices. It is worth noting that the
equality is always part of the relations, the reason why the family of relations is
never empty. Also, constants are nothing but 0-ary functions.

To concretize this formalism, a group can be regarded as the following structure

G = (G; · , −1, 1,=)

where G is the underlying non-empty set, · is the binary group operation, the unary
function −1 is group inversion, 1 is the identity element of the group G and = is
the only relation. It is common practice to exclude the equality from the notation.
A group structure considered with no other constant, function or relation is called
a pure group. Pure fields are other examples of structures. Such a structure is of
the form (K,+,−, · , 0, 1), where +, − and · are binary functions and 0 and 1 are
constants.

The set of terms is inductively defined using constants, functions and variables
symbols. An atomic formula is any expression of the form R(t1, · · · , tn), where
t1, · · · , tn are terms. The set of (first order) formulas is inductively defined :

• any atomic formula is a formula;
• if α and β are two formulas, then ¬α, α∧β, α∨β, α → β and α ↔ β are
formulas;

• if α is a formula and if x is a variable symbol, then ∃xα and ∀xα are
formulas.

A subset of a cartesian power of the underlying set M is said to be definable in the
structure M if it can be described using a formula. We note that, in this paper, the
word definable signifies definable with parameters. For example, the center Z(G)

11
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of a group G is definable in the pure group (G; · , −1, 1) as the set of the elements
z ∈ G satisfying the formula ∀x x ·z = z ·x. By contrast, in general, a set defined as
the set generated by a definable subset is not definable. Thus the derived subgroup
G′ of G is not necessarily definable.

A function or relation is said be definable if its graph is a definable set. Using
these notions, one extends the notion of definability, and introduces a structure that
is definable in another structure. Intuitively speaking, a structure M is said to be
definable in a structure M′ if its underlying set and signature are definable in M′.
This definition is extended further by allowing “quotients”, in other words definable
sets modulo definable equivalence relations. Some call these structures interpretable.
We will keep using the word “definable” since in a suitable model-theoretic setup
everything interpretable becomes definable.

A relevant group-theoretic example is an algebraic group over a field. By its
very definition, the underlying set of such a group, its group operations and identity
element are all definable using field operations. On the other hand, whether one
can recover up to a reasonable isomorphism, the underlying field and its geometry
using the bare group structure is a less obvious question. Indeed, the answer may
even be negative, and the quest for such an answer is a major activity in model
theory that lies among the aims of this paper.

2.1.2. Groups of finite Morley rank. For the model-theoretical definition
of Morley rank and of groups of finite Morley rank, we refer to [27, §6-7]. For
simplicity, we prefer to introduce the groups of finite Morley rank from the Borovik-
Poizat axiomatization.

First A.V. Borovik introduced a rank for any structure M. Namely, to any
non-empty interpretable set A, he associates a rank denoted by rk(A), belonging to
N ∪ {+∞} and defined by the following assertion

• for all n ∈ N, we have rk(A) ≥ n + 1 if and only if there are infinitely
many pairwise disjoint, interpretable, non-empty subsets of A each of rank
at least n.

In particular, an interpretable non-empty set A is of rank zero if and only if it
is finite.

Moreover, A.V. Borovik introduced several axioms, and B. Poizat provided the
following characterization of groups of finite Morley rank.

Fact 2.1.1. [28] We consider a structure of group (G; · , −1, 1, · · · ) not neces-
sarily assumed pure, and the function rk defined above.

The groupG is of finite Morley rank is and only if, for each definable application
f between two definable sets A and B, the following three axioms hold:

• the rank rk(A) is an integer;
• the set {b ∈ B | rk(f−1(b)) = n} is interpretable for each n ∈ N;
• there is an integer m such that, for any b ∈ B, the set f−1(b) is infinite
whenever it contains at least m elements.

If the group G is of finite Morley rank, then for each non-empty definable set
A, the integer rk(A) is the Morley rank of A.

The main class of examples of groups of finite Morley rank is algebraic groups
defined over an algebraically closed field (see [28] for more details). Indeed, if
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we consider an algebraically closed field structure K = (K; +, ., −1,−, 0, 1), then
one can show that the underlying set K has Morley rank one. Moreover, one can
that any structure definable in a structure of finite Morley rank is of finite Morley
rank too. Thus algebraic groups over algebraically closed fields are groups of finite
Morley rank. In this case, the definable sets are the constructible ones, and the
Morley rank is the Zariski dimension. The main conjecture on groups of finite
Morley rank concerns their links with algebraic groups in the simple case. It is the
following one.

Cherlin-Zilber Conjecture 2.1.2. – Any infinite simple group of finite
Morley rank is isomorphic as abstract group to a linear algebraic group defined over
an algebraically closed field.

At this stage, we have to note that, by Fact 1.2.1, the fields of finite Morley
rank are the finite ones, and the algebraically closed ones.

2.1.3. Descending chain condition on definable subgroups. The class
of groups of finite Morley rank is a subclass of stable groups, and more precisely of
ω-stable groups (see [27]). These last groups satisfy the descending chain condition
on definable subgroups. In other words, in a group of finite Morley rank, there is no
infinite descending chain of definable subgroups. This leads several natural notions,
and very useful in this paper.

Indeed, by the descending chain condition on definable subgroups, any group
G of finite Morley rank has a smallest definable subgroup of finite index.

Definition 2.1.3. – The connected component of a group G of finite Morley
rank is its smallest definable subgroup of finite index. It is denoted by G◦.

A groupG of finite Morley rank is said be connected if it is equal to its connected
component.

The link between the connected component of a group of finite Morley rank
and the identity component of an algebraic group is clarified by Lemma 4.0.3.

Again by the descending chain condition on definable subgroups, for any subset
X of a group G of finite Morley rank, the intersection of all the definable subgroups
of G which contain X is a definable subgroup of G.

Definition 2.1.4. – Let X be a subset of a group G of finite Morley rank.
The definable hull of X is the intersection of all the definable subgroups of G which
contain X . It is denoted by d(X).

This notion offers an analogue to the Zariski closure in algebraic geometry.

Definition 2.1.5. – Let S be a subset of a group G of finite Morley rank. An
infinite definable subgroup A of G is said to be S-minimal, if A is infinite, definable,
normalized by S and minimal for these conditions.

By the descending chain condition on definable subgroups, for each subset
S of G, any infinite normal definable subgroup B of G contains an S-minimal
subgroup. It is noticeable that, when G is solvable and connected, then any S-
minimal subgroup of G is abelian [5, Proposition 7.7].
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2.2. Fundamental theorems

Zilber’s Indecomposability Theorem is one of the fundamental results of the
theory of groups of finite Morley rank. It is rather technical, and we refer to [28, 5]
for its complete statement, which is not directly used in this paper. However, its
important corollaries will be used repeatedly.

Fact 2.2.1. Let G be a group of finite Morley rank. Then the following
assertions are true.

• (Special case of [5, Theorem 5.26]) The subgroup generated by a set of
definable connected subgroups of G is definable and connected.

• [5, Corollary 5.29] If H is a definable connected subgroup of G, the sub-
group [H,X ] is definable and connected for any subset X of G.

• [5, Corollary 5.38] If H is a solvable (resp. nilpotent) subgroup of class n
of G, then d(H) is also solvable (resp. nilpotent) of class n.

The following result due also to B. Zilber confers a central importance on fields
of finite Morley rank. We recall that, by Fact 1.2.1, an infinite field of finite Morley
rank is always algebraically closed.

Fact 2.2.2. [5, Theorem 9.1] Let G = A⋊H be a group of finite Morley rank
where A and H are two infinite definable abelian subgroups, A is H-minimal and
CH(A) = 1. Then G interprets an algebraically closed field K such that A ≃ K+

definably, and H is definably isomorphic to a subgroup of K∗.

B. Poizat proved the following two results, which will be very useful in our
context.

Fact 2.2.3. [28, Théorème 4.15] Let F be an algebraically closed field. Then,
in the pure field F , every infinite definable field K is definably isomorphic to F .

Fact 2.2.4. [28, Corollaire 3.3] Let K be a field of finite Morley rank of
characteristic zero. Then K+ has no nontrivial proper definable subgroup.

2.3. Decent tori and pseudo-tori

In [14], G. Cherlin defines decent tori as an analogue to algebraic tori. In [20],
we introduce pseudo-tori, as a more general notion, independent of torsion. Here
we relate just the more general results used in this paper concerning pseudo-tori,
but their proofs are very often similar to their analogues in [14] concerning decent

tori. Moreover, pseudo-tori are the basis of Ũ -groups defined below.

Definition 2.3.1. – Let T be a divisible abelian group of finite Morley rank.

• We say that T is a decent torus if T is the definable hull of its torsion.
• We say that T is a pseudo-torus if no definable quotient of T is definably
isomorphic to the additive group K+ of an interpretable field K.

We note that any decent torus is a pseudo-torus, and any pseudo-torus is con-
nected. In Fact 2.3.3, we summarize the main properties of pseudo-tori. Before
stating it, we have to recall that the Fitting subgroup F (G) of an arbitrary group
G is the subgroup generated by all the normal nilpotent subgroups of G. In groups
of finite Morley rank, its main property is its definability.

Fact 2.3.2. [5, Theorem 7.3]. In any group G of finite Morley rank, the Fitting
subgroup is nilpotent and definable.
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Fact 2.3.3. Let G be a group of finite Morley rank. Then,

(i) [20, Theorem 1.7] the maximal pseudo-tori of G are conjugate;
(ii) [20, Proposition 2.7] for any pseudo-torus T of G, NG(T )

◦ centralizes T ;
(iii) [20, Corollaries 2.8 and 2.9] F (G) has a unique maximal pseudo-torus,

and this one is central in G◦;
(iν) [20, Corollary 2.13] if N is a normal definable subgroup of G, the maximal

pseudo-tori of G/N are the images of the maximal pseudo-tori of G.

2.4. Unipotence

In [9], J. Burdges introduced some analogues of unipotent algebraic groups
for groups of finite Morley rank. In [17, 18], we continued the analysis of these

concepts. Here, we consider Ũ-groups introduced in [18]. This notion heavily
depends on pseudo-tori [20]. We summarize the general results needed, and we
refer to [9, 17, 18] for a more complete introduction to these unipotence notions.

To obtain a notion analogous to the unipotence in algebraic groups, Burdges
[9] first introduces the notion of indecomposable group.

Definition 2.4.1. – An abelian connected group A of finite Morley rank is
indecomposable if it is not the sum of two proper definable subgroups. If A 6= 1,
then A has a unique maximal proper definable connected subgroup J(A), and if
A = 1, let J(1) = 1.

The first result is nontrivial and is consequence of Fact 2.3.3 (iν) above.

Fact 2.4.2. [20, Lemma 2.2] Let G be a group of finite Morley rank and H a
definable normal subgroup ofG. If B is a divisible indecomposable definable abelian
subgroup of G/H , then there is an indecomposable definable abelian subgroup A
of G such that B = AH/H .

In particular, Fact 2.4.2 says that any (nonnecessarily abelian) divisible group of
finite Morley rank is generated by its indecomposable definable abelian subgroups.

We recall the definitions and properties of Ũ -groups.

Notation 2.4.3. – For any group G of finite Morley rank and any interpretable
field K of characteristic zero, we denote by UK(G) the subgroup of G generated by
its indecomposable definable abelian subgroups A such that A/J(A) is definably
isomorphic to K+.

Definition 2.4.4. –

• A group G of finite Morley rank is said to be a UK-group, where K is an
interpretable field of characteristic zero, if G = UK(G). We say that a
UK-group G is homogeneous if each definable connected subgroup of G is
a UK-subgroup.

• For every group G of finite Morley rank, we denote by Ũ(G) the sub-
group of G generated by its normal homogeneous UK-subgroups, for the
interpretable fields K of characteristic zero, and by its normal definable
connected subgroups of bounded exponent.

• A Ũ -group is a group G of finite Morley rank such that G = Ũ(G).

Remark 2.4.5. –
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• By Fact 2.2.4, any divisible indecomposable definable abelian subgroup is
either a pseudo-torus or a UK-group for an interpretable field K of char-
acteristic 0.

• By Fact 2.3.3 (iν) and Fact 2.4.8 below, in any Ũ -group, each pseudo-
torus is trivial.

The facts 2.4.6 – 2.4.12 below come from [18], but their proofs are not given
in [18]. Indeed, they are mainly obtained by using [20] in place of [14], and their
proofs are similar to the ones of [9, 10, 17].

Fact 2.4.6. (see [18, Fact 3.10] and [10, Theorem 3.4]) Let G be a divisible
nilpotent group of finite Morley rank, and let T be its maximal pseudo-torus. Then
G interprets some fields K1, · · · , Kn of characteristic zero such that

G = T ∗ UK1
(G) ∗ UK2

(G) ∗ · · · ∗ UKn
(G),

where ∗ denotes the central product.

Fact 2.4.7. (see [18, Fact 3.11] and [17, Theorem 4.11]) Let G be a connected
group of finite Morley rank, and K an interpretable field of characteristic zero.
Assume that G acts definably by conjugation on H , a nilpotent UK-group. Then
[G, H ] is a homogeneous UK-subgroup.

Fact 2.4.8. (see [18, Fact 3.13] and [17, Theorem 5.4]) Let G be a nilpo-

tent Ũ -group. Then G interprets some algebraically closed fields K1, · · · , Kn of
characteristic zero such that the following decomposition holds:

G = B × UK1
(G) × UK2

(G)× · · · × UKn
(G)

where B is a definable connected characteristic subgroup of bounded exponent, and
UKs

(G) a homogeneous UKs
-subgroup (for s ∈ {1, 2, . . . , n}).

Fact 2.4.9. (see [18, Fact 3.15] and [17, Proposition 5.7]) Let G be a torsion-
free group of finite Morley rank containing no nontrivial pseudo-torus. Then G is a

Ũ -group if and only if, for each interpretable field K of characteristic zero, UK(G)
is a homogeneous UK-subgroup.

Fact 2.4.10. (see [18, Fact 3.16] and [17, Corollary 5.8])

• Every definable quotient of a Ũ -group is a Ũ -group.

• Every definable connected subgroup of a Ũ -group is a Ũ -group.

Fact 2.4.11. (see [18, Fact 3.18] and [9, Lemma 2.11]) Let G be a group of
finite Morley rank, U and V be two definable subgroups with V normal in G, and
K be an interpretable field of characteristic zero. Then UK(UV/V ) = UK(U)V/V .

Fact 2.4.12. (see [18, Fact 3.25] and [17, Results 5.8, 6.12 and 6.20]) Let G be

a solvable connected group of finite Morley rank. Then F (G)/Z(G) is a Ũ -group.

Furthermore, the proof of [17, Theorem 6.10] applied with Ũ -groups provides
the following result.

Fact 2.4.13. (see [17, Theorem 6.10]) Let G be a connected group of finite
Morley rank. Assume that G acts definably by conjugation on H a solvable con-

nected group of finite Morley rank. Then [G,H ] is a Ũ -group.



CHAPTER 3

Expanded pure groups

We focus on a very particular algebraic group. We consider the following sub-
group of GL(3,K) as a critical configuration, where K is an algebraically closed
field of characteristic zero:

Gcrit(K) =








t a u
0 t v
0 0 1



 | t ∈ K∗, (a, u, v) ∈ K3



 .

This group will play a key role for us. In this centerless algebraic group, the
maximal tori are not definable in the abstract group; they are invariant under the
abstract group automorphisms when K ≃ Q because the derivations on Q are
trivial, and not generally (Lemma 3.0.8 and Corollary 3.0.9). In order to remedy to
this problem, we will define an expanded pure group (Definition 3.0.2). The main
result of this section says that the maximal tori of the group Gcrit(Q) are definable
in the expanded pure group (Theorem 3.0.12). Actually, for this special group the
expanded pure group language is the full algebraic language (Propositions 6.0.2).

Later, our critical configuration will play a central role in the proofs of Theorem
4.0.6 and Proposition 6.0.2.

We recall that a derivation on a ring R is an additive homomorphism δ : R → R
such that δ(xy) = xδ(y) + yδ(x) for every (x, y) ∈ R × R. If R is a field of
characteristic zero, its elements x such that δ(x) = 0 for each derivation δ on R is
the algebraic closure of the prime subfield in R. In particular, any derivation on
the field Q is defined by δ(x) = 0.

Example 3.0.1. – In the examples below, the group Gcrit is as above.

(1) Let Q̃ denote a proper elementary extension of the pure field Q, let δ be

a nonzero derivation on Q̃, and let α := β1,δ be the automorphism of

Gcrit(Q̃) defined in Lemma 3.0.8.
Then the image α(T ) of the maximal torus T := {diag(t, t, 1) | t ∈

Q̃∗} is not Zariski closed. Consequently, the maximal tori of Gcrit(Q̃),
and more generally of Gcrit(K) for any algebraically closed field K of
characteristic zero, are not definable in the pure group language.

Furthermore, the latter implies that the automorphism α is not con-
tinuous for the Zariski topology of Gcrit(Q̃), so α is not standard.

(2) Fact 1.3.2 does not cover all the algebraic groups over an algebraically
closed field all of whose automorphisms are standard. Indeed, by Lemma
3.0.8 below, all of the abstract automorphisms of pure group Gcrit(Q) are
standard. Nevertheless, by part (1) above, no isomorphism from Gcrit(Q)
to an algebraic group over an interpretable field is definable in the pure
group Gcrit(Q).

17
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(3) Now we consider the following perfect connected affine algebraic group

R(K) :=









a b r s
c d t u
0 0 a b
0 0 c d


 | (a, b, c, d, r, s, t, u) ∈ K8, ad− bc = 1






and we define H by H(K) := R(K)/Z(R(K)). Then H(K) is a perfect
centreless connected algebraic group over K.

If K is not isomorphic to Q, and if δ is a nonzero derivation of K,
the abstract automorphism β of R(K) defined by

β




a b r s
c d t u
0 0 a b
0 0 c d


 =




a b r + δ(a) s+ δ(b)
c d t+ δ(c) u+ δ(d)
0 0 a b
0 0 c d




induces an automorphism β of H(K). Arguing as for the automorphism α

above, we show that β is not continuous for the Zariski topology of H(K).
Thus β is not standard and no isomorphism from H(K) to an algebraic
group over an interpretable field is definable in the pure group H(K).

Besides, as in (2), the group H(Q) does not verify the hypotheses of
Fact 1.3.2, but nevertheless it follows from Theorem 10.0.1 below that all
its abstract automorphisms are standard.

The three examples in 3.0.1 above motivate the following definition.

Definition 3.0.2. – Let G = (G; · , −1 , 1,=) be the pure group associated to
an algebraic group G defined over an algebraically closed field K. Let L be the
language of pure groups.

• A subset A of Gn for n ∈ N is said to be subdefinable if, for each pure
group isomorphism f : G → H , where H is an algebraic group over an
algebraically closed field L, the image of A by f is definable in L.

• Let A be the family of subdefinable sets of G and, for each subdefinable
set A, let RA be a relation symbol. We consider the language

L
∗ = L ∪ (

⋃

A∈A

RA)

• The expanded pure group associated to G, or expanded pure group G, is
the L ∗-expansion G ∗ = (G; · · · ) of G , where RG

∗

A = A for each A ∈ A .

Remark 3.0.3. – Let G = (G; · , −1 , 1,=) be the pure group associated to an
algebraic group G defined over an algebraically closed field K.

(1) For each n ∈ N and each A ⊆ Gn, the set A is definable in the expanded
pure group if and only if it is subdefinable.

(2) Let H be an algebraic group defined over an algebraically closed field L,
and let f : G → H be a pure group isomorphism. For n ∈ N∗ and any
subdefinable subset A of Gn, the image of A by f is subdefinable in H.

(3) In particular, any automorphism of G preserves the definable sets of the
expanded pure group G.

B. Poizat studied in [28] the abstract isomorphisms of simple algebraic groups
defined over any algebraically closed field. The main part of the arguments does
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not deal just with simple groups, and in particular the last part of the proof of [28,
Corollaire 4.17] provides a rather general piece of information about the abstract
isomorphisms, which was given earlier (Fact 1.3.2). It is noticeable that, thanks to
the notion of an expanded pure group, we may obtain the very general following
fact, which is fundamental for us. We do not provide its proof, since it is just a
rewriting of Poizat’s proof [28, Corollaire 4.17].

Fact 3.0.4. [28, Proof of Corollaire 4.17] Let α be an abstract isomorphism
between two algebraic groups G and H over algebraically closed fields. If, in the
expanded pure group G, there are an interpretable field K and a definable iso-
morphism from a definable section U/V to an algebraic group over K, then the
isomorphism α|U/V : U/V → α(U)/α(V ) is standard.

Furthermore, we notice that the definition of an expanded pure group is rather
robust.

Lemma 3.0.5. – Let G = (G; · , −1 , 1,=) be the pure group associated to
an algebraic group G defined over an algebraically closed field K. Let G0 be an
expansion of a group structure, with G0 interpretable in the expanded pure group
G. If a set A is subdefinable in G0, then it is subdefinable in G too.

Proof – Let G0 the domain of G0, and let A be a subset of Gn
0 for n ∈ N,

with A subdefinable in G0. Since G0 is interpretable in the expanded pure group
G, there are m ∈ N, a subset B of Gm and an equivalence relation R over B, with
B and R subdefinable in G , such that G0 = B/R. We denote by AG the preimage
of A in (Gm)n. Then we have just to prove that AG is subdefinable in G .

Let f : G → H be a pure group isomorphism, where H is an algebraic group
over an algebraically closed field L. Then f induces an isomorphism f from G0 to
a group GB with domain f(B)/f(R). Moreover, since the group structure G0 is
interpretable in the expanded pure group G, the group GB is interpretable in L.
Now, since f is an isomorphism from G0 to GB, the set f(A) is definable in L. Thus
f(AG) is definable in L, and A is subdefinable in G . �

Nevertheless, by the following remark, this notion is not preserved in elementary
extensions.

Remark 3.0.6. – Let Gcrit be as in Examples 3.0.1 above. If K is a proper
elementary extension of Q, then the pure group Gcrit(K) is an elementary exten-
sion of Gcrit(Q). Moreover, if T denotes any maximal torus of Gcrit(Q), then its

extension T̃ to Gcrit(K) is a maximal torus of Gcrit(K). But T is definable in the

expanded pure group Gcrit(Q) by Theorem 3.0.12 below, while T̃ is not definable in
the expanded pure group Gcrit(K). Indeed, if α is as in Example 3.0.1 (1), then

α(T̃ ) is not Zariski closed, so neither α(T̃ ), nor T̃ by Remark 3.0.3, is definable in
the expanded pure group Gcrit(K).

From now on, we study the abstract automorphisms of some algebraic groups.

Lemma 3.0.7. – Let K be an algebraically closed field of characteristic zero.
Then each abstract automorphism α of the group

G =

{(
t a
0 1

)
| t ∈ K∗, a ∈ K

}

has the form α = β ◦ µ for µ a field automorphism of K, and β an inner automor-
phism of G.
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Proof – Let u ∈ K \ {−1, 0, 1}, x =

(
1 u
0 1

)
and y =

(
u 0
0 1

)
. Then we

have G = A ⋊H for A =

{(
1 a
0 1

)
| a ∈ K

}
and H =

{(
t 0
0 1

)
| t ∈ K∗

}
.

In particular, A = CG(x) and H = CG(y) are definable in the pure group G. We
define a field L as an expansion of the additive group A where the multiplication
is defined as follows: for all the nonzero elements r and s of L, let rs := xgh where
(g, h) ∈ H×H is the unique couple such that r = xg and s = xh. Thus, L is a field
definable in the pure group G, and the group G = A ⋊H is definably isomorphic
to L+ ⋊L∗ in the pure group G, where L∗ ≃ H acts on L+ ≃ A by multiplication.
By Fact 3.0.4 (or Fact 1.3.2), we have α = β ◦ µ for µ a field automorphism of K,
and β an algebraic automorphism of G.

We show that β is an inner automorphism of G. Since H is abelian and self-
normalizing in G, it is a Cartan subgroup, and β(H) is a Cartan subgroup too.
Hence H and β(H) are conjugate, and we may assume that β stabilizes H . The
action of H on A \ {0} is transitive, so there exists h ∈ H such that β(x) = xh,
and we may assume that β fixes x. Therefore, since A ≃ K+ is torsion-free of
dimension one, and since x is nontrivial, β centralizes A. Thus we have β(xy) = xy.

But if β inverts H , then we have β(xy) = xy−1

, and y2 centralizes x, contradicting
u 6∈ {−1, 0, 1}. Hence β does not invert H . Since H is a torus of dimension one, its
algebraic automorphisms are the identity map and the inversion map, so we obtain
β(h) = h for each h ∈ H , and β centralizes G = AH , proving the result. �

The following lemma will be very useful in case K = Q, since any derivation
on the field Q is trivial.

Lemma 3.0.8. – Let K be an algebraically closed field of characteristic zero,
and let Gcrit be as in Example 3.0.1. Then each abstract automorphism α of the
group Gcrit(K) has the form α = βr,δ ◦ γ ◦µ for µ a field automorphism of K, γ an
inner automorphism of Gcrit(K) and βr,δ an abstract automorphism of Gcrit(K)
such that, for each t ∈ K∗ and each (a, u, v) ∈ K3, we have

βr,δ(




t a u
0 t v
0 0 1



) =




t ra+ δ(t) ru + δ(v)
0 t v
0 0 1



 ,

where δ is a derivation of K and r a nonzero element of K.

Proof – The unipotent part of G := Gcrit(K) is its Fitting subgroup, so it is
characteristic and definable in the pure groupG. Also, its center Z and the preimage
U in G of the center of G/Z are characteristic and definable too. Moreover, since

Z =








1 0 u
0 1 0
0 0 1



 |u ∈ K



 and U =








1 a u
0 1 0
0 0 1



 | (a, u) ∈ K2



 ,

there is an isomorphism of algebraic groups between the quotient group G/U and{(
t a
0 1

)
| t ∈ K∗, a ∈ K

}
, and Lemma 3.0.7 shows that the automorphism α

of G/U induced by α has the form α = γ ◦ µ for µ a field automorphism of K,
and γ an inner automorphism of G/U . Hence we may assume that α centralizes
G/U , and we have just to prove that α has the form α = βr,δ ◦ γ for γ an inner
automorphism of G induced by an element of U .
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We consider

C =









t a 0
0 t 0
0 0 1


 | t ∈ K∗, a ∈ K




 .

This subgroup is abelian and self-normalizing in G, so it is definable in the pure
group G, and it is a Cartan subgroup of G. In particular, C and α(C) are two
Cartan subgroups of V = UC = Z ⋊ C, and they are conjugate by an element of
Z ≤ U . Hence we may assume that α normalizes C and we have just to prove
that α has the form α = βr,δ ◦ γ for γ an inner automorphism of G induced by an
element of C ∩ U .

The center of V is C ∩ U , and there is an isomorphism of algebraic groups
between V/(C ∩ U) and

{(
t a
0 1

)
| t ∈ K∗, a ∈ K

}
.

Then Lemma 3.0.7 shows that the automorphism α of V/(C ∩U) induced by α has
the form α = γ ◦ µ for µ a field automorphism of K, and γ an inner automorphism
of V/(C ∩ U). Since U/(C ∩ U) is the unique nontrivial normal abelian subgroup
of V/(C ∩U), it is characteristic in V/(C ∩U), and γ and µ normalize it. But V/U
is abelian, so γ centralizes it, and since α centralizes G/U , the field automorphism
µ centralizes V/U too. Furthermore, V/U is a torus of dimension one, hence µ is a
field automorphism centralizing K∗ and, consequently, µ is the identity map. Now
α = γ is an inner automorphism of V/(C ∩ U), and there exists r ∈ K∗ such that,
for each t ∈ K∗ and each (a, u) ∈ K2, there is b ∈ K such that

α(




t a u
0 t 0
0 0 1



) =




t b ru
0 t 0
0 0 1



 .

Moreover, since α normalizes C, the element b depends just on t and a, and there
is a map ν0 : K∗ ×K → K such that for each t ∈ K∗ and each a ∈ K, we have:

α(




t a 0
0 t 0
0 0 1



) =




t ν0(t, a) 0
0 t 0
0 0 1



 .

In addition, we have

G′ =









1 0 u
0 1 v
0 0 1


 | (u, v) ∈ K2




 ,

and α centralizes G/U , so there is a map µ0 : K × K → K such that, for each
(u, v) ∈ K2, we have

α(




1 0 u
0 1 v
0 0 1



) =




1 0 µ0(u, v)
0 1 v
0 0 1



 ,
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and µ0 satisfies µ0(u, 0) = ru for each u ∈ K. Thus, for each t ∈ K∗ and each
(a, u, v) ∈ K3, we have

α(




t a u
0 t v
0 0 1


) = α(




1 0 u
0 1 v
0 0 1


) · α(




t a 0
0 t 0
0 0 1


)

=




t ν0(t, a) µ0(u, v)
0 t v
0 0 1


 .

By considering t ∈ K∗, (a, u, v) ∈ K3 and the equality α(xy) = α(x)α(y) for

x =




t 0 0
0 t 0
0 0 1



 (resp. x =




1 0 u
0 1 0
0 0 1



) and y =




1 t−1a 0
0 1 0
0 0 1



 (resp.

y =




1 0 0
0 1 v
0 0 1



), we obtain ν0(t, a) = ν0(t, 0) + tν0(1, t
−1a) (resp. µ0(u, v) =

ru+µ0(0, v)). Moreover, by considering a ∈ K, and the equality α(xy) = α(x)α(y)

for x =




1 a 0
0 1 0
0 0 1


 and y =




1 0 0
0 1 1
0 0 1


, we obtain µ0(a, 1) = µ0(0, 1) +

ν0(1, a). Since we have µ0(a, 1) = ra + µ0(0, 1), this yields ν0(1, a) = ra for each
a ∈ K, and ν0(t, a) = ν0(t, 0) + ra for each (t, a) ∈ K∗ ×K.

Now we consider the maps ν : K → K and µ : K → K defined by ν(0) = 0
and, for each t ∈ K∗ and each v ∈ K, ν(t) = ν0(t, 0) and µ(v) = µ0(0, v). Then,
for each t ∈ K∗, (a, u, v) ∈ K3, we have

α(




t a u
0 t v
0 0 1


) =




t ra+ ν(t) ru + µ(v)
0 t v
0 0 1


 .

We note that we have ν(1) = 0 and µ(0) = 0. Moreover, if γ denotes the conjugation

by




1 −r−1µ(1) 0
0 1 0
0 0 1


 ∈ C ∩ U , we obtain

(α ◦ γ−1)(




1 0 0
0 1 1
0 0 1


) =




1 0 0
0 1 1
0 0 1


 ,

so we may assume µ(1) = 0, and we have just to prove that α = βr,δ for a derivation
δ of K.

We consider t ∈ K∗ and the equality α(xy) = α(x)α(y) for x =




t 0 0
0 t 0
0 0 1




and y =




1 0 0
0 1 1
0 0 1


. Since µ(1) = 0, we obtain ν(t) = µ(t), and since ν(0) =

0 = µ(0), we find ν = µ. From now on, we have just to prove that ν is a derivation
of K.
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Firstly, for each (v, v′) ∈ K2, by considering the equality α(xy) = α(x)α(y) for

x =




1 0 0
0 1 v
0 0 1



 and y =




1 0 0
0 1 v′

0 0 1



, we find ν(v + v′) = ν(v) + ν(v′).

Secondly, for each (t, t′) ∈ (K∗)2, by considering the equality α(xy) = α(x)α(y)

for x =




t 0 0
0 t 0
0 0 1



 and y =




t′ 0 0
0 t′ 0
0 0 1



, we find ν(tt′) = tν(t′)+t′ν(t). Since

we have ν(tt′) = 0 = tν(t′) + t′ν(t) as soon as t = 0 or t′ = 0, the map ν is indeed
a derivation, and this finishes the proof. �

We note that any field automorphism of a field K preverves the maximal tori
of any affine algebraic group over K. Since derivations on the field Q have trivial,
we deduce the following result from Lemma 3.0.8.

Corollary 3.0.9. – Let Gcrit be as in Example 3.0.1, and let α be an abstract
automorphism of Gcrit(Q). Then α(T ) is a maximal torus of Gcrit(Q) for each
maximal torus T of Gcrit(Q).

In order to prove Theorem 3.0.12, we need to study a little more the algebraic
group Gcrit.

Proposition 3.0.10. – Let K be an algebraically closed field of characteristic
zero, let G1 be an algebraic group over K, and let Gcrit be as in Example 3.0.1.
If G1 is abstractly isomorphic to the group Gcrit(K), then Gcrit(K) and G1 are
algebraically isomorphic.

Proof – Let G := Gcrit(K) and let µ : G → G1 be an abstract group isomor-
phism. We remark that G has no proper subgroup of finite index, so G and G1 are
connected as pure groups as well as algebraic groups.

We consider the subgroup H of G formed by the matrices




1 0 u
0 1 0
0 0 1



 for

u ∈ K. So H is a normal definable subgroup of the pure group G, since it is

the centralizer in G of the subgroup M formed by the matrices




1 a u
0 1 v
0 0 1


 for

(a, u, v) ∈ K3. We may consider the groups H ⋊ G/M and G′/H ⋊ G/M where
G/M acts by conjugation on H and G′/H : they are definable in the pure group G
because M = CG(H) is definable.

Let x1 ∈ H and x2 ∈ G′/H be two fixed nontrivial elements. We consider
the fields K1 and K2 with underlying sets H and G′/H respectively, such that the
additive groups (K1)+ and (K2)+ are H and G′/H respectively, and where the
multiplications are defined as follows: for i = 1, 2, for all the nonzero elements r

and s of Ki, let rs := xgh
i where (g, h) ∈ G/M × G/M is the unique couple such

that r = xg
i and s = xh

i . Thus K1 and K2 are interpretable in the pure group G,
and H (resp. G′/H) is definably isomorphic to (K1)+ (resp. (K2)+).

Now in the pure group G1, there are two interpretable fields L1 and L2, isomor-
phic to K1 and K2 respectively, such that µ(H) and µ(G′)/µ(H) are isomorphic to
(L1)+ and (L2)+ respectively, definably in the pure group G1. But the groups G1

and G are algebraic over K, so they are interpretable in the pure field K. Hence
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Fact 2.2.3 says that, in the pure field K, the fields K1, K2, L1 and L2 are definably
isomorphic to K. Thus the abelian group G′

1 = µ(G′) is isomorphic to K+ ×K+,
definably in the pure field K.

We consider a maximal torus T of G1 and its centralizer C. Then C is a Cartan
subgroup of G1, and we have G1 = CG′

1. Therefore, since G′
1 ≃ G′ is abelian, the

subgroup Z(C) ∩ G′
1 is central in G1, and since G1 ≃ G is centerless, it is trivial.

Now, by nilpotence of C, we obtain G1 = G′
1 ⋊ C. But G′

1 ≃ G′ is a maximal
abelian subgroup of G1 ≃ G, so C ≃ G1/G

′
1 acts faithfully by conjugation on

G′
1 ≃ K+×K+. Hence, in the pure field K, the group C is definably isomorphic to

an abelian definable subgroup of GL(2,K), and there is an algebraic isomorphism
f from G1 to a subgroup of








t1 a u
b t2 v
0 0 1


 | (t1, t2, a, b, u, v) ∈ K6, t1t2 − ab 6= 0




 ≃ (K+×K+)⋊GL(2,K)

such that

• f(G′
1) ≃ K+ × K+ is formed by the matrices where t1 = t2 = 1 and

a = b = 0;
• f(µ(H)) ≃ K+ by the matrices where t1 = t2 = 1 and a = b = v = 0;
• f(C) by some matrices where u = v = 0.

In addition, since µ(H) is normal in G1, we obtain b = 0 for each element of f(G1).
Moreover µ(M)/G′

1 is an infinite abelian torsion-free subgroup of G1/G
′
1, definable

in the pure groupG1, so C ≃ G1/G
′
1 contains a closed infinite torsion-free subgroup,

that is a nontrivial unipotent subgroup. Since the unipotent part of







t1 a 0
0 t2 0
0 0 1



 | (t1, t2) ∈ (K∗)2, a ∈ K





has dimension one, it is contained in f(C), and we obtain







1 a 0
0 1 0
0 0 1



 | a ∈ K



 ⊆ f(C) ⊆








t1 a 0
0 t2 0
0 0 1



 | (t1, t2) ∈ (K∗)2, a ∈ K





Since f(C) is abelian, has torsion, and is connected because it is isomorphic to
G/G′ which is divisible, the group f(C) is forced to be equal to








t a 0
0 t 0
0 0 1



 | t ∈ K∗, a ∈ K



 .

Thus we obtain f(G1) = G, as desired. �

Lemma 3.0.11. – Let G a connected (nonnecessarily affine) algebraic group over
an algebraically closed field K of characteristic zero. Let H be another algebraic
group defined over another algebraically closed field L. IfH is abstractly isomorphic
to G, and if G is nonabelian, there is a field isomorphism between K and L.

Proof – Let B be a Borel subgroup of G. It is definable in the pure group G
(Fact 2.2.1 and Lemma 4.0.3), and it is nonabelian since G is nonabelian. So B′ is

a nontrivial nilpotent Ũ -group (Fact 2.4.13). Moreover, since K has characteristic
zero, B′ is torsion-free and the pure group G interprets a field K0 of characteristic
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zero (Fact 2.4.8). By Fact 2.2.3, the fields K and K0 are definably isomorphic in
the pure field K. Since G and H are abstractly isomorphic, there is a field L0

interpretable in the pure group H , with L0 isomorphic to K0. In the same way, the
fields L and L0 are isomorphic, so the fields K and L are isomorphic too. �

Theorem 3.0.12. – If Gcrit is as in Example 3.0.1, then the maximal tori of
Gcrit(Q) are definable in the expanded pure group Gcrit(Q).

Proof – Let G := Gcrit(Q). We consider another algebraically closed field L, a
pure group GL interpretable in L, and an abstract group isomorphism µ : G → GL.
We have to show that µ(T ) is definable in L for any maximal torus T of G.

By Lemma 3.0.11, there is a field isomorphism δ : L → Q, and Proposition
3.0.10 gives an algebraic isomorphism f from δ(GL) to G. In particular, the map
f ◦ δ ◦ µ is an abstract automorphism of G. Now Corollary 3.0.9 says that, if T is
a maximal torus of G, then (f ◦ δ ◦ µ)(T ) is a maximal torus of G too. But f is an
algebraic isomorphism and δ a field isomorphism, hence µ(T ) is a maximal torus of
GL, as desired. �

We conclude this section by noting that it follows from Corollary 3.0.9 and
Theorem 3.0.12 that the following are equivalent for our group Gcrit(K):

• the base field K is isomorphic to Q;
• the set of semisimple elements is invariant under automorphisms;
• the set of maximal tori is closed under automorphisms;
• the maximal tori are definable in the expanded pure group.





CHAPTER 4

Unipotent groups over Q and definable linearity

In this paper, all groups considered are reducts of the structure of an algebraic
group defined over an algebraically closed field: pure groups, expanded pure groups,
algebraic groups, or groups in an intermediate language. In the following, for
instance we consider a quotient group G/H - where G is an algebraic group over an
algebraically closed field, and H a normal subgroup, definable in the pure group G -
with the structure induced by the pure group G, or by the expanded pure group G.
In these cases, G/H has neither a pure group structure or an expanded pure group
structure, nor an algebraic group structure. Thus, it becomes more convenient to
introduce a concept unifying all these structures.

Definition 4.0.1. – Let G be an algebraic group over an algebraically closed
field K.

• A reduct G = (G, · ,−1 , 1, · · · ) of the algebraic group structure of G,
containing the group language, is said to be an ACF -group.

• If p denotes the characteristic of K, it is said to be an ACFp-group.

In particular, any ACF -group is a group of finite Morley rank, and each inter-
pretable group in an ACF -group is an ACF -group too. In the pure field K, any
ACF -group G is constructible [28, §4.a], and there is an isomorphism definable in
the pure field K, between G and an algebraic group over K [28, Théorème 4.13].

Remark 4.0.2. – In the following, when we consider an ACF -group G in a
statement, the word definable will be associated to the definability in this ACF -
group. When we will consider the definability in the pure field, in the pure group,
or other, then we will specify.

The connected component G◦ of an ACF -group G as a group of finite Morley
rank is not necessarily equal to the one G◦◦ of G as a constructible group (the
identity component of G). Indeed, if p is a prime integer, the pure group K+⊕Fp is
connected as a group of finite Morley rank, and it is not connected as a constructible
group. However, by Lemma 4.0.3, the situation is different for ACF0-groups. Then,
in the rest of this paper, for any ACF0-group G, we will denote by G◦ its connected
component as a group of finite Morley rank, as well as a constructible group.

Lemma 4.0.3. – Let G be an ACFp-group for p a prime or zero. If G◦ 6= G◦◦,
then p is a prime and G◦/G◦◦ is an abelian p-group.

Moreover, G has a normal definable connected subgroup I contained in G◦◦

such that G◦/I is an abelian p-group.

Proof – We notice that, if p is a prime and if G is an ACFp-group such
that G◦/G◦◦ is a nontrivial abelian p-group, then G◦◦ contains (G◦)′. Let I/(G◦)′

denote the image of the endomorphism f of G◦/(G◦)′ defined by f(x) = xn where

27
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n is the index of G◦◦ in G◦. Then I is a normal definable connected subgroup of
G, contained in G◦◦ and such that G◦/I is an abelian p-group. Hence we have just
to prove that, if G◦ 6= G◦◦, then p is a prime and G◦/G◦◦ is an abelian p-group.

We may assume G = G◦ and we proceed by induction on the Morley rank
of G. Let A be a G-normal definable connected subgroup of G◦◦. If A 6= 1, the
induction hypothesis applied with G/A provides the result. Hence we may assume
that G◦◦ contains no nontrivial G-normal definable connected subgroup. Then
Zilber’s Indecomposability Theorem [5, Results 5.26 and 5.29] yields [G◦◦, G] =
1. Now Z(G) contains G◦◦ and it is a definable subgroup of finite index in the
connected group G, so G = Z(G) is abelian.

If p = 0, we consider N = {gn | g ∈ G} where n = |G/G◦◦|. It is a connected
definable subgroup of the pure group G contained in G◦◦, and the previous para-
graph gives N = 1. Thus G has bounded exponent, and since G is a constructible
group defined over an algebraically closed field of characteristic zero, it is finite.
But G is connected, so G = 1, contradicting G 6= G◦◦.

From now on, p is a prime. We denote by R the smallest subgroup of G
containing G◦◦ such that p does not divide the index [G : R] of R in G. We show
that G = R. We consider N = {gn | g ∈ G} where n = |G/R|. It is a connected
definable subgroup of the pure group G contained in R. Thus, if N 6= 1, the
induction hypothesis applied with G/N shows that G/G◦◦N is a p-group. Since
G/N has no nontrivial p-element, we obtain G = G◦◦N = R as desired. If N = 1,
then G has bounded exponent m, and p does not divide m. Since G is an ACFp-
group, it is constructible, and for any integer r, any subgroup of exponent r is finite,
unless p divides r. But p does not divide m, so G is finite, and it is trivial since it
is connected, contradicting G 6= G◦◦. Thus we have proved that G = R, and since
G is abelian, this implies that G/G◦◦ is a p-group. �

The following notion is central for our paper.

Definition 4.0.4. – A group of finite Morley rank is said to be definably
linear (over finitely many interpretable fields K1, . . . , Kn), if G has an interpretable
faithful linear representation over the ring K1 ⊕ · · · ⊕Kn.

In other words, G definably embeds in H1 × · · · × Hn, where Hi is an affine
algebraic group over Ki for each i = 1, . . . , n.

In this paper, when we consider any group H interpretable in a group G, or more
generally in a structure M, the group H is considered with its structure induced by
G, or M, not just with its structure of pure group (see also Remark 4.0.2).

In particular, a group H definable in a group G of finite Morley rank is said
to be definably linear if the group H with the structure induced by G is definably
linear.

Remark 4.0.5. –

(1) If G is an ACF -group, definably linear over the fields K1, . . . ,Kn, and if
G is interpretable in the pure algebraically closed field K, then the fields
K1, . . . ,Kn are isomorphic to K, definably in K by Fact 2.2.3. So G is
an affine algebraic group over K by [28, §4.e (2)].

(2) Let H be a group, definable in a group G of finite Morley rank. If H is
definably linear (in G) over the fields K1, . . . ,Kn, then every definable
subgroup of H is definably linear (in G) over K1, . . . ,Kn too.
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(3) Consider an ACF -group G definably linear over one algebraically closed
field L. By [28, §4.e (2)], there is a definable isomorphism ρ : G → H for
an affine algebraic group H over L, and any subgroup of H is definable in
G if and only if it is closed.

In this section, we prove our first theorem. Its proof is based on the previous
section and on a Hochschild-Mostow’s theorem (Facts 4.0.8 and 4.0.9).

Theorem 4.0.6. – Let G be a connected nilpotent algebraic group over Q.
Then, in the expanded pure group G, the quotient G/Z(G) is definably linear.

Remark 4.0.7. – This result fails when G is a nilpotent algebraic group over
an algebraically closed field K of characteristic zero not isomorphic to Q.

Indeed, consider a nonzero derivation δ of K, the group

G =









1 a b x
0 1 a y
0 0 1 z
0 0 0 1


 | (a, b, x, y, z) ∈ K5





,

and the group automorphism α : G → G defined for each (a, b, x, y, z) ∈ K5 by:

α(




1 a b x
0 1 a y
0 0 1 z
0 0 0 1


) =




1 a b+ δ(a) x+ δ(y)
0 1 a y + δ(z)
0 0 1 z
0 0 0 1


 .

Then suppose toward a contradiction that G/Z(G) is definably linear in the ex-
panded pure group G. That is G/Z(G) is definably isomorphic to H1 × · · · ×Hn,
where Hi is an affine algebraic group over an interpretable field Ki for each i
(Lemma 5.1.6). Moreover, we may assume that, for each i 6= j, the fields Ki

and Kj are not definably isomorphic, and that Hi is not trivial. Since Hi is a
UKi

-group for each i, and since G′ contains Z(G), Facts 2.4.6 and 2.4.11 provide
G = UK1

(G) ∗ · · · ∗ UKn
(G), where ∗ denotes the central product, and Fact 2.4.7

gives G′ = UK1
(G)′ × · · · × UKn

(G)′. If, for some i, we have UKi
(G)′ = 1, then

UKi
(G) is central in G, contradicting that Hi is nontrivial. Since G is nilpotent,

this implies that Z(G) ∩ UKi
(G)′ is infinite for each i. Since Z(G) is torsion-free

and of dimension one over K, its Morley rank is one in the expanded pure group G
too, and we obtain Z(G) ≤ UKi

(G)′ for each i. Thus we find n = 1, and G/Z(G)
is definably linear over K1.

From now on, sinceK1 andK are definably isomorphic in the pure fieldK (Fact
2.2.3), the definable subsets of G/Z(G) are precisely its constructible subsets. In
particular, for each constructible subset X/Z(G) of G/Z(G), the image of X by
any group automorphism of G is constructible too. But, if we set

X =








1 0 0 x
0 1 0 0
0 0 1 z
0 0 0 1


 | (x, z) ∈ K2





,

then X is constructible and X ∩ α(X) is not constructible, contradicting that
G/Z(G) is definably linear.
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Our study starts with the analysis of some automorphisms of algebraic groups.
The following theorem by Hochschild-Mostow, together with Lemma 4.0.10, has
several consequences very useful for us.

An affine algebraic group is said to be conservative if the action of its algebraic
automorphism group on its algebra of polynomial functions is locally finite. Actu-
ally, by [22], a group G is conservative if and only if the holomorph of G inherits
an affine algebraic group structure with which it is the semidirect product, in the
sense of affine algebraic groups, of G and its algebraic automorphism group.

Fact 4.0.8. [22, Theorem 3.2] Let G be a connected affine algebraic group
over the algebraically closed field F of characteristic zero. Then G is conservative
if and only if one of the following two conditions is satisfied:

(1) the center of G is finite over its unipotent part;
(2) the center of a maximal reductive subgroup of G has dimension at most

1.

Actually, only a special case of this result will be used: when the group is
generated by its unipotent elements. Fortunately, for this particular case, we can
provide below a model theoretic proof for Fact 4.0.8.

Fact 4.0.9. (Special case of Fact 4.0.8) Let K be an algebraically closed field
of characteristic zero, and let G be an affine algebraic group over K. If G is
generated by its unipotent elements, then there is an affine algebraic group of the
form H = G ⋊ A, where A is an algebraic subgroup acting faithfully on G by
conjugation and such that A with its action on G is isomorphic to the group of
algebraic automorphisms of G.

Proof – We may assume G 6= 1. We consider the pure language of fields.
Then G is an interpretable group and it has a finite Morley rank. Moreover, G×G
definably embeds in L = GLm(K) for a positive integer m. Since there are only
finitely many Jordan decompositions of unipotent elements in L, there is a finite
subset X of nontrivial unipotent elements of G×G such that each element of the set
U of the nontrivial unipotent elements ofG×G is conjugate in L to a unique element
of X . For each x ∈ X , let Vx = d(x). Since each x ∈ X is nontrivial and unipotent,
Vx is definably isomorphic to K+. Thus F = {V g

x | (x, g) ∈ X ×L, xg ∈ G×G} is
a uniformly definable family of subgroups of G× G such that V1 ∩ V2 = 1 for any
distinct elements V1 and V2 of F . Moreover, for each x ∈ X , the subgroup Vx is
unipotent, so all the elements of ∪F are unipotent and, by choice of X , we have
∪F = U ∪ {1}.

We consider n nontrivial unipotent elements u1, · · · , un of G, such that ui+1 6∈
d(u1, · · · , ui) for each i < n, and such that G = d(u1, · · · , un). The existence
of n is ensured by Zilber’s Indecomposability Theorem ([28, Theorem 2.9] or [5,
Theorem 5.26]), and because, for each nontrivial unipotent element u of G, the
subgroup d(u) is definably isomorphic to K+, so it is connected. In particular, we
notice that G is connected.

From now on, by Zilber’s Indecomposability Theorem, there is an integer k such
that, for any elements F1, · · · , Fn of F , the product (F1 · · ·Fn)

k is a subgroup of
G × G. In particular, the family H0 of these products is a uniformly definable
family of subgroups of G×G. Let

H = {F ∈ H0 | rk(F ) = rk(G), F ∩ (G× {1}) = 1, F ∩ ({1} ×G) = 1}.
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It is a uniformly definable family of subgroups of G×G, and since rk(F ) = rk(G)
for each F ∈ H , the connectedness of G implies that each element of H is the
graph of an algebraic group automorphism of G. Conversely, if α is an algebraic
group automorphism of G, then for each i, the element (ui, α(ui)) is nontrivial
and unipotent, so d((ui, α(ui))) ∈ F . Moreover, the graph ∆ of α contains the
subgroup H ∈ H0 generated by the subgroups d((ui, α(ui))) for i = 1, · · · , n. But
we have G = d(u1, · · · , un), so there is a definable surjection from H to G, and
rk(H) ≥ rk(G). Since ∆ contains H , we obtain rk(H) = rk(∆) = rk(G) and
H ∈ H . Now, since ∆ is the graph of an automorphism of G, it is connected, so
∆ = H belongs to F . This proves that H is the set of graphs of the algebraic
group automorphisms of G. In particular the group Autalg(G) of all the algebraic
group automorphisms of G is interpretable in K.

Furthermore, our argument proves that each ϕ ∈ Autalg(G) is characterized by
ϕ(u1), · · · , ϕ(un), so the multiplication in Autalg(G) is interpretable too, as well
as its action on G. Thus, there is an algebraic group of the form G ⋊ A, where A
is an algebraic subgroup acting faithfully on G by conjugation and such that, for
each ϕ ∈ Autalg(G), there exists a ∈ A satisfying ϕ(g) = ga for each g ∈ G.

To finish, we have to show that the algebraic group G ⋊ A is affine. Since
G∗ = G ⋊ A◦ is connected and since A◦ ∩ Z(G∗) = 1, the group A◦ is affine by
Rosenlicht’s Theorem [31, §5, Theorem 13]. Then G∗ is affine by [31, §5, Theorem
16 p.439], and G⋊A is affine too by [31, §5, Corollary 1 p.430], as desired. �

Lemma 4.0.10. – Let K be a field of finite Morley rank of characteristic zero,
and let G be an affine algebraic group over K. If G is generated by its unipotent
elements, then any definable automorphism of G is an algebraic automorphism.

Proof – We may assume G 6= 1. For any nontrivial unipotent element u of G,

the subgroup d(u) is contained in the Zariski closure 〈u〉 of 〈u〉, which is definably

isomorphic to K+. By Fact 2.2.4, we obtain d(u) = 〈u〉, and d(u) is closed and
connected (as an algebraic group, as well as a group of finite Morley rank). Let
u1, · · · , un be n nontrivial unipotent elements of G such that ui+1 6∈ d(u1, · · · , ui)
for each i < n, and such that G = d(u1, · · · , un). The existence of n is ensured
since d(u) is connected for each unipotent element u, and by the finiteness of the
Morley rank of G.

Let α be a definable automorphism of G. We show that α is an algebraic group
automorphism of G. Let ∆α be the graph of α. Then ∆α is a definable subgroup
of G × G, and it is definably isomorphic to G. In particular ∆α is connected
(as a group of finite Morley rank). But G = d(u1, · · · , un), so we have ∆α =
d(〈(ui, α(ui)) | i = 1, · · · , n〉). For each i = 1, . . . , n, the subgroup d(ui, α(ui))

is contained in 〈(ui, α(ui))〉, which is definably isomorphic to K+. So we obtain

d(ui, α(ui)) = 〈(ui, α(ui))〉 (Fact 2.2.4), and ∆α contains ∆0 = 〈〈(ui, α(ui))〉 | i =

1, · · · , n〉. Since 〈(ui, α(ui))〉 is a connected closed subgroup for each i, the group
∆0 is connected and closed too. In particular, it is definable. But it is contained in
∆α, and it contains (ui, α(ui)) for each i, hence it is equal to ∆α, and ∆α is closed.
Thus, the automorphism α is interpretable in the pure field K, and α is algebraic.
�

Corollary 4.0.11. – Let G be a group of finite Morley rank interpreting a
field K of characteristic zero. We assume that G acts faithfully and definably on
an affine algebraic group U over K. If U is generated by its unipotent elements,
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then U ⋊ G is definably isomorphic to a definable subgroup of an affine algebraic
group over K.

Proof – By Fact 4.0.8 or 4.0.9, there is an affine algebraic group of the form
H = U ⋊ A for a closed subgroup A, such that H is isomorphic to the holomorph
of U . By Lemma 4.0.10, each element of G acts on U by algebraic group automor-
phism, so there is a definable isomorphism from G to a definable subgroup of A.
�

Proposition 4.0.12. – Let G be a nilpotent group of finite Morley rank in-
terpreting a field K of characteristic zero. Then G has a unique largest definable
subgroup definably isomorphic to a unipotent algebraic group over K.

Proof – We may assume that G is connected. We proceed by induction
on the Morley rank of G. Let N be a definable subgroup, maximal among the
ones definably isomorphic to a unipotent algebraic group over K. We may assume
N < G and we consider a maximal proper definable connected subgroup M of G
containing N . By induction hypothesis, N is definably characteristic in M , so N
is normal in G.

Let U be a definable subgroup of G definably isomorphic to a unipotent alge-
braic group over K. We may assume that N does not contain U and that U is
minimal for these conditions. Then, by induction hypothesis, we have G = NU .
Also, U has a normal definable subgroup V such that V is definably isomorphic
to a unipotent algebraic group over K, and such that U = V ⋊ A for a definable
subgroup A definably isomorphic to K+. By minimality of U , N contains V and,
finally, we have U = A ≃ K+. Hence, by Fact 2.2.4, we have G = N ⋊ U , and
either CU (N) = 1 or CU (N) = U .

In the first case, Corollary 4.0.11 gives the result. In the second case, G is
definably isomorphic to N ×K+, so we have the result too. �

In the pure language of fields, if A is an indecomposable unipotent algebraic
group over a field K of characteristic zero, then J(A) = 1. This remark induces
the following notion.

Notation 4.0.13. – In each group G of finite Morley rank, we consider

V (G) = 〈J(A) | A is a divisible indecomposable definable abelian subgroup of G〉.

Remark 4.0.14. –

• By Zilber’s Indecomposability Theorem, for each group G of finite Morley
rank, V (G) is definable and connected.

• Moreover, by Fact 2.4.2, V (G/H) = V (G)H/H for every normal definable
subgroup H of G.

Lemma 4.0.15. – Let G be a nilpotent group of finite Morley rank, and let K be
an interpretable field of characteristic zero such that G is a UK-group. Then G is
definably isomorphic to a unipotent algebraic group overK if and only if V (G) = 1.

Moreover, in this case, G is a homogeneous UK-group.

Proof – First we assume that G is definably isomorphic to a unipotent al-
gebraic group G̃ over K. Then each nontrivial indecomposable definable abelian
subgroup A of G̃ is contained in a closed subgroup B definably isomorphic to K+.

So Fact 2.2.4 yields A = B and J(A) = 1, and we have V (G̃) = 1 and V (G) = 1.



4. UNIPOTENT GROUPS OVER Q AND DEFINABLE LINEARITY 33

Now each indecomposable subgroup of G is a UK-group, so G is a homogeneous
UK-group.

If V (G) = 1, we proceed by induction on the rank of G. We may assume
G 6= 1. Let M be a maximal proper connected definable subgroup of G. Then we
have V (M) ≤ V (G) = 1 and, by induction hypothesis, M is definably isomorphic
to a unipotent algebraic group over K. Since G is a UK-group, there is an indecom-
posable definable abelian subgroup A of G not contained in M such that A/J(A)
is definably isomorphic to K+. In particular, by the maximality of M , we have
G = MA. On the other hand, since J(A) ≤ V (G) is trivial, A is definably isomor-
phic to K+. Now Proposition 4.0.12 says that G = MA is definably isomorphic to
a unipotent algebraic group over K. �

Corollary 4.0.16.– LetG be a nilpotent UK-group of finite Morley rank for an
interpretable field K of characteristic zero. If there are finitely many algebraically
closed fields K1, . . . ,Kn such that G is definably isomorphic to a direct product of
unipotent groups U1, . . . , Un over K1, . . . ,Kn respectively, then V (G) = 1.

Proof – In this case, each nontrivial indecomposable definable abelian sub-
group A of G is contained in a definable subgroup B which is definably isomorphic
to (K1)+×· · ·× (Kn)+. So Fact 2.2.4 says that A is definably isomorphic to (Ki)+
for some i and that J(A) = 1. In particular, this proves that V (G) = 1. �

Now, by a relatively technical argument, we can prove Theorem 4.0.6, as a
consequence of the previous study.

The proof goes as follows: we study the structure of a minimal putative coun-
terexample G to Theorem 4.0.6. Then we find an element g of G such that
CG(g)/Z(G) is definably isomorphic to Q+ × Q+ in the pure field Q, and not
definably linear in the expanded pure group G. By considering the automorphisms
of CG(g)/Z(G), we interpret a group H in the expanded pure group G, with H
isomorphic to the group Gcrit(Q) of Example 3.0.1. Then we find in H a maximal
torus which is not definable in the expanded pure group G, and a contradiction
follows from Theorem 3.0.12.

Proof of Theorem 4.0.6 – We proceed by induction on the nilpotence class
of G and on the Morley rank of G.

(1) We may assume that G is a UL-group for an interpretable field L, that
G/Z(G) is a homogeneous UL-group, and that V (G) � Z(G).

By Fact 2.4.6, if T0 is the maximal pseudo-torus of G, then G interprets
some fields K1, · · · , Kn of characteristic zero such that G = T0 ∗ UK1

(G) ∗ · · · ∗
UKn

(G), where ∗ denotes the central product, so G/Z(G) is definably isomorphic
to UK1

(G)/Z(UK1
(G)) × · · · × UKn

(G)/Z(UKn
(G)). But, if G is not a UKi

-group
for some i = 1, . . . , n, then the induction hypothesis shows that UKi

(G)/Z(UKi
(G))

satisfies the result for each i, so G satisfies the result. Hence we may assume that
G is a UL-group for an interpretable field L. In particular, by Lemma 4.0.15, we
have just to prove that V (G) is central in G, and we may assume V (G) � Z(G).
We note that, by Facts 2.4.9 and 2.4.12, G/Z(G) is a homogeneous UL-group.

(2) G has a unique G-minimal subgroup A.

If G has two distinct G-minimal subgroups A1 and A2, we consider Zi/Ai =
Z(G/Ai) for i = 1, 2. By induction hypothesis and Corollary 4.0.16, we have
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V (G) ≤ Z1 ∩Z2. Now V (G) is central in G, contradicting V (G) � Z(G). Hence G
has a unique G-minimal subgroup A.

(3) Let M be the set of the maximal proper connected definable subgroups of
G. Then Z(M) contains Z(G) for each M ∈ M , and there is at most one element
MV of M such that Z(G) contains V (MV ). Let M ∗ = M \ {MV }.

If there are two distinct elements M1 and M2 of M such that V (M1) and
V (M2) are contained in Z(G), then Proposition 4.0.12 and Lemma 4.0.15 show
that G/Z(G) = M1M2/Z(G) satisfies the theorem. Hence there is at most one
element MV of M such that Z(G) contains V (MV ).

For each M ∈ M , by induction hypothesis, Z(M) contains V (M). If Z(M)
does not contain Z(G), then M does not contain Z(G). Moreover, since G is
nilpotent and connected, its torsion part is contained in its maximal torus, which
is central in G, so Z(G) is connected, and we have G = MZ(G) by maximality of
M . But this implies that Z(M) = Z(G)∩M , so G/Z(G) is definably isomorphic to
M/Z(M), and we obtain V (G) ≤ Z(G), contradicting V (G) � Z(G). Hence Z(M)
contains Z(G) for each M ∈ M .

(4) There are M1 and M2 in M such that G = M1M2, and if N = M1 ∩M2,
then N is contained in any element of M and satisfies N = G′V (G), V (N) ≤
Z(G) ≤ N and G/N ≃ L+ × L+ definably in G.

Let M1 ∈ M . Since G is a UL-group, G/M1 is definably isomorphic to L+

(Facts 2.2.4 and 2.4.11). By Fact 2.4.2, G has an indecomposable subgroup I0
covering G/M1. Since G is nonabelian, we have G 6= I0, and there exists M2 ∈ M

containing I0. Therefore G/M2 is definably isomorphic to L+, and G/(M1 ∩M2)
is definably isomorphic to L+ × L+. Let N = M1 ∩ M2. Since Z(M1) ∩ Z(M2)
centralizes M1M2 = G, the previous paragraph yields Z(G) = Z(M1) ∩ Z(M2). In
particular, N contains Z(G) and we have

V (N) ≤ V (M1) ∩ V (M2) ≤ Z(M1) ∩ Z(M2) = Z(G),

so N/Z(G) ≤ G/Z(G) is definably isomorphic to a unipotent group over L (Lemma
4.0.15). Moreover, since G/N ≃ L+ × L+, we have V (G) ≤ N .

If there exists M3 ∈ M not containing N , then G/(N ∩ M3) is definably
isomorphic to L+×L+×L+. Now we find N1, N2 and N3 such that, for i = 1, 2, 3,
we have Ni = M i

1 ∩ M i
2 for some maximal definable subgroups M i

1 and M i
2, and

such that G = 〈N1, N2, N3〉. By the previous paragraph, Ni contains Z(G) for
i = 1, 2, 3, the quotient Ni/Z(G) is definably isomorphic to a unipotent group over
L, and Proposition 4.0.12 shows that G/Z(G) is definably isomorphic to a unipotent
group over L too. Now Lemma 4.0.15 contradicts V (G) � Z(G). Hence each
element of M contains N . Moreover, we have G′V (G) ≤ N and G/N ≃ L+ × L+,
and G/G′V (G) is definably isomorphic to a direct product of copies of L+ by
Lemma 4.0.15, so the intersection of the elements of M is contained in G′V (G).
Hence we obtain N = G′V (G).

(5) Let Z such that Z/A = Z(G/A). Then V (G) ≤ Z ≤ Z(N) and N = G′Z.

By induction hypothesis, Z contains V (G), and G/Z is definably isomorphic
to a unipotent group over L (Lemma 4.0.15). For each z ∈ Z \ Z(G), the groups
G/CG(z) and A are definably isomorphic, so we have CG(z) ∈ M , and N ≤
CG(z). Thus N centralizes Z. Moreover, CG(z) ∈ M implies that A ≃ G/CG(z)
is definably isomorphic to L+. We show that N contains Z. If G = Z, then we
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have N ≤ CG(Z) = Z(G), contradicting V (G) ≤ N and V (G) � Z(G). Therefore
Z is contained in an element MZ of M . Since MZ ∈ M contains N , and since
G/N is definably isomorphic to L+ × L+, either N contains Z or NZ = MZ . In
the second case, let I1 be an indecomposable subgroup of G such that J(I1) is
not contained in Z(G). Let x ∈ J(I1) \ Z(G). Then x belongs to V (G) ≤ Z, so
CG(x) belongs to M and CG(x) contains N . Moreover, we have x ∈ V (G) ≤ N ,
so x centralizes Z, and we obtain CG(x) = NZ. But x centralizes I1, hence I1
is contained in NZ. This shows that each indecomposable subgroup I1 satisfying
J(I1) � Z(G) is contained in NZ. Since G/N is definably isomorphic to L+ ×L+,
there exists M∗ ∈ M ∗ \ {NZ}, and we find an indecomposable subgroup I2 in M∗

such that J(I2) � Z(G). Consequently, we have I2 ≤ NZ∩M∗ = N , contradicting
V (N) ≤ Z(G). This proves that N contains Z. In particular, since Z contains
V (G), we obtain N = G′Z.

(6) Z/Z(G) is definably isomorphic L+ × L+ and N = CG(Z).

Since we have Z(G) < Z ≤ Z(N) by (5) and G/N ≃ L+ × L+ by (4), we have
either CG(Z) = N , or CG(Z) ∈ M . We consider two distinct elements H1 and H2

of M \ {CG(Z)}. For i = 1, 2, we fix hi ∈ Hi \ CG(Z), and let γi : Z → A be the
homomorphism defined by γi(z) = [z, hi]. Then Z/CZ(hi) is definably isomorphic
toA ≃ L+. Thus, since we haveG = Nd(h1, h2), we obtain CZ(h1, h2) = Z(G), and
Z/Z(G) is either definably isomorphic to L+, or definably isomorphic to L+ ×L+.
In the first case, for i = 1, 2, we have CZ(hi) = Z(G), so V (Hi) is contained in
Z∩Z(Hi) = Z(G), andHi belongs to M \M ∗. This contradicts that M \M ∗ has at
most one element. Hence Z/Z(G) is definably isomorphic L+ × L+. Furthermore,
if CG(Z) belongs to M , we consider g ∈ G \ CG(Z). Then CZ(g) centralizes
d(CG(Z), g) = G, and we have Z(G) = CZ(g). But the homorphism γg : Z → A
defined by γg(z) = [g, z] is surjective by G-minimality of A, hence Z/CZ(g) is
definably isomorphic to A ≃ L+, contradicting that Z/Z(G) is definably isomorphic
L+ × L+. Thus CG(Z) does not belong to M , and we have N = CG(Z).

(7) G is of nilpotence class 2 and N = Z.

By Fact 2.2.3, the fields Q and L are isomorphic, definably in the pure field
Q. Hence there is an isomorphism f , definable in the pure field Q, from G to a
connected nilpotent algebraic group GL over L. We consider the induced isomor-
phism f : G/Z → GL/f(Z), and its graph ∆. Moreover, since Z is definable in Q,
its image f(Z) is definable in L. But we have seen in (5) that Z contains V (G)
so , in the expanded pure group G, the group G/Z is definably isomorphic to a
unipotent group over L. Hence there is an isomorphism i between G/Z ×GL/f(Z)
and a unipotent group U1 over L, with i definable in the expanded pure group G.
Since, in the pure field Q, the fields Q and L are definably isomorphic, there is an
isomorphism j : U1 → U2, definable in Q, from U1 to a unipotent group U2 over Q,
such that the preimage of each closed subgroup of U2 is a subgroup of U1, definable
in the expanded pure group G. But (j ◦ i)(∆) is a subgroup of U2, definable in Q,
so it is a closed subgroup of U2, and ∆ is a subgroup of G/Z ×GL/f(Z), definable
in the expanded pure group G.

We consider the preimage ∆ of ∆ inG×GL. It is a definable subgroup ofG×GL,
and if ∆∗ is the graph of f , then we have ∆ = (Z × {1})∆∗. Since Z ≤ Z(N) is
abelian by (5) and since G centralizes Z/A and does not centralize Z, we have
∆′ = (A×{1})(∆∗)′. In the same way, since G centralizes A, if ∆2 denotes [∆,∆′],
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we have ∆2 = (∆∗)2. In particular, ∆2∩(G×{1}) is trivial. We consider ∆/∆2, and
let Z∆/∆

2 be its center. Then [∆, Z∆∩(G×{1})] is contained in ∆2∩(G×{1}) = 1,
so Z∆ ∩ (G × {1}) ≤ Z(G) × {1}. If the nilpotence class of G is not 2, then the
induction hypothesis applied with ∆/∆2 shows that V (∆) is contained in Z∆. But
GL is a unipotent group over L, so we have V (GL) = 1 and V (G×GL) is contained
in G× {1}. Hence V (∆) is contained in Z∆ ∩ (G × {1}) ≤ Z(G)× {1}, and V (G)
is contained in Z(G). This contradiction implies that the nilpotence class of G is
2. In particular, G′ is contained in Z(G) ≤ Z and we have N = G′Z = Z.

(8) M = M ∗.

If MV exists, we consider M ∈ M ∗. Then Proposition 4.0.12 and Lemma
4.0.15 show that V (G) = V (MMV ) is contained in V (M)Z(G). But by (4) and (7)
we have Z = N = G′V (G) = Z(G)V (G), so we obtain N = Z(G)V (M) ≤ Z(M),
and M ≤ CG(N) = CG(Z) = N by (6), contradicting the maximality of M . Hence
we have V (M) � Z(G) for each M ∈ M .

(9) For each g ∈ G \ N we have G 6= CG(g)N , and for each h ∈ G \
CG(g)N , we have G/Z(G) = CG(g)/Z(G) × CG(h)Z(G). Moreover, CN (g)/Z(G)
and CG(g)N/N are definably isomorphic to L+.

For each g ∈ G \ N , we consider the map γg : G → Z(G) defined by γg(x) =
[g, x]. Since N = Z = CG(N) by (6) and (7), and since g 6∈ N centralizes Z/A,
we have γg(N) = A ≃ L+. Since Z/Z(G) = N/Z(G) is definably isomorphic to
L+ × L+ by (6), the group CN (g)/Z(G) is definably isomorphic to L+. Moreover,
since g 6∈ Z(G) by (4), we have CG(g) < G and, since N ≤ M for each M ∈ M by
(4), we have CG(g)N < G. Since g 6∈ N and since G/N is definably isomorphic to
L+ × L+ by (4), this implies that CG(g)N/N is definably isomorphic to L+. Now,
if we consider h ∈ G \ CG(g)N , then we have CG(h)N/N ≃ L+ too, and since
h ∈ CG(h)\CG(g)N , Fact 2.2.4 gives G = d(g)d(h)N . Thus, for each z ∈ CG(g, h),
we have G = CG(z)N , Therefore, since N is contained in each element of M , we
have G = CG(z) and z ∈ Z(G), so CG(g)/Z(G)∩CG(h)/Z(G) is trivial. Moreover,
again since N is contained in each element of M , we obtain G = CG(g)CG(h), and
G/Z(G) is the direct product of CG(g)/Z(G) and CG(h)/Z(G).

(10) For each g ∈ G \ N , the set A of the definable automorphisms of
CG(g)/Z(G) is a uniformly definable family of Morley rank 2, and A has dimension
2 over Q too.

We fix g ∈ G\N . By (9) there exists h ∈ G\CG(g)N . The previous paragraph
shows that, for any definable isomorphism α : CG(g)/Z(G) → CG(h)/Z(G), there
is a definable subgroup U/Z(G) of G/Z(G) representing the graph of α. We remark
that, since G/N is definably isomorphic to L+ ×L+ by (4), we have either U ≤ N ,
or UN/N ≃ L+ definably, or UN/N = G/N . Since U/Z(G) represents the graph
of α, we have G = CG(g)U , and since G 6= CG(g)N by (9), we cannot have U ≤ N .
Moreover, since N is contained in each element of M by (4) and since U < G,
we do not have UN/N = G/N , and we obtain UN/N ≃ L+ and UN ∈ M . In
particular, we have V (UN) � Z(G) by (8) and V (UN) ≤ Z(UN) by induction
hypothesis.

We consider u ∈ U \N . We show that U = CG(u) and CN (u) = V (UN)Z(G).
Since u centralizes V (UN) ≤ Z(UN) and since N contains V (G) ≥ V (UN) by
(4), we obtain V (UN) ≤ CN (u). Moreover we have V (UN) � Z(G) by the
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previous paragraph, and (9) gives CN (u)/Z(G) ≃ L+, so we obtain CN (u) =
V (UN)Z(G). Since V (N) ≤ Z(G) ≤ N by (4), the groups V (NV (U)/V (U)Z(G))
and V (UZ(G)/V (U)Z(G)) are trivial by Remark 4.0.14, and V (UN/V (U)Z(G))
is trivial too by Proposition 4.0.12 and Lemma 4.0.15. Then Remark 4.0.14 gives
V (UN) ≤ V (U)Z(G). Thus we have CN (u) = V (U)Z(G) ≤ U . But we have
N/Z(G) ≃ L+×L+ by (6) and (7) and CN (u)/Z(G) ≃ L+, so either U∩N = CN (u)
or U contains N . Since we have U/Z(G)∩CG(g)/Z(G) = 1 and CN (g)/Z(G) ≃ L+

by (9), the subgroup U does not contain N , and we obtain U ∩N = CN (u). More-
over, since u 6∈ N , we have CU (u)N/N 6= 1, and since (9) gives CG(u)N/N ≃
L+ ≃ UN/N , we obtain CU (u)N/N = CG(u)N/N = UN/N . In particular, we
have CG(u) = CU (u)N ∩ CG(u) = CU (u)CN (u), and since U contains CN (u), we
obtain CG(u) ≤ U . Furthermore, since CG(u)N = UN and U ∩ N = CN (u), we
find U = CG(u)(N ∩ U) ≤ CG(u) and U = CG(u) as claimed.

We note that, if u ∈ CG(g)N , then we have UN = CG(g)N because UN/N ≃
L+ ≃ CG(g)N/N , contradicting G = CG(g)U and CG(g)N < G. Thus we have
u 6∈ CG(g)N and, in the same way, u 6∈ CG(h)N . In particular, the following
uniformly definable family F of subgroups of G/Z(G) contains the graph of each
definable isomorphism from CG(g)/Z(G) to CG(h)/Z(G):

F = {CG(u)/Z(G) | u ∈ G \ (CG(g)N ∪ CG(h)N)}.

Conversely, for each u ∈ G \ (CG(g)N ∪ CG(h)N), the quotient group G/Z(G) is
the direct product of CG(g)/Z(G) and CG(u)/Z(G) by (9), and by the same way
of CG(u)/Z(G) and CG(h)/Z(G), so CG(u)/Z(G) is the graph of an isomorphism
from CG(g)/Z(G) to CG(h)/Z(G). Now the set I of the definable isomorphisms
from CG(g)/Z(G) to CG(h)/Z(G) is a (nonempty) uniformly definable family. But,
if we fix r ∈ I , then the set of the definable automorphisms of CG(g)/Z(G) is
A = {r−1 ◦ s | s ∈ I }, and it is a uniformly definable family.

We show that the Morley rank of A is 2. We note that, in the pure field Q,
we have rk(L+) = 1 (Fact 2.2.3), so we have rk(L+) = 1 in the expanded pure
group G too. Since there are some definable bijections between F , I and A , we
have to prove that F has Morley rank 2. First we show that, if CG(u)/Z(G) and
CG(v)/Z(G) are two distinct elements of F , then CG(u) ∩ CG(v) is contained in
N , that is the elements of F are generically disjoint. By (9), for any v 6∈ CG(u)N ,
we have CG(u) ∩ CG(v) = Z(G), so we may assume v ∈ CG(u)N . Therefore
CG(u)N/N ∩ CG(v)N/N is not trivial and, since CG(u)N/N and CG(v)N/N are
definably isomorphic to L+ by (9), we obtain CG(u)N = CG(v)N . Also, the
previous study gives CN (u) = V (CG(u)N)Z(G) = V (CG(v)N)Z(G) = CN (v).
Since CG(u)/CN (u) and CG(v)/CN (v) are definably isomorphic to CG(u)N/N =
CG(v)N/N ≃ L+, we have either CG(u) = CG(v) or CG(u) ∩ CG(v) = CN (u) =
CN (v) ≤ N . Hence the elements of F are generically disjoint. Moreover, each
element CG(u)/Z(G) of F has Morley rank

rk(CG(u)/CN (u)) + rk(CN (u)/Z(G)) = 2rk(L+) = 2,

and ∪F contains G/Z(G) \ (CG(g)N/Z(G) ∪ CG(h)N/Z(G)) which is a generic
subset of G/Z(G). So the Morley rank of ∪F is rk(G/Z(G)) = rk(G/N) +
rk(N/Z(G)) = 4rk(L+) = 4, and the one of A is rk(∪F ) − rk(CG(u)/Z(G)) = 2,
as claimed.
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By Fact 2.2.3, the field L+ is definably isomorphic to Q in the pure field Q.
So the same reasoning applied in the pure field Q shows that the group A has
dimension 2 over Q too.

(11) For each g ∈ G\N , there is a definable embedding µ from CG(g)/Z(G)⋊A

to (Q+×Q+)⋊GL(2,Q), such that, if T is a maximal torus of µ(A ◦), then µ−1(T )
is not definable in the expanded pure group G.

We fix g ∈ G\N . In the pure field Q, the field L+ is definably isomorphic to Q,
so the group CG(g)/Z(G) is definably isomorphic to Q+ ×Q+, since CG(g)/CN (g)

and CN (g)/Z(G) are definably isomorphic to L+ ≃ Q+ by (9). Hence there is a
definable embedding µ from the canonical semidirect product CG(g)/Z(G)⋊A to
(Q+ × Q+) ⋊ GL(2,Q), where GL(2,Q) acts by multiplication on Q+ × Q+, and

such that µ(CG(g)/Z(G)) = Q+ ×Q+ and µ(A ) is a closed subgroup of GL(2,Q).
By Lemma 4.0.3, the group µ(A ◦) is connected, and since A has dimension 2 over
Q by (10), the group µ(A ◦) has dimension two.

Let T be a maximal torus of µ(A ◦). We assume toward a contradiction that
µ−1(T ) is definable in the expanded pure group G. The torus T is nontrivial since
µ(A ◦) is a closed subgroup of dimension two of GL(2,Q), so its dimension is one or
two. Let T1 be a maximal torus of GL(2,Q) containing T . Its dimension is two, it

is diagonalizable, and there is a basis (e1, e2) of Q+ ×Q+ such that T1 · ei = Q
∗
· ei

for i = 1, 2. Since T is nontrivial, either T · e1 = T1 · e1 or T · e2 = T1 · e2. We may
assume that T · e1 = T1 · e1. Then V1 := (T · e1) ∪ {(0, 0)} = Q · e1 is an infinite
subgroup of Q+ ×Q+, and µ−1(V1) = (µ−1(T ) · µ−1(e1))∪ {µ−1(0, 0)} is definable
in the expanded pure group G. Now either T · e2 = {e2} and V2 := CQ+×Q+

(T ) is

a complement of V1 in Q+ × Q+, or T · e2 = T1 · e2 and V2 := (T · e2) ∪ {(0, 0)} =

Q · e2 is an infinite complement of V1 in Q+ × Q+. In the first case µ−1(V2) =
CCG(g)/Z(G)(µ

−1(T )) is definable in the expanded pure group G, and in the second

case, again µ−1(V2) = (µ−1(T ) ·µ−1(e2))∪{µ−1(0, 0)} is definable in the expanded
pure group G. Since V1 and V2 are infinite and satisfy Q+×Q+ = V1⊕V2, and since
CG(g)/Z(G) has Morley rank two, the subgroups µ−1(V1) and µ−1(V2) are torsion-
free of Morley rank one and we have CG(g)/Z(G) = µ−1(V1) ⊕ µ−1(V2). Since
CG(g)/Z(G) is an homogeneous UL-group, this implies that µ−1(Vi) is definably
isomorphic to L+ for i = 1, 2, and that CG(g)/Z(G) is definably isomorphic to
L+ × L+ in the expanded pure group G. But, for any h ∈ G \ CG(g)N , the
same reasoning shows that CG(h)/Z(G) is definably isomorphic to L+ × L+ in
the expanded pure group G. Since (9) shows that G/Z(G) is the direct product of
CG(g)/Z(G) and CG(h)/Z(G), the group G/Z(G) is isomorphic to (L+)

4, definably
in the expanded pure group G. This contradicts V (G) � Z(G). Hence µ−1(T ) is
not definable in the expanded pure group G.

(12) Final contradiction.

With the notation of (11), since µ−1(T ) is not definable inG, the group µ(A ◦) is
not a torus, and since it has dimension two while the maximal unipotent subgroups
of GL(2,Q) have dimension one, we have µ(A ◦) = P⋊T for P a maximal unipotent
subgroup of GL(2,Q). Moreover, since µ−1(T ) is not definable in G, we have
µ−1(T ) < CA ◦(µ−1(T )) and T < Cµ(A ◦)(T ), and since P is a torsion-free group
of dimension one, we obtain µ(A ◦) = Cµ(A ◦)(T ) and µ(A ◦) is abelian. Now

T centralizes a nontrivial unipotent subgroup of GL(2,Q), hence T is central in
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GL(2,Q) and µ(A ◦) is conjugate to the following subgroup of GL(2,Q):

R =

{(
t a
0 t

)
| t ∈ Q

∗
, a ∈ Q

}
.

Thus there is an isomorphism ν, definable in Q, from (Q+ × Q+) ⋊ µ(A ◦) to

H1 = (Q+ ×Q+)⋊R, where R acts on Q+ ×Q+ by multiplication, and such that

ν(T ) is the maximal torus of R. But there is an isomorphism γ, definable in Q,
from H1 to the following group

H2 =









t a u
0 t v
0 0 1


 | t ∈ Q

∗
, (a, u, v) ∈ Q

3




 ,

and satisfying (γ◦ν)(T ) =









t 0 0
0 t 0
0 0 1


 | t ∈ Q

∗




. Thus (γ◦ν)(T ) is a maximal

torus of H2, and it is definable in the expanded pure group H2 by Theorem 3.0.12.
Consequently, since

ν : (Q+ ×Q+)⋊ µ(A ◦) → H1 and γ : H1 → H2

are isomorphisms, T is definable in the expanded pure group (Q+ ×Q+)⋊ µ(A ◦).

But µ is an embedding from CG(g)/Z(G)⋊A to (Q+ ×Q+)⋊GL(2,Q) satisfying

µ(CG(g)/Z(G)) = Q+×Q+, so µ defines an isomorphisms between the pure groups

CG(g)/Z(G) ⋊ A ◦ and (Q+ × Q+) ⋊ µ(A ◦). Hence µ−1(T ) is definable in the
expanded pure group CG(g)/Z(G)⋊A ◦. Now, since this last group is interpretable
in the expanded pure group G, Lemma 3.0.5 says that µ−1(T ) is definable in the
expanded pure group G. This contradicts (11) and finishes the proof. �

We remind that Remark 4.0.7 says that Theorem 4.0.6 fails when G is a nilpo-
tent algebraic group over an algebraically closed field K of characteristic zero not
isomorphic to Q. Indeed, we may note that Theorem 3.0.12 and the group Gcrit(Q)
of Example 3.0.1 play a central role in the final part of the proof above (see step
(12)), but Remark 3.0.6 shows that Theorem 3.0.12 fails if the ground field is not
isomorphic to Q.





CHAPTER 5

Definably affine groups

The notion of definably linear groups is natural and rich. However, it has a
drawback that makes it impractical, because a quotient of a definably linear group
of finite Morley rank by a normal definable subgroup, even finite, is not necessarily
definably linear (Lemma 5.1.1). In order to overcome this obstacle, we introduce
definably affine groups (Definition 5.1.2), a concept closed under quotients and gen-
eralizing definably linear groups. This section is devoted to the study of definably
affine ACF -groups. In particular, we obtain a general decomposition result of defin-
ably affine ACF -groups as a product of definably linear groups (Proposition 5.2.3).
Our analysis culminates with the very useful Theorem 5.3.4, which shows that an
extension of a definably affine ACF -group by a finite group is generally definably
affine.

Furthermore, thanks to the remarkable properties of definably affine groups,
we can introduce two new subgroups A(G) and W (G) for any ACF -group G:

• A(G) will be the largest connected definably affine subgroup of G (Corol-
lary 5.2.2);

• W (G) will be the smallest normal definable subgroup of G such that
G/W (G) is definably affine (Corollary 5.3.6).

We notice that §5.1 and §5.2 concern all ACF -groups, not just the ACF0-
groups, since we do not need Lemma 4.0.3 in them. Furthermore, the following
results will be used in §10 for ACFp-groups when p is a prime.

5.1. Definition and generalities

By the following lemma, the concept of definably linear groups is not closed
under quotients.

Lemma 5.1.1. – Let G = H1 ×H2 be a pure group, where H1 and H2 are two
copies of SL2(K) for an algebraically closed field K of characteristic zero. Then G
is definably linear.

However, if i and j denote the involutions of Z(H1) and Z(H2) respectively,
then G = G/〈(i, j)〉 is not definably linear.

Proof – Indeed, on the one hand, for i = 1, 2, the quotient Hi/Z(Hi) is a
simple group, so it is definably linear [28, Corollaire 4.16], and Hi is definably
linear too (Proposition 5.3.3). Hence G is definably linear.

On the other hand, let µ be a nontrivial field automorphism of K, and let µ∗

be the automorphism of H1 induced by µ. We consider the automorphism α of G

defined for each (h1, h2) ∈ G by α((h1, h2)) = (µ∗(h1), h2). Then, if ∆ is the graph
in G of an algebraic group isomorphism from H1 to H2, and if ∆ := ∆/〈(i, j)〉
denotes its image in G, the intersection of ∆ and of α(∆) is not definable. So α(∆)

41
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is not definable and α is not a standard isomorphism. Consequently, by Fact 3.0.4
(or Fact 1.3.2), the pure group G is not definably linear over one interpretable field.
But if G is definably linear over several interpretable fields, then Lemma 5.1.6 shows
that G is a direct product of two proper definable subgroups. This contradicts that
each nontrivial normal subgroup of G contains the central involution of G. Hence
G is not definably linear. �

In order to remedy to this problem, we introduce definably affine groups.

Definition 5.1.2. – A group G of finite Morley rank is said to be definably
affine (over finitely many fields K1, . . . , Kn, interpretable in G) if G is definably
isomorphic to a definable section of H1 × · · · ×Hn, where Hi is an affine algebraic
group over Ki for each i = 1, . . . , n.

Remark 5.1.3. –

(1) If G is an ACF -group, definably affine over the fields K1, . . . ,Kn, and if
G is interpretable in the pure algebraically closed field K, then the fields
K1, . . . ,Kn are isomorphic to K, definably in K by Fact 2.2.3. So, in
the pure field K, the group G is definably isomorphic to a quotient of two
affine algebraic groups, and G is an affine algebraic group over K by [28,
§4.e (2)].

(2) Let H be a group, definable in a group G of finite Morley rank. If H
is definably affine (in G) over the fields K1, . . . ,Kn, then every definable
subgroup of H and every definable quotient of H is definably affine (in G)
over K1, . . . ,Kn too.

(3) Consider an ACF -group G definably affine over one algebraically closed
field L. By [28, §4.e (2)], there is a definable isomorphism ρ : G → H for
an affine algebraic group H over L, and any subgroup of H is definable
in G if and only if it is closed. Equivalently, G is definably linear over L
(see Remark 4.0.5).

Our first result is a remark concerning some definable fields isomorphisms. For
the fields of finite Morley rank and of characteristic zero, a result of the same vein
is known [18, Corollary 2.8]. The following lemma, in its full generality, is due to
the referee.

Lemma 5.1.4. – Let K and L be two infinite fields, definable in an ACF -group
G. If there is a definable bijection between cofinite subsets of K and L, then K
and L are definably isomorphic as fields.

In particular, if one of the following two conditions is satisfied, then K and L
are definably isomorphic:

• K+ and L+ are definably isomorphic;
• K∗ and L∗ are definably isomorphic.

Proof – Let F be an algebraically closed field such that G is interpretable in
the pure field F . In particular, since K and L are definable in the ACF -group G,
and since G is interpretable in F , the fields K and L are definable in the pure field
F . Thus, by Fact 2.2.3, the fields K and L are isomorphic to F , definably in the
pure field F . Now there is a field isomorphism α : K → L, definable in the pure
field F .

Let A and B be cofinite subsets of K and L respectively, and let δ : A → B be
a bijection, definable in G. Then δ is definable in the pure field F , and µ = δ−1 ◦α
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defines a bijection from α−1(B) to A, definable in F . SinceK and F are isomorphic,
definably in F , any subset of K ×K is definable in K if and only if it is definable
in F . In particular, the graph of µ is definable in K. So µ is definable in G, and
the map α = δ ◦ µ from α−1(B) to B is definable in G too. Since α−1(B) and B
are cofinite subsets of K and L respectively, α is definable in G, as desired. �

Corollary 5.1.5. – Let G be an infinite ACF -group. Suppose that K and L
are two interpretable fields such that G is definably affine over K (resp. L). Then
K and L are definably isomorphic.

Proof – Let H be a minimal infinite definable subgroup of G. Then, in the
ACF -group G, the group H is definably affine over K and L. Let HK (resp. HL)
be an affine algebraic group over K (resp. L) such that H is definably isomorphic
to HK (resp. HL). By the minimality of H , the group HK (resp. HL) is definably
isomorphic to either K∗ (resp. L∗), or K+ (resp. L+). Now Lemma 5.1.4 provides
the result. �

Lemma 5.1.6. – Let G be an ACF -group, and let K1, . . . ,Kn be n infinite
definable fields, such that Ki is not definably isomorphic to Kj for i 6= j. For
i = 1, . . . , n, we consider an affine algebraic group Hi. Then, for each connected
definable subgroup U of H = H1×· · ·×Hn, we have U = (U ∩H1)×· · ·×(U ∩Hn).

Proof – We may assume n ≥ 2. We assume toward a contradiction that
U is a counterexample of minimal Morley rank. Then, for each proper connected
definable subgroup M0 of U , we have M0 = (M0 ∩H1)× · · · × (M0 ∩Hn), so U has
a unique maximal proper connected definable subgroup M . For each i, we denote
by ρi : U → Hi the projection map from U to Hi. We may assume ρi(U) = Hi 6= 1
for each i. From now on, M = (M ∩ H1) × · · · × (M ∩ Hn) is normal in H .
Thus, if M 6= 1, we have Hi ∩ M 6= 1 for some i, and H/Hi ∩ M is equal to
H1(Hi ∩M)/(Hi ∩M)× · · · ×Hn(Hi ∩M)/(Hi ∩M). Then, in H/(Hi ∩M), the
minimality of the Morley rank of U gives

U/(Hi ∩M) = (U ∩H1)(Hi ∩M)/(Hi ∩M)× · · · × (U ∩Hn)(Hi ∩M)/(Hi ∩M),

and U = (U ∩H1)× · · · × (U ∩Hn), contradicting the choice of U , so M = 1.
For each i, since ρi is definable, the triviality of M implies that each proper

closed subgroup of Hi is finite, so Hi is definably isomorphic either to (Ki)
∗, or to

(Ki)+. Moreover, for each i, since ρi(U) = Hi 6= 1, the kernel Ri of ρi is finite,
and U/Ri is definably isomorphic either to (Ki)

∗, or to (Ki)+. Now R = 〈Ri | i =
1, . . . , n〉 is finite, so for each i, U/R is definably isomorphic either to (Ki)

∗/Fi or to
(Ki)+/Fi for a finite subgroup Fi. But for each i, in the pure field Ki, the groups
(Ki)

∗ and (Ki)
∗/Fi (resp. (Ki)+ and (Ki)+/Fi) are definably isomorphic. Hence,

in G, since the field Ki is definable for each i, the quotient group U/R is definably
isomorphic either to (Ki)

∗ or to (Ki)+ for each i.
Now two of the following groups are definably isomorphic to U/R in G: (K1)

∗,
(K2)

∗, (K1)+, (K2)+. Since (K1)
∗ and (K2)

∗ are divisible and have torsion, and
not (K1)+ and (K2)+, we obtain either (K1)

∗ ≃ U/R ≃ (K2)
∗, or (K1)+ ≃ U/R ≃

(K2)+. By Lemma 5.1.4, we conclude que the fields K1 and K2 are definably
isomorphic in G, contradicting our hypotheses. �

Corollary 5.1.7.– LetG be anACF -group, definably affine over interpretable
fields K1, . . . ,Kn. Then, for each i = 1, . . . , n, there is an affine algebraic group Hi
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over Ki, such that G is definably isomorphic to U/F , for a definable subgroup U
of H1 × · · · ×Hn, and a finite normal subgroup F of U .

Proof – We may assume that Ki is not definably isomorphic to Kj for i 6=
j. Since G is definably affine, it is definably isomorphic to a definable section
U/F of H1 × · · · × Hn, where Hi is an affine algebraic group over Ki for each
i = 1, . . . , n. We may assume F ∩ Hi = 1 for each i. But Lemma 5.1.6 gives
F ◦ = (F ◦ ∩H1)× · · · × (F ◦ ∩Hn) = 1, so F is finite. �

From now on, we connect the notions of definably linear groups and of definably
affine groups.

At first we note that, if G is both an ACF -group and an affine algebraic group
over an algebraically closed field K, since any quotient of an affine algebraic group
by a normal closed subgroup is affine, the ACF -group G is definably affine over one
interpretable field if and only if it is definably linear over one interpretable field.

Corollary 5.1.8. – Let G be an ACF -group, definably affine over inter-
pretable fields K1, . . . ,Kn. Then G has a finite normal subgroup E such that G/E
is definably linear over K1, . . . ,Kn.

Proof – Let U/F and H1, . . . , Hn be as in the previous result. We may
assume G = U/F . For each i, let Fi be the projection of F on Hi. Then E =
(F1 × · · · × Fn)/F is convenient. �

5.2. The subgroup A(G)

Theorem 5.2.1. – Let G be an ACF -group. If G is generated by its connected
definably affine subgroups over interpretable fields K1, . . . ,Kn, then G is definably
affine over K1, . . . ,Kn.

Proof – Let L be an algebraically closed field such that G is interpretable in
the pure field L. First we assume that G is generated by its connected definably
affine subgroups over an interpretable field K. We may assume that K is infinite,
therefore K is isomorphic to L, definably in the pure field L (Fact 2.2.3). Let
ϕ be an isomorphism from G to an algebraic group GK over K, definable in the
pure field L, and let ∆ be its graph. By Zilber’s Indecomposability Theorem, G
is connected and there exist finitely many connected definably affine subgroups
R1, . . . , Rm of G over K such that G = 〈Ri | i = 1, . . . ,m〉. Since K and L are
definably isomorphic in L, for each i, the subgroup ϕ(Ri) of GK is affine, and any
subgroup of Ri × ϕ(Ri) is definable in G if and only if it is definable in L. In
particular, the subgroup Si = {(x, ϕ(x)) | x ∈ Ri} of ∆ is affine and definable
in G for each i. Moreover, for each i, since Ri is connected (in G), this implies
that Si and ϕ(Ri) are connected in G. Consequently, Zilber’s Indecomposability
Theorem says that ∆ = 〈Si | i = 1, . . . , n〉 is definable in G, so ϕ is definable in
G. Moreover, for each i, since ϕ(Ri) is connected in G, it is connected in K too,
and GK = 〈ϕ(Ri) | i = 1, . . . , n〉 is an affine algebraic group. Hence G is definably
linear over K.

For the proof of the result, we may assume that Ki is not definably isomorphic
to Kj for each i 6= j. For each i, we denote by Ui the (normal) subgroup of G
generated by the connected definable subgroups of G, definably affine over Ki. By
Zilber’s Indecomposability Theorem, Ui is definable and connected for each i, and
the previous paragraph says that Ui is definably linear over Ki for each i. Now, for
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each i 6= j, by Zilber’s Indecomposability Theorem, [Ui, Uj] is a connected definable
subgroup of Ui∩Uj , and it is definably affine over Ki and overKj . Hence Corollary
5.1.5 yields [Ui, Uj] = 1.

It follows clearly from the hypothesis that G is generated by U1, . . . , Un, as
each Ui contains all definable connected subgroups definably affine over Ki. Since
[Ui, Uj ] = 1 for i 6= j, G is the central product of U1, . . . , Un. Hence we find a
definable epimorphism from U1 × · · · × Un to G. Since Ui is definably linear over
Ki for each i, this finishes the proof. �

Corollary 5.2.2. – Let G be an ACF -group. Then G has a connected de-
finable subgroup denoted A(G) such that A(G) is definably affine in G and is the
largest connected definable subgroup of G with this property.

From now on, we can describe the structure of any connected definably affine
ACF -group.

Proposition 5.2.3. – Let G be a connected ACF -group. Suppose that G is
definably affine over the fields K1, . . . ,Kn, and that Ki is not definably isomorphic
to Kj for each i 6= j. For each i, let Gi be the largest connected subgroup of G
definably linear over Ki. Then the following conditions hold:

• G is the central product of G1, . . . , Gn;
• G has a nontrivial finite normal subgroup E such that G/E is the direct
product of G1E/E, . . . , GnE/E; in particular Gi ∩ Gj is finite for each
i 6= j;

• {G1, · · · , Gn} is stable under each automorphism of the ACF -group G.

Proof – By Corollary 5.1.7, for each i, there is an affine algebraic group Hi

over Ki such that G is definably isomorphic to U/F , for U a definable subgroup
of H1 × · · · × Hn and a finite normal subgroup F of U . We may assume G =
U/F . Since G is connected, we may assume that U is connected, and Lemma
5.1.6 gives U = (U ∩H1)× · · · × (U ∩Hn). In particular, U ∩Hi is connected for
each i, and we may assume Hi ≤ U for each i. Now G is the central product of
H1F/F, . . . , HnF/F , and HiF/F ∩HjF/F is finite for each i 6= j.

For each i, we consider Vi such that Gi = Vi/F . By Lemma 5.1.6, we have
V ◦
i = (V ◦

i ∩H1)× · · · × (V ◦
i ∩Hn) for each i. In particular, V ◦

i ∩Hj is connected
for each i, j. Thus, for each i, j, the subgroup (V ◦

i ∩ Hj)F/F ≤ Gi ∩ HjF/F is
connected and definably affine over Ki and over Kj . Hence Corollary 5.1.5 gives
V ◦
i ∩Hj = 1 for each i 6= j, so V ◦

i is contained in Hi for each i. Since Gi contains
HiF/F for each i, we obtain Gi = HiF/F for each i. This proves that G is the
central product of G1, . . . , Gn, and that Gi ∩Gj is finite for each i 6= j.

Moreover, Corollary 5.1.8 provides a finite normal subgroup E such that G/E
is definably linear over K1, . . . ,Kn, and Lemma 5.1.6 says that G/E is defin-
ably isomorphic to A1 × · · · ×An for some affine algebraic groups A1, . . . , An over
K1, . . . ,Kn respectively. Then Corollary 5.1.5 and Lemma 5.1.6 imply that GiE/E
is definably isomorphic to Ai for each i, and that G/E is the direct product of
G1E/E, . . . , GnE/E.

Let ϕ be an automorphism of the ACF -group G. We fix i ∈ {1, . . . , n}, and
we show that ϕ(Gi) ∈ {G1, . . . , Gn}. Then, as for Gi in G, there is an infinite
interpretable field L such that ϕ(Gi) is the largest connected definable subgroup of
G, definably linear over L. If L is not definably isomorphic to Kj for each j, then
G is definably affine over K1, . . . ,Kn, L, and the previous paragraphs applied with
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this situation give dim(G) = dim(G1)+ · · ·+dim(Gn)+dim(ϕ(Gi)). On the other
hand, by the previous paragraph, we have dim(G) = dim(G1) + · · ·+ dim(Gn), so
ϕ(Gi) is finite. Since ϕ(Gi) is connected, we obtain ϕ(Gi) = 1, so Gi = 1 = ϕ(Gi).
Hence we may assume that L is definably isomorphic to Kj for some j. Since ϕ(Gi)
is the largest connected definable subgroup of G, definably linear over L, we obtain
ϕ(Gi) = Gj . This finishes the proof. �

Corollary 5.2.4. – Let G be an ACF -group, and let K be an algebraically
closed field interpreting G. Let T be a maximal torus of G viewed as an algebraic
group over K. If G is definably affine, then T is definable in the ACF -group G.

Proof – We may assume that G is connected as ACF -group. Let G1, · · · , Gn

be as in Proposition 5.2.3. Then G is the central product of G1, . . . , Gn, so there
are maximal tori T1, . . . , Tn in G1, . . . , Gn respectively such that T = T1 · · ·Tn.
Since, for each i, the subgroup Gi is definably linear over one interpretable field, Ti

is definable, consequently T is definable too. �

5.3. The subgroup W (G)

We provide some crucial criterions for the ACF -groups to be definably affine
(Theorems 5.3.4 and 5.2.1). Moreover, similarly to the existence of the subgroup
A(G) in any ACF -group G (Corollary 5.2.2), we show that any such a group G has
a smallest normal definable subgroup W (G) such that G/W (G) is definably affine,
and that W (G) is connected when G is an ACF0-group (Corollary 5.3.6).

In the proof of Corollary 5.3.2, we use the following result, due to A.V. Borovik
and G. Cherlin.

Fact 5.3.1. [19, Proof of proposition 4.3] LetH be a normal definable subgroup
of finite index of a group G of finite Morley rank. Then G definably embeds in the
wreath product of H by G/H .

Corollary 5.3.2. – Let G be a group of finite Morley rank. If G◦ is de-
finably affine over interpretable fields K1, . . . ,Kn, then G is definably affine over
K1, . . . ,Kn too.

Proof – For each i = 1, . . . , n, let Hi be an affine algebraic group over Ki such
that G◦ is definably isomorphic to the definable section U/F of H = H1×· · ·×Hn.
Then the wreath product W of G◦ ≃ U/F by G/G◦ is definably isomorphic to a
definable section of the wreath product of H by G/G◦, which is definably linear
over K1, . . . ,Kn. Since Fact 5.3.1 says that G definably embeds in W , we obtain
the result. �

Proposition 5.3.3. – Let G be an ACFp-group for p a prime or zero, and let
E be a finite normal subgroup of G. If p does not divide |E| and if G/E is definably
linear over an interpretable field L, then G is definably linear over L too.

Proof – Let K be an algebraically closed field of characteristic p such that
the ACF -group G is interpretable in the pure field K. By Corollary 5.3.2, we may
assume that G is connected and infinite. Moreover, G/E is definably linear over L,
so G/E and G are affine over K by Fact 2.2.3, and we may assume that G is an
infinite subgroup of GLn(K) for an integer n. Since G/E is definably linear over
L, we find an algebraic group A0 over L definably isomorphic to G/E. Since G is
infinite, L is infinite too and L is isomorphic to K, definably in K by Fact 2.2.3.
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Let α be a field automorphism from K to L, definable in the pure field K. We
consider A = α∗(G) and B = α∗(E), where α∗ is the isomorphism from GLn(K)
to GLn(L) induced by α. Then A/B is isomorphic to A0, definably in the pure
field K. In the pure field K, for each i, the definable subsets of GL i(L) are the
images of the constructible subsets of GL i(K) by the isomorphisms α∗

i induced by
α. In particular A is definable in L and, for any isomorphism from A/B to A0,
definable in K, the graph ∆0 is definable in L too.

Let Z = B × E, and let ∆ be the graph of the isomorphism u from A to G
induced by α∗. Let v be an isomorphism from G/E to A0 definable in G. Then
u induces an isomorphism u from A/B to G/E, definable in K, and v ◦ u is an
isomorphism from A/B to A0 definable in K. By the previous paragraph, v ◦ u is
definable in L too. Thus, since v is definable in G, u is definable in G. This shows
that ∆Z is a subgroup of A×G, definable in G. Moreover, since Z is abelian and
finite of order |E|2, the quotient ∆Z/∆ is abelian, finite, and p does not divide its
order. Now, by Lemma 4.0.3, we obtain (∆Z)◦ ≤ ∆, and ∆ is definable in G. This
proves that u is definable in G, so G is definably linear over L. �

Theorem 5.3.4. – Let G be an ACFp-group for p a prime or zero. Suppose
that G has a finite normal subgroup F such that G/F is definably affine over
interpretable fields K1, . . . ,Kn. If p does not divide n = |F |, then G is definably
affine over K1, . . . ,Kn

Proof – We may assume that Ki is not definably isomorphic to Kj for i 6= j.
By Corollary 5.3.2, we may assume that G is connected. By Corollary 5.1.8, G
has a finite normal subgroup E containing F such that there exists a definable
isomorphism ρ from G/E to a definable subgroup U of H = H1 × · · · ×Hn, where
Hi is an affine algebraic group over Ki for each i. By Lemma 5.1.6, we have
U = (U ∩H1)× · · · × (U ∩Hn).

For each i, we consider Vi/E = ρ−1(U ∩ Hi). Then we have G/E = V1/E ×
· · · × Vn/E and, for each i 6= j, we have [Vi, Vj ] ≤ E. Since Vi/E is connected for
each i and since E is finite, Zilber’s Indecomposability Theorem [5, Corollary 5.29]
shows that [Vi, Vj ] = 1 for each i 6= j. Thus G is the central product of V1, . . . , Vn,
and there is a definable epimorphism f from V1×· · ·×Vn to G with a finite kernel.
Hence, by Corollary 5.3.2, we have just to prove that V ◦

i is definably affine over Ki

for each i.
Let i ∈ {1, · · · , n}. The group V ◦

i F/F ≤ G/F is definably affine in G over
K1, . . . ,Kn. For j ∈ {1, · · · , n}, let Wj/F be its largest connected subgroup de-
finably linear over Kj. Then, for each j, the group WjE/E is definably linear
over Kj and it is contained in V ◦

i E/E, so it is definably linear over Ki too. By
Corollary 5.1.5, we obtain WjE/E = 1 for j 6= i. But V ◦

i F/F is generated by
W1/F, . . . ,Wn/F by Proposition 5.2.3, so V ◦

i F/F = Wi/F is definably linear over
Ki. Now Proposition 5.3.3 provides the result. �

Lemma 5.3.5. – Let G be a group of finite Morley rank. If G is residually
definably affine over interpretable fields K1, . . . ,Kn, then G is definably affine over
K1, . . . ,Kn.

Proof – We find finitely many normal definable subgroups S1, . . . , Sm of G
such that ∩m

i=1Si = 1 and such that G/Si is definably affine over K1, . . . ,Kn for
each i. Then G definably embeds in (G/S1)× · · · × (G/Sm), and the result follows.
�
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Corollary 5.3.6. – Let G be an ACFp-group for p a prime or zero. Then
G has a smallest normal definable subgroup W (G) such that G/W (G) is definably
affine.

Furthermore, W (G) is contained in G◦ and, either p = 0 and W (G) is con-
nected, or p is a prime and W (G)/W (G)◦ is a p-group.

Proof – The existence of W (G) follows from Lemma 5.3.5. Since G/G◦

is definably linear over any finite field, we have W (G) ≤ G◦. In particular,
W (G)/W (G)◦ is a central subgroup of G◦/W (G)◦, and it is abelian.

If p = 0, let H = W (G)◦, and if p is a prime, let H/W (G)◦ be the largest
p-subgroup of W (G)/W (G)◦. Then Corollary 5.3.2 and Theorem 5.3.4 show that
G/H is definably affine, so we obtain H = W (G), and this equality finishes the
proof. �



CHAPTER 6

Tori in expanded pure groups

In this section, we consider an algebraic group G over Q, and its pseudo-tori in
the expanded pure group G. Ideally, these subgroups are the tori of G. However,
even if G is centerless and connected, the maximal tori of the pure group G may
be not definable (Example 3.0.1 (1)).

Our first result concerns the expanded pure group G, when G is a connected
centerless algebraic group over Q, with G solvable of class two (Proposition 6.0.2).
We should note that, by the main theorem of [16], such a group interprets finitely
many connected, solvable of class two and centerless algebraic groups G1, . . . , Gn

over algebraically closed fieldsK1, . . . ,Kn respectively, in such a way that G embeds
in G1 × · · · ×Gn. However, this embedding is not necessarily definable in the pure
group (Example 3.0.1 (2)).

For the proof of Proposition 6.0.2 and of the main result of this section, that
is Theorem 6.0.3, we need Carter subgroups. These subgroups are defined in any
group of finite Morley rank as being definable, connected, nilpotent, and of finite
index in their normalizers. They have turned out to be increasingly useful in the
analysis of groups of finite Morley rank. In algebraic groups over an algebraically
closed field, and when the language is the one of the pure fields, these subgroups are
precisely the Cartan subgroups, namely the connected component of the centralizers
of the maximal tori. The following fact is a summarize, in the solvable context, of
their properties useful for us. We refer to [21] for more details on Carter subgroups.

Fact 6.0.1. Let G be a connected solvable group of finite Morley rank, and let
N be a normal definable subgroup of G. Then the following conditions are satisfied:

(i) [20, Corollary 2.10] any pseudo-torus of G lies in a Carter subgroup of G;
(ii) [21, Theorem 3.11] its Carter subgroups are self-normalizing;
(iii) [21, Corollary 3.3] the Carter subgroups of G/N are exactly of the form

QN/N , with Q a Carter subgroup of G;
(iν) [21, Proposition 3.19] if G is 2-solvable, then G has a definable connected

characteristic abelian subgroup A of G such that G = A ⋊ C for every
Carter subgroup C of G.

Proposition 6.0.2. – Let G be an algebraic group over Q. If G is connected,
centerless, and solvable of class two, then the expanded pure group G is definably
linear.

Proof. We notice that, since G is connected and centerless, F (G) is torsion-
free. We suppose toward a contradiction that there exists a counterexample G of
minimal Morley rank. For i = 1, 2, let Ai be a G-minimal subgroup, let Zi/Ai be
the center of G/Ai, and let Wi be the hypercenter of G/Ai. Since G is connected,
Wi is definable for i = 1, 2 [28, Corollaire 3.15]. Moreover, since F (G) is torsion-
free, A1 and A2 are torsion-free too. Thus, if we have A1 6= A2, then A1 ∩ A2 is

49
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trivial, and Z1 ∩ Z2 ≤ Z(G) is trivial too, so W1 ∩W2 is trivial. In this case, since
G/W1 and G/W2 are definably affine by induction hypothesis, G is definably affine
(Lemma 5.3.5). Hence G has a unique G-minimal subgroup A.

Let C be a Carter subgroup of G. By Fact 6.0.1 (iii), we have G = G′C. Then
Z(C)∩CC(G

′) is central in G, so CC(G
′) is trivial. Moreover, since G is 2-solvable,

C′ centralizes G′, so C is abelian. Hence C ∩ G′ is central in G, and we obtain
G = G′ ⋊ C.

We show that, if A(G′) denotes the largest connected definably affine subgroup
of G′ (Corollary 5.2.2), we have A ≤ A(G′) < G′, and that C/CC(A(G

′)) is de-
finably linear over one interpretable field K. By Facts 2.2.2, we have A ≤ A(G′).
Moreover, since G′ ≤ F (G) is torsion-free, A(G′) is definably linear by Corollary
5.1.8. So the uniqueness of A and Lemma 5.1.6 show that A(G′) is definably linear
over one interpretable field K. Moreover, since G′ is torsion-free, K is of charac-
teristic zero and A(G′) is definably isomorphic to a unipotent algebraic group over
K. Consequently, Corollary 4.0.11 says that C/CC(A(G

′)) is definably linear over
K. Therefore, if A(G′) = G′, since CC(G

′) is trivial, C is definably linear over K.
But, since G is solvable, we have G′H < G for each normal proper subgroup H
of G, so the conjugates of C generate G. Hence the condition A(G′) = G′ implies
that G is definably affine over K by Theorem 5.2.1. Thus we obtain A(G′) < G′.

We claim that G has a unique maximal proper normal connected definable
subgroup. Indeed, suppose that N1 and N2 are two distinct maximal proper normal
connected definable subgroups of G. In particular, N1 and N2 contain G′, and G
is generated by N1 and N2. We may assume that A is noncentral in N2. Since
Z(N2) ≤ F (G) is torsion-free, and since it is normal in G and does not contains A,
it is trivial. Hence N2 is definably linear by induction hypothesis. Moreover, by the
maximality of N2 and since G is solvable, N2 contains G′, therefore G′ is definably
linear. This contradicts the previous paragraph, so G has a unique maximal proper
normal connected definable subgroup N .

We show that N = F (G). Indeed, we have F (G) ≤ N by the uniqueness of N .
Let B be a G-minimal section of G′. If C centralizes B, then C covers B by Fact
6.0.1 (iii), contradicting G′ ∩C = 1. So Fact 2.2.2 says that G/CG(B) ≃ C/CC(B)
is definably isomorphic to a subgroup of L∗ for an interpretable algebraically closed
field L. But L and Q are definably isomorphic in the pure field Q (Fact 2.2.3),
hence L∗ has no proper connected definable subgroup, and CG(B)◦ is a maximal
proper connected definable subgroup of G. Then, by the uniqueness ofN , we obtain
N = CG(B)◦, and N centralizes each G-minimal section of G′. This implies that
N is nilpotent, so N = F (G).

We show that N = CG(A(G
′))◦ and that G/N is definably isomorphic to an

algebraic group over K of dimension one. We note that, since G is centerless
and since A(G′) contains A, we have CG(A(G

′)) < G. In particular N contains
CG(A(G

′))◦ by the uniqueness of N , and the quotient NCG(A(G
′))/CG(A(G

′)) is
the unique maximal proper normal connected definable subgroup of G/CG(A(G

′)).
But CG(A(G

′)) contains G′ since G′ is abelian, so G/CG(A(G
′)) is abelian and

C covers this quotient group by Fact 6.0.1 (iii). Hence the groups G/CG(A(G
′))

and C/CC(A(G
′)) are definably isomorphic, and G/CG(A(G

′)) is definably linear
over K. Thus G/CG(A(G

′)) is definably linear to an abelian definable subgroup
H of an affine algebraic group over K. Since K and Q are definably isomorphic
in the pure field Q (Fact 2.2.3), and since the expanded pure group G is definable
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in Q, the group H is definable over K, so it is an affine algebraic group over K.
Now, in the expanded pure group G, the group H ≃ G/CG(A(G

′)) is an abelian
connected affine algebraic group over K with a unique maximal proper connected
definable subgroup. Consequently H has dimension one over K, and the trivial
subgroup is its unique proper connected definable subgroup. Thus, since H and
G/CG(A(G

′)) are definably isomorphic, we obtain NCG(A(G
′))/CG(A(G

′)) = 1
and N = CG(A(G

′))◦.
We show that A = A(G′). Since the unipotent part of G is contained in

F (G) = N = CG(A(G
′))◦, the previous paragraph implies that G/CG(A(G

′)) is a
torus. Moreover, A(G′) is a closed torsion-free abelian subgroup of G, so it is a
Q-vector space, and there is a base (a1, . . . , an) of A(G′) such that G normalizes
Q · ai for each i. Since A(G′) is definably linear over K and since K and Q are
definably isomorphic in the pure field Q, the subgroups Q · ai are definable and
normal in G for each i. So we obtain n = 1 by the uniqueness of A, and A(G′) is
definably isomorphic to K+. Now Fact 2.2.4 gives A(G′) = A, as desired.

We show that AC is the unique maximal proper connected definable subgroup
of G containing C. Indeed, if G = AC, then we haveG′ = A = A(G′), contradicting
A(G′) < G′. Let M be a maximal proper connected definable subgroup M of G
containing C. Since AC is proper in G, we have C < M . Then M ∩G′ is a normal
infinite definable subgroup of G, and we have A ≤ M by the uniqueness of A. Let Z
be the hypercenter of M . It is definable by [28, Corollaire 3.15], and it is contained
in C by Fact 6.0.1 (ii). In particular, Z ∩ G′ is trivial. Moreover, by induction
hypothesis, M/Z is definably linear, so M ∩G′ is definably linear, and the previous
paragraph gives M ∩G′ ≤ A(G′) = A. Now we have M = AC, as claimed.

From now on, we can prove that the maximal tori of G are definable. Indeed,
by the maximality of AC and since A < G′, the quotient G′/A is C-minimal. Since
G = G′ ⋊ C, Fact 6.0.1 (iii) says that C does not centralize G′/A, and Fact 2.2.2
provides an infinite interpretable field K1 such that G′/A is definably isomorphic
to (K1)+. Then Fact 2.2.3 shows that G′/A is isomorphic to Q+, definably in Q.

Since A ≃ Q · a1 is isomorphic to Q+, definably in Q too, G′ is isomorphic to a

Q-vector space of dimension two, definably in Q. Thus, since CC(G
′) is trivial, C

is isomorphic, definably in Q, to an abelian connected closed subgroup of
{(

s a
0 t

)
| (s, t) ∈ (Q

∗
)2, a ∈ Q

}
.

In particular, C has dimension at most two over Q. Since C/CC(A) is definably
linear over K, Proposition 5.3.3 says that C/CC(A)

◦ is definably linear over K too.
Thus, since the conjugates of C generate G, and since G is not definably affine over
K, Theorem 5.2.1 shows that CC(A)

◦ is nontrivial, so C has dimension exactly
two over Q. Moreover, CC(A)

◦ ≤ N = F (G) is torsion-free, so it is a unipotent
subgroup, and C is not a torus. This implies that C is isomorphic, definably in Q,
to {(

t a
0 t

)
| t ∈ Q

∗
, a ∈ Q

}
.

Consequently, G = G′ ⋊ C is isomorphic, definably in Q, to







t a u
0 t v
0 0 1



 | t ∈ Q
∗
, (a, u, v) ∈ Q

3



 ,
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and Lemma 3.0.5 and Theorem 3.0.12 say that the maximal tori of G are definable.
Let T be the maximal torus of C. Since C ∩N ≤ F (G) is torsion-free, C ∩N

is a unipotent subgroup. On the other hand, the unipotent part of C is contained
in the one of G, which is contained in F (G) = N , so we obtain C = (C ∩N)× T .
Actually, since N = F (G) is torsion-free, it is the unipotent part of G, and since
G = G′C = NC = N ⋊ T , the torus T is maximal in G. Consequently, by the
previous paragraph, it is definable, and G′T is definable too. But, since G =
G′ ⋊C and since C ∩N = CC(A)

◦ is nontrivial, G′T is a proper normal connected
definable subgroup of G. Hence G′T is contained in N by the uniqueness of N .
This contradicts G = N ⋊ T , and finishes the proof. �

In the rest of this chapter, we are going to prove the following fundamental
result.

Theorem 6.0.3. – Let G be a connected solvable algebraic group over Q. Then
T ∩ F (G) is central in G for each pseudo-torus T of the expanded pure group G.

First, we have to prove Lemma 6.0.6. Its proof uses the Frattini subgroup.

Definition 6.0.4. – The Frattini subgroup of a group G of finite Morley rank
is defined as being the intersection of all the maximal proper definable connected
subgroups of G. It is denoted by Φ(G).

Fact 6.0.5. Let G be a connected group of finite Morley rank. Then,

(i) [21, Lemma 2.14.b] if H is a definable subgroup of G such that G =
Φ(G)H , we have G = H ;

(ii) [21, Lemma 2.14.a] Φ(G/Φ(G)) is trivial;
(iii) [21, Proposition 3.18] if G is solvable, Φ(G) is nilpotent and the quotient

F (G)/Φ(G) = F (G/Φ(G)) is abelian. In particular, G/Φ(G) is 2-solvable,
and G is nilpotent if and only if G/Φ(G) is abelian;

(iν) [21, Proposition 6.5] if G is solvable, F (G)∩Φ(C) ≤ Φ(G) for each Carter
subgroup C of G;

(ν) [19, Lemma 5.4] if G is nilpotent and if Φ(G) is finite, Φ(G/A) is finite
for each normal definable subgroup A of G.

Lemma 6.0.6. – Let C be a nilpotent group of finite Morley rank, and T
a pseudo-torus of C. Then, for each connected definable subgroup A of T , the
quotient AΦ(C)/Φ(C) is a pseudo-torus.

Proof – By Facts 2.3.3 (iν) and 6.0.5 (ii), we may assume Φ(C) = 1. In
particular C is abelian (Fact 6.0.5 (iii)). We assume toward a contradiction that A
is not a pseudo-torus. Since T is abelian and divisible, A is abelian and divisible too,
and it has a definable normal subgroup B such that A/B is definably isomorphic to
K+ for an interpretable field K. Moreover, since A is divisible, the characteristic of
K is zero, and A/B has no nontrivial proper definable subgroup (Fact 2.2.4). Since
Φ(C/B) is finite (Fact 6.0.5 (ν)), there is a maximal proper connected definable
subgroup M/B of C/B not containing A/B. In particular, since A/B has no
nontrivial proper definable subgroup, we have A∩M = B. Moreover, by maximality
of M/B, we have C = MA = MT , and K+ ≃ A/B = A/(A ∩ M) is definably
isomorphic to T/(T ∩M), contradicting that T is a pseudo-torus. This finishes the
proof. �

From now on, we can prove Theorem 6.0.3.
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Proof – [Proof of Theorem 6.0.3] We assume toward a contradiction that G is
a counterexample of minimal Morley rank and with Z(G) of minimal Morley degree.
We may assume that T is a maximal pseudo-torus of G. We show that no proper
normal definable subgroup of G contains T . Indeed, suppose toward a contradiction
that M is a proper normal definable subgroup of G containing T . So M◦ contains
T since T is connected, and T ∩F (M◦) is central in M◦ by the minimality of rk(G).
But we have G = MNG(T ) by Fact 2.3.3 (i) and a Frattini Argument, therefore by
Fact 2.3.3 (ii) and since G is connected, we find G = M◦CG(T ). Hence we obtain
T ∩ F (M◦) ≤ Z(G). Since M is normal in G, we have F (M◦) = M◦ ∩ F (G), so
T ∩F (G) is central in G, contradicting the choice of G. This proves that no proper
normal definable subgroup of G contains T . In particular, we have G = G′T .

We show that Z(G) = 1. By Fact 2.3.3 (iν), TZ(G)/Z(G) is a pseudo-torus
of G/Z(G). Consequently, if Z(G) is infinite, the minimality of rk(G) implies that
(T ∩ F (G))Z(G)/Z(G) is central in G/Z(G), so CG(t) is a normal subgroup of G
for each t ∈ T ∩ F (G). Now the previous paragraph gives G = CG(t) for each
t ∈ T ∩ F (G), that is T ∩ F (G) ≤ Z(G), which contradicts our hypothesis. Thus
Z(G) is finite and, since G is connected, G/Z(G) is centerless. If Z(G) 6= 1, the
minimality of the Morley degree of Z(G) yields (T ∩ F (G))Z(G)/Z(G) = 1 and
T ∩ F (G) ≤ Z(G), contradicting our hypothesis on G, so G is centerless.

We show that F (G) is torsion-free. Indeed, for each prime p, since Q has
characteristic zero and since F (G) is nilpotent, the subset Fp of the elements of
order p in F (G) is finite. Since G is connected and normalizes Fp, it centralizes Fp,
and we obtain Fp = ∅ because Z(G) = 1. This proves that F (G) is torsion-free.
Furthermore, this implies that F (G) is a unipotent subgroup of G.

By Fact 6.0.1 (i), T is contained in a Carter subgroup C of G. We show that
Φ(C) contains T ∩ F (G). Since F (G) is torsion-free, T ∩ F (G) is connected. By
Lemma 6.0.6, the group (T ∩ F (G))Φ(C)/Φ(C) is a pseudo-torus, and Fact 2.3.3
(iν) yields a pseudo-torus T0 of T ∩ F (G) such that T0Φ(C) = (T ∩ F (G))Φ(C).
By Fact 2.3.3 (iii), we have T0 ≤ Z(G) = 1, so (T ∩ F (G))Φ(C)/Φ(C) = 1 and
T ∩F (G) is contained in Φ(C). In particular, T ∩F (G) is contained in Φ(G) (Fact
6.0.5 (iν)).

We show that T is contained in a unique maximal proper definable connected
subgroup M of G. Indeed, since T < G, the subgroup M exists. Moreover, we have
T ∩ F (M) ≤ Z(M) by the minimality of rk(G). Since M contains Φ(G) by the
definition of Φ(G), and since Φ(G) is nilpotent (Fact 6.0.5 (iii)), we have Φ(G) ≤
F (M) and the previous paragraph yields T∩F (G) ≤ T∩F (M) ≤ Z(M). Thus, if T
is contained in two distinct maximal proper definable connected subgroups M1 and
M2 of G, then T ∩F (G) centralizes 〈M1, M2〉 = G, contradicting T ∩F (G) � Z(G).
Hence we obtain the uniqueness of M .

We consider Z/G′′ = Z(G/G′′), G = G/Z and T = TZ/Z. We show that

G = G
′
⋊ T and that G is centerless. If G′′ = 1, since G is centerless, we have

Z = 1 and Z(G) = 1. Moreover G′ and T are abelian and, since the first paragraph

gives G = G′T , we obtain G′ ∩ T ≤ Z(G) = 1, so G = G′ ⋊ T and G = G
′
⋊ T .

Hence we may assume G′′ 6= 1. In particular, the minimality of rk(G) yields
TG′′/G′′ ∩ F (G/G′′) ≤ Z/G′′. But Fact 6.0.5 (iii) gives G′′ ≤ Φ(G) ≤ F (G) and
F (G/Φ(G)) = F (G)/Φ(G), hence we have F (G/G′′) = F (G)/G′′ and we obtain
T ∩ F (G) ≤ Z. Also, the equalities Z/G′′ = Z(G/G′′) and F (G/G′′) = F (G)/G′′

imply Z ≤ F (G) and F (G) = F (G)/Z, so we have T ∩ F (G) = 1. In particular,
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since F (G) contains the abelian subgroup G
′
, we have G

′
∩T = 1, and since the first

paragraph gives G = G′T , we obtain G = G
′
⋊T . Now, since G

′
≤ F (G) and since

T ∩ F (G) = 1, we find G
′
= F (G) = F (G)/Z. Moreover, C = CZ/Z is a Carter

subgroup of G (Fact 6.0.1 (iii)), and Fact 6.0.1 (iν) provides a definable connected
characteristic abelian subgroup A = A/Z in G such that G = A ⋊ C. Since Fact
2.3.3 (iii) says that T is central in C, the definable subgroup AT is normal in G and
the first paragraph gives G = AT . Thus we obtain C = T . Since G′ is torsion-free,

Z(G) ≤ F (G) = G
′
is torsion-free too. In particular, since Z(G) normalizes the

Carter subgroup C, we obtain Z(G) ≤ C ∩F (G) = T ∩F (G) = 1. This proves that
G is a centerless 2-solvable group.

We show that G
′
has no nontrivial proper definable subgroup. Fact 6.0.5 (iii)

gives G′′ ≤ Φ(G) ≤ M , so M is normal in MZ, and M = MZ/Z is proper in G
by the first paragraph. Then M contains Z◦ and M is the unique maximal proper

definable connected subgroup of G containing T . In particular G
′
has no decom-

position of the form G
′
= A1 A2 for two proper definable connected subgroups A1

and A2 of G
′
, with A1 and A2 normal in G, otherwise M would contain Ai T for

i = 1, 2. Now Lemma 5.1.6 and Proposition 6.0.2 show that G is definably linear
over an interpretable field K. Thus, since K and Q are isomorphic, definably in
Q (Fact 2.2.3), each closed subgroup of G is definable, and the pseudo-tori of G

are tori. Moreover, in the pure field Q, since G′ is torsion-free, G
′
is a Q-vector

space. Thus, in Q, since T is a torus acting on G
′
, there is a basis (v1, · · · , vn) of

G
′
, where n is the dimension of G

′
over Q, such that T normalizes Q · vi for each

i. Then, by the uniqueness of M , we obtain n = 1 and G
′
= Q · v1. Now Fact 2.2.4

says that G
′
has no nontrivial proper definable subgroup.

We show that G′/G′′ has no nontrivial proper definable subgroup. By Fact
6.0.1 (iii) and (iν), G/G′′ has a definable connected characteristic subgroup B/G′′

such that G/G′′ = B/G′′ ⋊CG′′/G′′. Since T is central in C (Fact 2.3.3 (iii)), the
subgroup BT is normal in G and the first paragraph gives G = BT , so CG′′/G′′ =
TG′′/G′′. In particular B contains G′. Since Fact 6.0.1 (iii) says that G = G′C, we
obtain B = G′. Moreover, Z/G′′ = Z(G/G′′) normalizes CG′′/G′′ therefore, since
CG′′/G′′ is a Carter subgroup of G/G′′ (Fact 6.0.1 (iii)), we obtain Z ≤ CG′′ (Fact

6.0.1 (ii)). Now Z/G′′ ∩G′/G′′ is trivial, and G′/G′′ is definably isomorphic to G
′
.

Thus G′/G′′ has no nontrivial proper definable subgroup. Since G is a solvable
connected algebraic group, G′ is nilpotent, and we have Φ(G′) = G′′ (Fact 6.0.5
(iii)). Let x ∈ G′ \ G′′ and let X := d(x) be the smallest definable subgroup of
G′ containing x. The subgroup X is abelian and, since G′/G′′ has no nontrivial
proper definable subgroup, we have G′ = XG′′ = XΦ(G′). Thus Fact 6.0.5 (i)
gives G′ = X . In particular, G′ is abelian and G′′ = 1. Now G′ has no nontrivial
proper definable subgroup. Since G = G′T and since F (G) contains G′, we have
F (G) = G′(T ∩ F (G)). Consequently, either F (G) = T ∩ F (G), or T ∩ F (G) is a
maximal proper definable subgroup of F (G). In the first case, we obtain G′ ≤ T
and, since G = G′T , we have G = T and G is abelian, contradicting our choice of
G. In the second case, T ∩ F (G) is normal in F (G). But, since T ∩ F (G) � Z(G),
we have T ∩ F (G) 6= 1 and T ∩ Z(F (G)) is nontrivial. Hence, since we have
G = G′T = F (G)T , the subgroup T ∩ Z(F (G)) is central in G, contradicting that
G is centerless. This finishes the proof. �



CHAPTER 7

The definably linear quotients of an ACF -group

The purpose of this section is to obtain information about the subgroup W (G)
whenG is an ACF -group. In particular, Theorem 7.3.2 says that, ifG is a connected
algebraic group over Q, then G/Z(G) is definably linear and G′ is definably affine,
in the expanded pure group G. That is W (G) is central in G and W (G′) is trivial.

7.1. The subgroups S(G) and T (G)

Notation 7.1.1. – For any group G of finite Morley rank, we denote by S(G)
the connected component of the intersection of the maximal pseudo-tori of G, and
by T (G) the subgroup of G generated by its pseudo-tori.

Remark 7.1.2. –

• By Zilber’s Indecomposability Theorem, T (G) is a connected definable sub-
group of G, for any group G of finite Morley rank.

• If G is an ACF -group, then T (G) contains all the tori of G.
• Moreover, S(G) is central in G◦.
Indeed, it is central in T (G), and the conjugacy of the maximal pseudo-tori
of G (Fact 2.3.3 (i)) and a Frattini Argument provide G◦ = T (G)NG◦(T )
for each maximal pseudo-torus T of G. So, by Fact 2.3.3 (ii), we have
S(G) ≤ Z(G◦).

The quasiunipotent radical of a group of finite Morley rank was introduced in
[2].

Definition 7.1.3. – In any group G of finite Morley rank, we denote by Q(G)
the quasiunipotent radical, which is the largest normal connected definable nilpotent
subgroup of G with no nontrivial divisible torsion subgroup.

Ideally, in any ACF -group, the quasiunipotent radical is the unipotent radical.
However, this fails for some abelian connected groups, since the pure group Q+ ×

Q
∗
is abstractly isomorphic to Q

∗
, so its quasiunipotent radical is trivial. In the

same way, if K is an algebraically closed field of characteristic p > 0, and if we
consider the ACF -group G = K+ ⊕ Fp as a pure group, then G is connected, so
its quasiunipotent radical is G, while its unipotent radical is K+ ⊕ {0} < G.

Lemma 7.1.4. – In any connected ACF -group G, we have

G/S(G) = Q(G/S(G)) · T (G)/S(G).

Proof – By Fact 2.3.3 (iν), we may assume S(G) = 1. Let K be an alge-
braically closed field such that G is interpretable in K. We may assume that G
is an algebraic group over K. In particular, T (G) is an algebraic subgroup of G
containing each torus of G.

55
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We denote by GL the largest connected linear algebraic subgroup of G◦◦. In
particular, G◦◦/GL is an abelian variety, so it is a pseudo-torus, and it is covered by
T (G) (Fact 2.3.3 (iν)). Moreover, we have GL = U ⋊ S for S a maximal reductive
subgroup of GL and U its unipotent radical. Since S is generated by its tori, we
obtain S ≤ T (G).

Now let Q := d(U) denote the smallest definable subgroup of G containing
U . Since U is a unipotent group, U is nilpotent and contained in d(U)◦, so Q is
nilpotent and connected. We show that Q = U . By Fact 2.3.3 (iii), Q has a unique
maximal pseudo-torus T . In particular T is normal in G and it is contained in each
maximal pseudo-torus of G, so we have T ≤ S(G) = 1. Thus Q is quasiunipotent
and it is contained in Q(G). Hence G◦◦ is contained in Q(G)T (G), and we obtain
the result by connectedness of G. �

Proposition 7.1.5. – Let G be an ACFp-group where p is either a prime or
zero. We assume that if p = 0, then G is the expanded pure group associated to
an algebraic group over Q. Then T (G)/S(G) is definably affine.

Proof – We may assume G = T (G) and, by Fact 2.3.3 (iν), we may assume
S(G) = 1. Let T be a maximal pseudo-torus of G containing a maximal torus of
G, and let B be a Borel subgroup of G, in the algebraic sense, with B containing
T . Since S(B) is central in B (Remark 7.1.2), it is central in G too, and it is
contained in S(G) = 1 by the conjugacy of the maximal pseudo-tori (Fact 2.3.3
(i)). Moreover, Fact 2.2.2 says that, for each minimal infinite definable T -normal
section A of B, the quotient T/CT (A) is definably affine. Thus, W (T )F (B)◦ is
nilpotent, and since B′ is nilpotent and connected, W (T )F (B)◦ is contained in
F (B).

If p = 0, then Theorem 6.0.3 implies that W (T ) is central in B, and Corollary
5.3.6 says that W (T ) is connected. Thus W (T ) is contained in S(B) = 1 by the
conjugacy of the maximal pseudo-tori in B (Fact 2.3.3 (i)), and T is definably affine.
Now T (G) is definably affine by Theorem 5.2.1.

If p is a prime, then each abelian divisible definable subgroup of G has torsion,
so it is a decent torus. Therefore Fact 2.3.3 (iii) says that W (T )◦ is central in B,
and it is contained in S(B) = 1 by the conjugacy of the maximal pseudo-tori in B
(Fact 2.3.3 (i)). Now W (T ) is finite, and it is a p-group by Corollary 5.3.6. But G
is an ACFp-group, so it contains no nontrivial divisible p-subgroup. Hence T has
no nontrivial p-subgroup, and W (T ) is trivial. Consequently T is definably affine,
and T (G) is definably affine by Theorem 5.2.1. �

7.2. The nilpotence of W (G)

Proposition 7.2.1. – Let A be a G-minimal subgroup of an ACF -group G.
If CG(A) has infinite index in G, then A is definably linear over one interpretable
field.

Proof – Let K be an algebraically closed field interpreting G. We consider G
as an algebraic group defined over K. By G-minimality of A, and since CG(A) has
infinite index in G, we have A = [A,G◦◦], and A is connected in the pure field K.

First we assume that A is abelian. Let B be a Borel subgroup of G. In
particular B contains A. Since CG(A) has infinite index in G, the subgroup A is
non-central in G◦◦, so the intersection A ∩ Z(G◦◦) is finite by G-minimality of A,
and A∩Z(B) is finite too [24, Corollary 22.2.B]. Since B is connected and solvable
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in the pure field K, the subgroup d(B) is connected and solvable in the ACF -group
G. Let A0 be a d(B)-minimal subgroup in A. Since A∩Z(B) is finite, the subgroup
A0 is non-central in d(B). Now Fact 2.2.2 says that A0 is definably linear over one
interpretable field K0. Since A is the normal closure of A0, Theorem 5.2.1 shows
that A is definably linear over K0.

If A is not abelian, then Z(A) is finite. Let B be a Borel subgroup of A. Since
A is connected in the pure field K, the subgroup B is a maximal solvable subgroup
of A, and B is definable in the ACF -group G. Moreover Z(B) = Z(A) is finite [24,
Corollary 22.2.B], so if A0 is a B-minimal subgroup of B, then A0 is non-central in
B. Now Fact 2.2.2 says that A0 is definably linear over one interpretable field K0,
and since A is the normal closure of A0, Theorem 5.2.1 shows that A is definably
linear over K0. �

Lemma 7.2.2. – Let G be a group of finite Morley rank. If G is residually
definably linear over interpretable fields K1, . . . ,Kn, then G is definably linear over
K1, . . . ,Kn.

Proof – We proceed as in the proof of Lemma 5.3.5. We find finitely many
normal definable subgroups S1, . . . , Sm of G such that

⋂m
i=1 Si = 1 and such that

G/Si is definably linear over K1, . . . ,Kn for each i. Then G definably embeds in
(G/S1)× · · · × (G/Sm), and the result follows. �

Lemma 7.2.3. – Let H be a normal connected definable subgroup of an ACF -
group G. If H is definably affine over interpretable fields K1, . . . ,Kn, then the
quotient G/CG(H) is definably linear over K1, . . . ,Kn.

Proof – We may assume that Ki is not definably isomorphic to Kj for each
i 6= j. For each i, we denote by Hi the largest connected definable subgroup of H
definably affine over Ki (Theorem 5.2.1). These subgroups are normal in G. By
Proposition 5.2.3, H is generated by H1, . . . , Hn. Hence, by Lemma 7.2.2, we may
assume that H is definably affine over one interpretable field K. Moreover, we may
assume that K is infinite.

Let L be an algebraically closed field such that G is interpretable in the pure
field L. By Fact 2.2.3, the fields K and L are isomorphic, definably in L. We
considerH⋊G/CG(H), whereG/CG(H) acts onH by conjugation. It is isomorphic
to an algebraic group over L, definably in L. Since K and L are isomorphic,
definably in L, we find an isomorphism ϕ, definable in L, from H ⋊ G/CG(H)
to an algebraic group R over K. Since H is definably affine over K and since
K and L are isomorphic, definably in L, the map ϕ|H : H → ϕ(H) is definable
in G. Moreover, since K and L are isomorphic, definably in L, the subgroup
V = ϕ(G/CG(H)) is algebraic over K, and it is definable in G. Now the semidirect
product R = ϕ(H) ⋊ V is definable in G. Thus, since ϕ|H is definable in G,
the graph ∆ = {(g, v) ∈ G/CG(H) × V | ∀h ∈ H, ϕ|H(g · h) = v · ϕ|H(h)} of
ϕ|G/CG(H) : G/CG(H) → V is definable in G too. From now on, G/CG(H) is
definably isomorphic to an algebraic group V over K.

We verify that V is affine. Since the ACF -group H is connected, and since
ϕ(H) and ϕ|H are definable in G, the subgroup ϕ(H) is connected in G too, and
ϕ(H) is connected in the pure fieldK. Thus V is an algebraic group acting faithfully
on a connected algebraic group, so it is affine by the Rosenlicht’s Theorem [31, §5,
Théorème 13]. This implies that G/CG(H) is definably linear over K. �
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Fact 7.2.4. [19, Proposition 4.3] Let G be a group of finite Morley rank. If G◦

is definably linear over interpretable fields K1, . . . ,Kn, then G is definably linear
over K1, . . . ,Kn too.

Remark 7.2.5. – If G is a connected algebraic group over an algebraically closed
field K, then the elements of F (G)/F (G)◦◦ are semisimple.

Indeed, if we denote by U the unipotent radical of G, then G/U is a reductive
group, and since F (G)◦◦ contains U [24, §19.5], the quotient G/F (G)◦◦ is reductive
too. But G is connected, so F (G)/F (G)◦◦ is centralized by G, and all the elements
of F (G)/F (G)◦◦ are semisimple.

Lemma 7.2.6. – In any connected ACF -group G, the subgroup F (G)◦ covers
G/G◦◦.

Proof – By Lemma 4.0.3, G has a normal definable connected subgroup I
contained in G◦◦ such that G/I is an abelian p-group. In particular, if U denotes
the unipotent radical of G◦◦, then U covers G◦◦/I. But U is a normal nilpotent
connected closed subgroup of G◦◦. Hence d(U) is a normal nilpotent connected
definable subgroup of G, and it is contained in F (G)◦. Thus G◦◦ is contained in
the definable subgroup F (G)◦I, and since G is connected, we obtain G = F (G)◦I.
Since G◦◦ contains I, we obtain the result. �

Corollary 7.2.7. – For each ACF -group G, the quotient G/F (G) is definably
linear, and G/F (G)◦ is definably affine. In particular W (G) is nilpotent.

Proof – Let S denote the centralizer inG◦ of all theG◦-minimal sections ofG◦.
Let U/V be a G◦-minimal section of G◦. If G◦ does not centralize U/V , then U/V is
definably linear over one interpretable field by Proposition 7.2.1, andG◦/CG◦(U/V )
is definably linear by Lemma 7.2.3. Consequently G◦/S is definably linear (Lemma
7.2.2). Since G◦ is connected, it centralizes S/S◦. But S centralizes all its G◦-
minimal sections, hence S is nilpotent, that is F (G◦) contains S. Conversely, since
F (G◦) is nilpotent and normal, it centralizes all the G◦-minimal sections of G◦, so
S = F (G◦). Thus G◦/F (G◦) is definably linear, and since F (G◦) = F (G)∩G◦, the
quotient G◦F (G)/F (G) is definably linear. We conclude that G/F (G) is definably
linear by using Fact 7.2.4.

Let K be an algebraically closed field interpreting G, and let p be its character-
istic (p is a prime or zero). If p = 0, then G/F (G)◦ is definably affine by Corollary
5.3.6, so we may assume that p is a prime. Viewing G as an algebraic group overK,
Remark 7.2.5 shows that F (G◦◦)/F (G◦◦)◦◦ has no nontrivial unipotent element, so
p does not divide its order. Since Lemma 7.2.6 says that F (G◦)◦ covers G◦/G◦◦,
the group F (G◦)/F (G◦)◦ is isomorphic to (F (G◦)∩G◦◦)/(F (G◦)◦ ∩G◦◦). But we
have F (G◦◦) = F (G◦) ∩ G◦◦, and F (G◦)◦ ∩ G◦◦ contains F (G◦◦)◦◦, so p does not
divides the order of F (G◦)/F (G◦)◦. Hence Theorem 5.3.4 shows that G◦/F (G◦)◦

is definably affine, and since F (G)◦ = F (G◦)◦, the quotient G/F (G◦)◦ is definably
affine too by Corollary 5.3.2. �

Corollary 7.2.8. – Let G be an ACFp-group where p is either a prime or
zero. We assume that if p = 0, then G is the expanded pure group associated to
an algebraic group over Q. Then G/CG(T (G)) is definably affine.

Proof – By Corollary 5.3.2, we may assume that G is connected. In particular,
S(G) is central in G. We consider C = CG(T (G)/S(G)). By Proposition 7.1.5 and
Lemma 7.2.3, the quotient G/C is definably linear.
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Since [T (G), C] is contained in S(G), each maximal pseudo-torus of G is nor-
malized by C and, by Fact 2.3.3 (ii), it is centralized by C◦. This implies that C◦

centralizes T (G), so C/CG(T (G)) is a finite group. Then, by Theorem 5.3.4, we
may assume that p is a prime and that p divides the order of C/CG(T (G)).

Let c be a p-element of C/CG(T (G)), and let T be a maximal pseudo-torus
of G. We consider the semi-direct product R = T ⋊ 〈c〉, where 〈c〉 acts on T by
conjugation. It is a nilpotent group of class at most two. Thus [t, c] is a p-element
for each t ∈ T and, by Zilber’s Indecomposability Theorem, [T, 〈c〉] is a connected
p-subgroup of T , so it is trivial and R is abelian. This implies that c centralizes
T (G), and contradicts that p divides the order of C/CG(T (G)). �

7.3. The subgroup W (G) when the ground field is Q

When G is a connected algebraic group over Q, then by Theorem 7.3.2 below,
the subgroup W (G) is central in the expanded pure group G, and W (G′) is trivial.

Lemma 7.3.1. – Let H be a normal definable subgroup of a connected ACF -
group G. If G/CG(H) is definably affine over the fields K1, . . . ,Kn, then [G,H ] is
definably affine over K1, . . . ,Kn too.

Proof – We consider the semi-direct product R = H ⋊ G/CG(H), where
G/CG(H) acts on H by conjugation. Then R is an ACF -group, and the subgroup
S of R generated by the conjugates of G/CG(H) is definably affine over K1, . . . ,Kn

(Theorem 5.2.1). But S contains the definable subgroup [G,H ], so [G,H ] is defin-
ably affine over K1, . . . ,Kn. �

Then we obtain a result on the abstract structure of the algebraic groups over
Q, and this one is fundamental for us.

Theorem 7.3.2. – Let G be a connected algebraic group over Q. Then, in
the expanded pure group G, the quotient G/Z(G) is definably linear, and G′ is
definably affine.

Furthermore, if U/Z(G) (resp. V/Z(G)) is the largest connected subgroup of
G/Z(G), definably linear over one interpretable field K (resp. L), and if K and L
are not definably isomorphic, then [U, V ] is trivial and U ′ ∩ V ′ is finite.

Proof – We show that G/Z(G) is definably affine. Let Q be the preimage of
Q(G/S(G)) in G. Since S(G) is central in G, the group Q is nilpotent, and Q/Z(Q)
is definably linear by Theorem 4.0.6. Moreover, by Corollary 7.2.8, the quotient
Q/CQ(T (G)) is definably affine, soQZ(G)/Z(G) is definably affine by Lemma 7.1.4.
Since Proposition 7.1.5 says that T (G)/S(G) is definably affine, T (G)Z(G)/Z(G)
is definably affine too. Hence G/Z(G) is definably affine by Theorem 5.2.1 and
Lemma 7.1.4. Furthermore, Lemma 7.3.1 says that G′ is definably affine.

We show that G/Z(G) is definably linear. By Corollary 5.1.8, G/Z(G) has a
finite normal subgroup E/Z(G) such that G/E is definably linear. In particular,
G centralizes E/Z(G), and E is nilpotent. We consider a bounded exponent sub-
group B0 of E covering E/Z(G). Then B0 is contained in a characteristic bounded
exponent subgroup B1 of E, and B1 is finite since Q is of characteristic zero. Hence
B1 is central in G, and E/Z(G) is trivial. This proves that G/Z(G) is definably
linear.

By Lemma 7.3.1, the groups [G,U ] and [G, V ] are definably affine overK and L
respectively, so they are definably linear over K and L respectively. By Proposition
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5.2.3, this implies that U ′ ∩ V ′ ≤ [G,U ] ∩ [G, V ] and [U, V ] ≤ [G,U ] ∩ [G, V ] are
finite. Moreover, we have [U, V ] = [U◦Z(G), V ] = [U◦, V ], so [U, V ] is connected,
and [U, V ] is trivial, as desired. �

7.4. The subgroups A(G) and W (G) in positive characteristic

Proposition 7.4.1. – Let G be a connected ACFp-group for a prime p. If
Z(G) is finite and if p does not divide its order, then G is definably affine.

Proof – Since S(G) is connected and central in G, we have S(G) = 1, and
T (G) is definably affine (Proposition 7.1.5). Then, by Lemma 7.1.4 and Theorem
5.2.1, we have just to prove that W (Q(G)) is trivial.

If W (Q(G)) is finite, then it is central in G, so p does not divides its order. But
Corollary 5.3.6 says that |W (Q(G))| is a power of p, hence we obtain W (Q(G)) = 1,
as desired.

From now on, we assume toward a contradiction that W (Q(G)) is infinite. Let
A be a G-minimal subgroup of W (Q(G)). Since Q(G) is nilpotent, A is central
in Q(G). But W (Q(G)) centralizes T (G) (Corollary 7.2.8), so A is central in
G = Q(G)T (G) (Lemma 7.1.4), contradicting that Z(G) is finite. �

We deduce from this a result concerning the structure of ACFp-groups when p
is a prime.

Corollary 7.4.2. – If G is a connected ACFp-group for a prime p, then W (G)
is contained in the hypercenter of G.

Moreover, our study provides a piece of information concerning A(G).

Proposition 7.4.3. – If G is a connected ACFp-group for a prime p, then
G/A(G) is nilpotent.

Proof – Let H be the smallest normal definable subgroup of G such that
G/H is nilpotent. Since G is connected, H is connected too. The group G/T (G)
has no nontrivial pseudo-torus (Fact 2.3.3 (iν)), so it has no nontrivial divisible
torsion subgroup. Since it is constructible over an algebraically closed field, it is
nilpotent-by-finite, and by connectedness of the ACF -group G, it is nilpotent. This
implies H ≤ T (G) and H ≤ [G, T (G)]. Hence Corollary 7.2.8 and Lemma 7.3.1
yield the result. �



CHAPTER 8

The group DG and the Main Theorem for K = Q

In this section, we prove Theorem 1.0.2 in the special case K = Q (Lemma
8.0.14 and Theorem 8.0.18). The main point for the proof is the construction of
the group DG. It is made in three steps: Constructions 8.0.1, 8.0.3 and 8.0.12 (see
also Example 8.0.13).

For the rest of this section, we fix a nontrivial connected algebraic group G
over Q, and we consider the expanded pure group G.

We have to recall the purpose of Remark 1.2.2. Indeed, as in most of this paper,
in all of this section an algebraic group over an algebraically closed field K means
the group of rational points over K: in particular, it is a group in the abstract
sense.

Construction of DG 8.0.1. – (1/3) By Theorem 7.3.2, we find interpretable
fields K1, . . . ,Kn such that Ki is not definably isomorphic to Kj for each i 6= j,
and such that G/Z(G) is definably linear over K1, . . . ,Kn. By Lemma 5.1.6 and
Proposition 5.2.3, if for each i we denote byGi/Z(G) the largest connected subgroup
of G/Z(G) definably linear over Ki, the quotient G/Z(G) is the direct product of
the subgroups Gi/Z(G), and G′

i = (G◦
i )

′ is definably linear over Ki for each i
(Lemma 7.3.1). Moreover, Theorem 7.3.2 says that G is the central product of
G1, . . . , Gn, and we may assume that Gi/Z(G) is nontrivial for each i.

First we consider a purely algebraic lemma.

Lemma 8.0.2. – Let G̃ be a connected affine algebraic group over an alge-
braically closed field K of characteristic zero. Then, for each positive integer n,
up to isomorphism of algebraic groups, there is a unique connected affine algebraic
extension G∗ of G̃, with a normal finite subgroup X of exponent dividing n, and
satisfying the following property:

for each connected affine algebraic group H over K, if H has a normal finite
subgroup E of exponent dividing n such that G̃ and H/E are algebraically iso-
morphic, there is an algebraic surjective homomorphism γ : G∗ → H such that
γ(X) = E.

Proof – In this proof, any couple (H,E), where H is a connected affine
algebraic group over K and E a normal finite subgroup of H of exponent dividing
n, is said to be an n-extension of G̃ if G̃ and H/E are isomorphic as algebraic

groups. We consider the family E of the n-extensions of G̃ modulo the equivalence
relation R defined by the following assertion: “if (H1, E1) and (H2, E2) are two

n-extensions of G̃, we denote by (H1, E1)R(H2, E2) the existence of an algebraic
isomorphism γ : H1 → H2 such that γ(E1) = E2.” We identify any n-extension

of G̃ with its class modulo R. Moreover, we consider the order relation ≤ on E

defined by the following assertion: “if (H1, E1) and (H2, E2)) are two elements

61
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of E , we denote by (H1, E1) ≤ (H2, E2) the existence of an algebraic surjective
homomorphism γ : H2 → H1 such that γ(E2) = E1.”

First we notice that, for each element (H,E) of E , the order of E is at most

nr, where r denotes the Lie rank of the algebraic group G̃. Indeed, since E is finite
and since G̃ and H/E are isomorphic as algebraic groups, the rank of H is r too.
But the field K has characteristic zero, and E is finite and normal in H , so E
is contained in any maximal torus of H . Consequently, since the exponent of E
divides n, the order of E is at most nr.

Now we have just to prove that, if (M,E) and (N,F ) are two maximal elements

of E , then (M,E)R(N,F ). Since M/E and N/F are isomorphic to G̃ as algebraic
groups, we may consider a subgroup ∆ of M ×N such that ∆/(E×F ) is the graph
of an isomorphism of algebraic groups fromM/E to N/F . We considerD = ∆◦ and
A = D∩(E×F ). Then D, M and N have the same dimensions over K, and D∩M
and D∩N are contained in A. We consider the projection maps ρM : M ×N → M
and ρN : M × N → N . Since D, M and N have the same dimensions, and since
D ∩M and D ∩N are contained in A, the images of D by ρM and ρN are M and
N respectively. Moreover, we have

D ∩ ρ−1
M (E) = D ∩ (E ×N) = D ∩ (∆ ∩ (E ×N)) = D ∩ (E × F ) = A

and, in the same way, D ∩ ρ−1
N (F ) = A. In particular, (D,A) is an n-extension

of G̃ satisfying (M,E) ≤ (D,A) and (N,F ) ≤ (D,A). By the maximalities of
(M,E) and (N,F ), we obtain (M,E)R(D,A) and (N,F )R(D,A). Finally, we find
(M,E)R(N,F ), and we can take (G∗, X) = (M,E). �

Construction of DG 8.0.3. – (2/3) For each i, we consider an algebraic
complement Ci/G

′
i of Z(G)◦G′

i/G
′
i in G◦

i /G
′
i. Since G is connected, the torsion

part of Z(G) ∩ G′ is finite. Then, for each i, we denote by ni the exponent of the

torsion subgroupXi of Z(G)◦∩G′
i, and by Ci

∗
the unique connected affine algebraic

extension of Ci := Ci/Xi, with a normal finite subgroup of exponent dividing ni

and satisfying the property of Lemma 8.0.2.
Moreover, we fix an algebraic complement Z to (Z(G)◦ ∩ G′)◦ in Z(G)◦. We

note that, since G is the central product of G1, . . . , Gn, the group G′ is the central
product of G′

1, . . . , G
′
n, and G is also the central product of Z and C1, . . . , Cn.

Now we obtain the following structural result on G.

Lemma 8.0.4. – The group G has a central finite subgroup F0 such that G/F0

is the direct product of ZF0/F0 and of
Śn

k=1 CkF0/F0.

Proof – Since G′
j is definably linear over Kj for each j, Lemma 5.1.6 and

Corollary 5.1.8 imply that the Morley rank of Z(G) ∩ G′ =
∏n

j=1(Z(G) ∩ G′
j) is∑n

k=1 rk(Z(G) ∩G′
k). Then we obtain

n∑

k=1

rk(Ck) =
n∑

k=1

(rk(Gk)− rk(Z(G)◦) + rk(Z(G)◦ ∩G′
k))

=

n∑

k=1

(rk(Gk/Z(G)) + rk(Z(G) ∩G′
k))

= rk(G/Z(G)) + rk(Z(G) ∩G′),
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and rk(Z) +
∑n

k=1 rk(Ci) = rk(G/Z(G)) + rk(Z(G)) = rk(G). Thus, Z0 = Z ∩
(
∏n

k=1 Ck) is finite, and for each j, the group Ej = Cj ∩ (
∏

k 6=j Ck) is finite too.
Let F0 be the subgroup generated by Z0 and the subgroups Ej . Then F0 is finite
and central in G, and G/F0 is the direct product of ZF0/F0 and of ×n

k=1CkF0/F0.
�

It is not clear that Ci is uniquely determined in the pure group G. However,

we will see that Ci
∗
is uniquely determined in the pure group G, up to isomorphism

of algebraic groups (Corollary 8.0.11). The proof will need the following notion.

Definition 8.0.5. – A group A is said to be centrally indecomposable if there is
no decomposition of A under the form of a central product of two proper subgroups
having a finite intersection.

Lemma 8.0.6. – Let G be a connected affine algebraic group over an alge-
braically closed field K. If G is a central product of two proper closed subgroups U
and V with U ∩ V finite, then G has a nonstandard automorphism α centralizing
U .

Furthermore, we may choose α such that, for any two infinite closed subgroups
U1 and V1 of U and V respectively, the isomorphism β : U1V1 → α(U1V1) induced
by α is nonstandard.

Proof – First we notice that U and V are infinite since G = UV is connected,
and since U and V are closed and proper in G. Let µ be a nonconstructible field
automorphism of K. Since U ∩V is finite, we may choose µ centralizing U ∩V . We
consider the automorphism α of G defined by α(uv) = uµ(v) for each u ∈ U and
each v ∈ V . Then α centralizes U .

Let U1 and V1 be two infinite closed subgroups of U and V respectively. We
assume toward a contradiction that the isomorphism β : U1V1 → α(U1V1) induced
by α is standard. Then we have β = γ ◦ ν for ν a field automorphism of K, and
γ an isogeny. We obtain ν(u) = γ−1(u) for each u ∈ U1. Since U1 is infinite, this
implies that ν is definable in the pure field K. Consequently, β is definable in the
pure field K too. Now, since V1 is infinite and since we have β(v) = µ(v) for each
v ∈ V1, the automorphism µ is definable in the pure field K too, contradicting that
µ is nonconstructible. �

Lemma 8.0.7. – For each i, we have C′
i = G′

i and Z(Ci)
◦ ≤ Z(G)◦ ∩Ci ≤ C′

i.

Proof – Since Gi = G◦
iZ(G) = CiZ(G), we have C′

i = G′
i. In particular,

since G◦
i /G

′
i is the direct product of Ci/G

′
i and of Z(G)◦G′

i/G
′
i, we obtain Z(G)◦ ∩

Ci ≤ C′
i. Moreover, since G is the central product of G1, . . . , Gn, we have also

Z(Ci)
◦ ≤ Z(G)◦ ∩ Ci. �

Proposition 8.0.8. – For each i, the groups Ci and Ci are centrally indecom-
posable.

Proof – We assume toward a contradiction that Ci is not centrally indecom-
posable. Let U and V be two proper subgroups of Ci having a finite intersection
and such that Ci is the central product of U and V . Since Ci is connected, U and
V are infinite. If U is abelian, then U centralizes Gi, and since Gi centralizes Gj for
each j 6= i by Theorem 7.3.2, we obtain U ≤ Z(G). Then Z(G)◦ ∩ U is an infinite
subgroup of Z(G)◦ ∩ Ci ≤ C′

i = V ′, contradicting that U ∩ V is finite. Hence U is
not abelian. In the same way, V is not abelian. In particular, CCi

(U) = Z(U)V and
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CCi
(V ) = UZ(V ) are proper in Ci. Moreover, by the connectedness of Ci, we find

Ci = CUCV , for CU := CCi
(V )◦ and CV := CCi

(U)◦, and this product is central.
Thus, Ci is the central product of two proper connected algebraic subgroups CU

and CV .
We consider an algebraic complement R/C′

U of (CU ∩CV )
◦C′

U/C
′
U in CU/C

′
U ,

and an algebraic complement S/C′
V of (R ∩ CV )

◦C′
V /C

′
V in CV /C

′
V . Then Ci is

the central product of R and S, and (R ∩ S)◦ is contained in C′
U ∩ C′

V ≤ U ′ ∩ V ′,
therefore R ∩ S is finite. Since R ≤ CU and S ≤ CV are proper in Ci, they are
infinite. In the same way as for U and V , the subgroups R and S are not abelian,
and since they are connected, R′ and S′ are infinite.

By Lemma 8.0.6, the group Ci has a nonstandard automorphism α centralizing
R(Ci ∩ F0). Moreover, we may choose α such that the automorphism β of G′

i =
C′

i = R′S′ induced by α is nonstandard. Since G is the central product of Z
and C1, . . . , Cn, and since Ci ∩ (Z

∏
k 6=i Ck) is contained in Ci ∩ F0, there is an

automorphism µ of G centralizing Z
∏

k 6=i Ck and whose restriction to Ci is α. In

particular, the restriction of µ to C′
i is nonstandard. But C

′
i = G′

i is definably linear
over Ki, hence this contradicts Fact 3.0.4, and Ci is centrally indecomposable.

Finally, if Ci is the central product of two proper subgroups U1/Xi and V1/Xi

having a finite intersection, then U1 and V1 are two proper subgroups of Ci having
a finite intersection, satisfying Ci = U1V1, and such that [U1, V1] ≤ Xi is finite
and central in Ci. Let V2 be a subgroup of V1 such that Ci = U1V2, and such
that |U1 ∩ V2| is minimal among such subgroups. Then, for each u ∈ U1, the map
adu : V2 → Xi, defined for each v ∈ V2 by adu(v) = [u, v], is an homomorphism.
Moreover, its kernel V3 has finite index in V2. But Q has characteristic zero and
Ci is connected, so Ci has no proper subgroup of finite index. Hence we have
Ci = U1V3, and V3 = V2 by the choice of V2. Thus Ci is the central product of
U1 and V2, contradicting the previous paragraphs. Consequently, Ci is centrally
indecomposable. �

Proposition 8.0.9. – If A is any affine algebraic group over Q abstractly
isomorphic to Ci, then A is isomorphic to Ci as algebraic group.

Proof – We have to find an isomorphism between A and Ci, definable in the
pure field Q. Let α be an abstract isomorphism between A and Ci. For each iso-
morphism α0 : A → Ci, we denote by α0 the isomorphism between A/Z(A)◦ and
Ci/Z(Ci)

◦, induced by α0. By Proposition 8.0.8, the group Ci is centrally inde-
composable, and since it is connected, Theorem 7.3.2 implies that, in the expanded
pure group Ci, the quotient Ci/Z(Ci) is definably linear over one interpretable field.
Then Ci/Z(Ci)

◦ is definably linear over one interpretable field too, by Proposition
5.3.3. Now Fact 3.0.4 says that the isomorphism α : A/Z(A)◦ → Ci/Z(Ci)

◦ is
standard. Thus, there is an automorphism δ of Ci, induced by a field automor-

phism of Q, such that α ◦ δ
−1

= α ◦ δ−1 is an isomorphism of algebraic groups. Let
µ = α ◦ δ−1, and let ∆ be its graph. Then, if Z1 = Z(A)◦ × Z(Ci)

◦, the group
∆Z1 = ∆Z(A)◦ = ∆Z(Ci)

◦ is definable in the pure field Q. This implies that
(∆Z1)

′ = ∆′ is definable in the pure field Q too.
We consider an algebraic complement D/∆′ of Z1∆

′/∆′ in ∆Z1/∆
′. Since

∆Z1/Z1 is the graph of µ, we have D ∩A ≤ ∆Z1 ∩ A ≤ Z1. So we obtain

D ∩A ≤ (D ∩ Z1) ∩A ≤ ∆′ ∩ A ≤ ∆ ∩ A.
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Thus, since ∆ is the graph of an isomorphism from A to Ci, we find D ∩A = 1. In
the same way, D ∩Ci is trivial. If ZC/Xi denotes the center of Ci, then [Ci, ZC ] is
contained in Xi, and it is connected since Ci is connected, so ZC = Z(Ci). Hence

Z(Ci)
◦ is contained in Ci

′
by Lemma 8.0.7. This proves that ∆′ contains the graph

of the restriction of µ to Z(A)◦, and it implies that ∆′Z1 = ∆′Z(A)◦ = ∆′Z(Ci)
◦,

so AD ≥ A∆′ contains Z1. Now AD contains ∆ ≤ ∆Z1 = DZ1, and it contains Ci

too since ∆ is the graph of µ. Consequently, we have AD = ACi and, in the same
way, CiD = ACi. Since D is an algebraic subgroup satisfying D ∩A = D ∩Ci = 1
and AD = CiD = ACi, it is the graph of an isomorphism of algebraic groups from
A to Ci, and the proof is finished. �

Corollary 8.0.10. – Let A be a (non-necessarily algebraic) centrally inde-
composable subgroup of Gi containing G′

i. If it is a complement of Z(G)◦G′
i/G

′
i in

G◦
i /G

′
i then, up to isomorphism of algebraic groups, Ci is the only affine algebraic

group over Q such that the groups A := A/Xi and Ci are isomorphic.

Proof – The group (Z(G)◦ ∩G′
i)/Xi is definable in the pure group G, and it

is torsion-free, so it is divisible and it has a complement S/Xi in Z(G)◦/Xi. Then
we have Gi = AS = CiS, and A/(A ∩ S) is isomorphic to Ci/(Ci ∩ S) as abstract
groups. Moreover, the group A ∩ S is contained in A ∩Z(G)◦ ≤ Z(G)◦ ∩G′

i = Xi,
so A∩ S = Xi. In the same way, we have Ci ∩S = Xi, so A and Ci are isomorphic
as abstract groups, and the conclusion follows from Proposition 8.0.9. �

Corollary 8.0.11. – The algebraic groups Ci and Ci
∗
depend just on the

ACF -group Gi.

Proof – Since G is the central product of G1, . . . , Gn and since Gi contains
Z(G) by 8.0.1, we have Z(Gi) = Z(G), and the result follows from Corollary 8.0.10.
�

Construction of DG 8.0.12. – (3/3) From now on, we consider the direct

product DG of the groups C1
∗
, . . . , Cn

∗
, and of an abelian group T (G) which is Q+

if Z(G)◦G′/G′ is nontrivial and torsion-free, otherwise it is (Q
∗
)r where r is the

Lie rank of Z(G)◦G′/G′. We note that DG depends just on the pure group G by
Corollary 8.0.11.

By the choice of T (G), there is an integer s such that Z(G)◦G′/G′ is iso-

morphic to T (G) × Q
s

+ as algebraic groups, so T (G) × Q
s

+ is isomorphic to Z ≃
Z(G)◦/(Z(G)◦ ∩G′)◦ too. Consequently, since for each i there is a surjective alge-

braic homomorphism from Ci
∗
to Ci with finite kernel, there is a natural surjective

algebraic homomorphism γG from DG × Q
s

+ to G, with finite kernel F by Lemma

8.0.4. Moreover, F is central in DG × Q
s

+ and, since Q
s

+ is torsion-free, F is con-
tained in DG. Since T (G) and T (G)/(T (G)∩F ) are isomorphic as algebraic groups,
we may choose F such that T (G) ∩ F is trivial.

Finally, by construction, G is algebraically isomorphic to DG/F ×Q
s

+, with F
a central finite subgroup such that T (G) ∩ F = 1.

We note that we have [DG×Q
s

+, γ
−1
G (Z(G))] ≤ F , so γ−1

G (Z(G)) = Z(DG×Q
s

+)

since DG ×Q
s

+ is connected. Therefore we find, for each i,

γ−1
G (Gi) = Ci

∗
Z(DG ×Q

s

+).
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Example 8.0.13. – We consider a central product G of two copies H1 and H2

of GL2(Q) with a finite intersection, and we build DG.
We note that G/Z(G) is a direct product of two copies G1/Z(G) = H1Z(G)/Z(G)

and G2/Z(G) = H2Z(G)/Z(G) of PSL2(Q). For i = 1, 2, since Z(G)◦G′
i = Gi, we

have to take Ci = G′
i = H ′

i and Xi = Z(Hi), so we have Ci = Ci/Xi ≃ PSL2(Q)

and Ci
∗
≃ Ci ≃ SL2(Q). Moreover, Z = Z(H1)Z(H2) and T (G) = (Q

∗
)2 are tori

of Lie rank 2. Hence we obtain

DG = C1 × C2 × T (G) ≃ SL2(Q)× SL2(Q)× (Q
∗
)2

Lemma 8.0.14. – There is an abstract isomorphism from G to DG/F .
Furthermore, if G′ does not contain Z(G)◦, then there is an abstract isomor-

phism µ : DG/F → DG/F ×Q
t

+ for each integer t.

Proof – We may assume Z(G)◦ � G′, and t ≥ 1. Let R be the torsion part of
T (G). Then T (G) = R×S, for a direct product S of countably many copies of Q+.

In particular, since Q
t

+ is a direct product of countably many copies of Q+ too, the

groups T (G) and T (G)×Q
t

+ are abstractly isomorphic. More precisely, there is an

abstract isomorphism α : T (G) → T (G) × Q
t

+ such that α(r) = r for each r ∈ R.

This gives an abstract isomorphism α∗ : DG → DG × Q
t

+ such that α∗(x) = x for

each x ∈ (
Śn

i=1 Ci
∗
)×R. But F is finite, so it is contained in (

Śn
i=1 Ci

∗
)×R, and

we obtain the desired isomorphism µ : DG/F → DG/F ×Q
t

+. �

However, by the following remark, F depends on the algebraic structure of G,
and not just on the abstract structure of G. This is a serious problem for us.

Remark 8.0.15. – Let r ≥ 5 be a prime integer, and let G = H1 ×H2 where

H1 and H2 are two copies of the group H = Q+ ⋊ Q
∗
, where the action of Q

∗
on

Q+ is defined by:

for each (a, x) ∈ Q
∗
×Q+, a · x = arx.

Let ∆ be the graph in G of the identity automorphism of H, and let Z be the center

of ∆. Now let δ be a field automorphism of Q such that there exists t ∈ Q
∗
of order

r and satisfying δ(t) 6= t and δ(t) 6= t−1. This is possible since r ≥ 5. Let µ be the
automorphism of G defined for each (h1, h2) ∈ H1 ×H2 by µ(h1, h2) = (δ(h1), h2).
Then µ induces an abstract isomorphism from G/Z to G/µ(Z). However, we have
the following result.

Lemma. – The algebraic groups G/Z and G/µ(Z) are not isomorphic.
Proof – Indeed, suppose toward a contradiction that there is an isomor-
phism f : G/Z → G/µ(Z) of algebraic groups. Then, for i = 1, 2, we have
either f(HiZ/Z) = H1µ(Z)/µ(Z), or f(HiZ/Z) = H2µ(Z)/µ(Z). Let T
be a maximal torus of ∆, and let T0 be a maximal torus of G containing
T . Then T contains Z, and T/Z (resp. T0/Z) is a maximal torus of ∆/Z
(resp. G/Z). Moreover, T0µ(Z)/µ(Z) is a maximal torus of G/µ(Z),
and by the conjugacy of the maximal tori in G/µ(Z), we may assume
f(T0/Z) = T0µ(Z)/µ(Z).

Now let S/µ(Z) = f(T/Z). Then S is of dimension one over Q, and
since S/µ(Z) is a torus, S◦ is a torus. We have T ∩Hi ≤ ∆∩Hi = 1 for
i = 1, 2, so T/Z∩HiZ/Z = 1 for i = 1, 2, and S/µ(Z)∩Hiµ(Z)/µ(Z) = 1
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for i = 1, 2. For i = 1, 2, we have Z ∩Hi ≤ ∆ ∩Hi = 1 so, since µ is an
abstract automorphism of G such that µ(Hi) = Hi, we have µ(Z)∩Hi = 1.
Consequently S ∩Hi ≤ µ(Z) ∩Hi is trivial for i = 1, 2.

Since T0 is a maximal torus of G, it has the form T0 = T1×T2, where
Ti is a maximal torus of Hi for i = 1, 2. Since S is a torus contained in
T0µ(Z) and since µ(Z) is finite, we have S◦ ≤ T0. Now, since T1, T2, T
and S◦ are of dimension one over Q, the groups T and S◦ are the graphs
of two isomorphisms α and β of algebraic groups from T1 to T2. Moreover,
since dim(Ti) = 1 for i = 1, 2, there are precisely two isomorphisms of
algebraic groups from T1 to T2, so we have either α = β or β(x) = α(x)−1

for each x ∈ T1. In the first case, we have T = S◦, so S contains Zµ(Z).

But the existence of t ∈ Q
∗
of order r such that δ(t) 6= t implies Z 6=

µ(Z), so Zµ(Z) has order r2 since r is a prime, and we have Zµ(Z) =
Z(H1)× Z(H2). This contradicts S ∩Hi = 1 for i = 1, 2. Hence we have
β(x) = α(x)−1 for each x ∈ T1.

Let Z−1 be the graph in G of the automorphism inversion of Z(H).
Since we have β(x) = α(x)−1 for each x ∈ T1, we have Z−1 ≤ S◦. More-

over, the existence of t ∈ Q
∗
of order r such that δ(t) 6= t−1 implies

Z−1 6= µ(Z), so Z−1µ(Z) has order r2 since r is a prime, and we have
Z−1µ(Z) = Z(H1) × Z(H2). But we have S ∩Hi = 1 for i = 1, 2, so the
latter implies that S does not contain Z−1. Thus, there is no isomorphism
of algebraic groups from G/Z to G/µ(Z). �

Lemma 8.0.16. – Let X and Y be two finite subgroups of an algebraic torus
T over Q. If there is an isomorphism δ : X → Y , then there is a quasi-standard
automorphism ϕ of T such that ϕ(x) = δ(x) for each x ∈ X .

Proof – Let X = X1 × · · · × Xr be a decomposition of X where, for each
i, Xi is cyclic and, if i > 1, its order divides the one of Xi−1. For each i, we
consider Yi = δ(Xi). We show, by induction on r, that there exists a direct product
T1 × · · · × Tr of subtori of T with dimension one, such that Ti contains Xi for each
i. We may assume that T contains a direct product S = T1 × · · · × Tr−1 of subtori
with dimension one, such that Ti contains Xi for each i ≤ r − 1. For each prime
p dividing |Xr|, there are pr−1 − 1 elements of order p in S, and since |Xi| divides
|Xi−1| for each i > 1, there are pr−1 − 1 elements of order p in X1 × · · · × Xr−1

too. Consequently, S ∩Xr is trivial.
Since Xr is cyclic, it is contained in a subtorus R of T with dimension one,

and SR is a subtorus of T . We show that SR = S × V for a subtorus V of SR.
We have x = (s, v) for s ∈ S and v ∈ V \ {1}. Let c1 and d1 be the orders of
s and v respectively. Then c1 and d1 divides |Xr|, and we consider c := |Xr|/c1.
The previous paragraph applied with 〈s〉 yields a subtorus S1 of S with dimension
one and containing s. Let γ : S1 → V be an isomorphism of algebraic groups, and
let y ∈ S1 of order |Xr| such that yc = s. Then there exists an integer e dividing
|Xr| such that γ(y)e = v. Since |Xi| divides |Xi−1| for each i > 1, any element
of S with order dividing |Xr| belongs to X1 × · · · ×Xr−1. In particular, we have
y ∈ X1 × · · · × Xr−1. Let Q := {(uc, γ(u)e) | u ∈ S1}. Since Q is the image
of a nontrivial algebraic homomorphism from S1 to S × V , it is a subtorus with
dimension one. Moreover, Q contains x, and since S ∩Xr = 1, no element of S ∩Q
has order dividing |Xr|. But we have S ∩Q = S1 ∩Q = {uc | u ∈ S1, u

e = 1}, and
e divides |Xr|, hence each element of S ∩ Q has order dividing e and |Xr|. This
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proves that S ∩ Q = 1, and we may choose Tr to be Q. Thus, as claimed, there
exists a direct product T1 × · · · × Tr of subtori of T with dimension one, such that
Ti contains Xi for each i.

In the same way, there exists a direct product T ′
1 × · · · × T ′

r of subtori of T
with dimension one, such that T ′

i contains Yi for each i. Let T0 (resp. T ′
0) be an

algebraic complement of T1 × · · · × Tr (resp. T ′
1 × · · · × T ′

r) in T . Then T0 and
T ′
0 are two tori of dimension dim(T ) − r, so there is an isomorphism of algebraic

groups ϕ0 : T0 → T ′
0. For each i = 1, . . . , r, let ϕi : Ti → T ′

i be an isomorphism
of algebraic groups. Since T = T0 × T1 × · · · × Tr = T ′

0 × T ′
1 × · · · × T ′

r, the map
ϕ′ : T → T , defined by ϕ′(ui) = ϕi(ui) for each i and each ui ∈ Ti, is an algebraic
automorphism of T . Moreover, for each i, the subgroup Xi (resp. Yi) is the only
subgroup of Ti (resp. T

′
i ) of order |Xi| = |Yi|, so we have ϕ′(Xi) = Yi for each i.

For each i = 1, . . . , r, let xi be a generator of Xi. Then, for each i, ϕ′(xi) and
δ(xi) are two elements of order |Xi| in T ′

i , so there is a field automorphism βi of
Q such that (ϕ′ ◦ βi)(xi) = δ(xi). Let ϕ be the automorphism of T , defined by
ϕ(u0) = ϕ′(u0) for each u0 ∈ T0, and by ϕ(ui) = (ϕ′ ◦ βi)(ui) for each i = 1, . . . , r.
Thus ϕ is a quasi-standard automorphism of T , and it satisfies ϕ(x) = δ(x) for each
x ∈ X , as desired. �

Lemma 8.0.17. – For each i, the exponent of Yi := γ−1
G (Xi)∩Ci

∗
Z(DG)

◦ is ni.
Moreover, Yi is finite and central in DG, and we have

Yi = (γ−1
G (Xi) ∩ Ci

∗
)(γ−1

G (Xi) ∩ T (G)).

Proof – Since Xi ≤ Z(G) is finite and central in G, and since the kernel F
of γG is finite, Yi ≤ γ−1

G (Xi) is finite and normal in DG. Moreover, since DG is
connected, Yi is central in DG.

By the choice of Ci
∗
, the exponent of Y C

i := γ−1
G (Xi) ∩ Ci

∗
is ni. Since we

have Xi ≤ Ci = γG(Ci
∗
), we obtain Xi = γG(Y

C
i ). Now we consider Y T

i :=
γ−1
G (Xi) ∩ T (G). Since T (G) ∩ F is trivial and since the exponent of Xi is ni, the

exponent of Y T
i divides ni, and we have just to prove that Y C

i Y T
i contains Yi.

Let u ∈ Yi. Then there exist c ∈ Ci
∗
and z ∈ Z(DG)

◦ such that u = cz. Since

we have γG(Ci
∗
) = Ci and γG(Z(DG)

◦) = γG(Z(DG))
◦ = Z(G)◦, we find γG(c) ∈

Ci and γG(c) = γG(u)γG(z
−1) ∈ XiZ(G)◦ = Z(G)◦. Thus we obtain γG(c) ∈ Ci ∩

Z(G)◦ = G′
i = (G◦

i )
′ = C′

i, and there exists c′ ∈ (Ci
∗
)′ such that γG(c) = γG(c

′).

Now we have u = (cc′−1)(c′z) with cc′−1 ∈ Ci
∗
and c′z ∈ (Ci

∗
)′Z(DG)

◦. Since we
have γG(cc

′−1) = γG(c)γG(c
′)−1 = 1 ∈ Xi, we find cc′−1 ∈ Y C

i . Consequently, we
have just to prove that c′z belongs to Y C

i Y T
i .

Since DG is the direct product of C1
∗
, . . . , Cn

∗
and of T (G), the subgroup

Z(DG)
◦ is the direct product of Z(C1

∗
)◦, . . . , Z(Cn

∗
)◦ and of T (G). Moreover

Lemma 8.0.7 implies that (Ci
∗
)′ contains Z(Ci

∗
)◦, therefore (Ci

∗
)′Z(DG)

◦ is the

direct product of (Ci
∗
)′, T (G) and of the groups Z(Ck

∗
)◦ for k 6= i. But, for each

k 6= i, the torsion part of Z(Ck
∗
)◦ is contained in the maximal torus Tk of Z(Ck

∗
)◦,

and Tk is trivial since Z(Ck
∗
)◦ is contained in (Ck

∗
)′ by Lemma 8.0.7. Hence the

torsion part of (Ci
∗
)′Z(DG)

◦ is contained in (Ci
∗
)′ × T (G).

SinceXi and F are finite, γ−1
G (Xi) is finite too, and since γG(c

′z) = γG(c)γG(z) =
γG(u) belongs to Xi, the element c′z is of finite order. Thus c′z belongs to

(Ci
∗
)′×T (G), and there exist d ∈ (Ci

∗
)′ and t ∈ T (G) such that c′z = dt. Moreover,

since c′z has finite order, the elements d and t have finite orders too. Now we find
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γG(t) = γG(d)
−1γG(c

′z) ∈ C′
iXi = C′

i, and γG(t) ∈ C′
i∩γG(T (G)) ≤ C′

i∩Z(G)◦, so
γG(t) is a torsion element of C′

i ∩Z(G)◦ and γG(t) belongs to Xi. This proves that
t belongs to Y T

i . 1 Furthermore, this proves that γG(d) = γG(c
′z)γG(t)

−1 belongs
to Xi, so we obtain d ∈ Y C

i and c′z = dt belongs to Y C
i Y T

i , as desired. �

Now we can prove the main result of this section. Its proof goes as follows. In a
first step, we remark that we may assume DG = DH , G = DG/F and H = DH/E
where E is the (finite) kernel of the natural surjective algebraic homomorphism
γH : DH → H . Moreover, we may assume that T (G) = T (H), that the groups

C1
∗
, . . . , Cn

∗
are the same for G and H , and that for each i, if Pi := Ci

∗
Z(DG),

then δ(Pi/F ) = Pi/E where δ : G → H is a fixed abstract isomorphism.
In a second step, for each i we deduce from δ a connected algebraic subgroupW

of P ◦
i × P ◦

i such that W is the graph of an isomorphism ωi between two algebraic
subgroups Ri and Si of P ◦

i , and P ◦
i = Ri × Zi = Si × Zi where Zi = T (G) ×

(×j 6=iZ(Cj
∗
)◦) is a connected algebraic subgroup of Z(P ◦

i ).
In a third step, we show that DG is the direct product of T (G) and of the

groups Ri (resp. Si) and, from the isomorphisms ωi and from Lemma 8.0.16, we
obtain a quasi-standard automorphism α of DG such that DG/Z(DG)

◦α(F ) and
DG/Z(DG)

◦E are isomorphic as algebraic groups. Then, in the final step we have
just to show that DG/α(F ) and DG/E are isomorphic as algebraic groups.

Theorem 8.0.18. – Let H be an affine algebraic group over Q. If H and G are
abstractly isomorphic, then there is a quasi-standard automorphism α of DG, and
an isomorphism of algebraic groups between H and

• DG/α(F )×Q
t

+ for an integer t if G′ does not contains Z(G)◦;
• DG/α(F ) if G′ contains Z(G)◦.

Proof – Let δ0 : G → H be an abstract isomorphism. Since H and G are
abstractly isomorphic, and since G is connected, H is connected too and, in the
expanded pure group H , we find interpretable fields L1, . . . , Ln such that Li is not
definably isomorphic to Lj for each i 6= j, and such that H/Z(H) is definably linear
over L1, . . . , Ln. For each i, we denote by Hi/Z(H) the largest connected subgroup
of H/Z(H) definably linear over Li. We may assume Hi = δ0(Gi) for each i.
Moreover, since H ≃ G, we may assume DH = DG, and even that T (H) = T (G)

and that the groups C1
∗
, . . . , Cn

∗
forH are the same that for G. Let t be the integer

such that Z(H)◦H ′/H ′ and T (H)×Q
t

+ are isomorphic as algebraic groups. Then

we consider the natural surjective algebraic homomorphism γH : DH ×Q
t

+ → H . It

satisfies γ−1
H (Hi) = Ci

∗
Z(DH ×Q

t

+) for each i, and its kernel E is a central finite
subgroup of DH = DG, and it verifies E ∩ T (H) = 1.

By Lemma 8.0.14, the quotient DG/F (resp. DG/E) is abstractly isomorphic
to G (resp. H), so there is an abstract isomorphism δ : DG/F → DG/E. We notice
that, if G′ contains Z(G)◦, then we have s = 0, and H ′ contains Z(H)◦ too, so
t = 0. Hence, in all the cases, we have just to prove that there is a quasi-standard
automorphism α of DG such that DG/E and DG/α(F ) are isomorphic as algebraic
groups. In particular, since G and DG/F (resp. H and DH/E) are abstractly
isomorphic by Lemma 8.0.14, we may assume G = DG/F (resp. H = DH/E), and
δ = δ0. Thus we have s = 0 and t = 0, and Hi = δ(Gi) for each i. From now on,
the main difficulty for the proof is to find a quasi-standard automorphism α of DG

such that DG/Z(DG)
◦α(F ) and DG/Z(DG)

◦E are isomorphic as algebraic groups.
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For each i, we consider

Pi := Ci
∗
Z(DG) = γ−1

G (Gi) = γ−1
H (Hi)

Then, for each i, we have

Gi = Pi/F, Hi = Pi/E, and δ(Pi/F ) = Pi/E.

Let ZF /F := Z(G) = Z(DG/F ) and ZE/E := Z(H) = Z(DG/E). Then [DG, ZF ]
is a connected subgroup of the finite subgroup F , so ZF is central in DG, and
since it contains Z(DG), we obtain ZF = Z(DG). In the same way, for each
central finite subgroup Y of DG, we have Z(DG/Y ) = Z(DG)/Y . In particu-
lar, we obtain ZE = Z(DG). Now the algebraic groups Pi/Z(DG), Gi/Z(G) and
Hi/Z(H) are isomorphic. Moreover, since G/Z(G) is the direct product of the
groups G1/Z(G), . . . , Gn/Z(G), we have

DG/Z(DG) = P1/Z(DG)× · · · × Pn/Z(DG).

But, for each i, in the expanded pure group G, the quotient Gi/Z(G) is definably
linear over Ki, so Fact 3.0.4 says that the isomorphism from Gi/Z(G) to Hi/Z(H)
induced by δ is a standard isomorphism. Hence, for each i, since Pi/Z(DG),
Gi/Z(G) and Hi/Z(H) are isomorphic as algebraic groups, the automorphism δ∗i
of Pi/Z(DG) induced by δ, is a standard automorphism. In other words, for each i,

there is a field automorphism ϕi of Q, such that the automorphism δϕi := δ∗i ◦ ϕ
−1
i

of Pi/Z(DG) is algebraic over Q.

We fix i, and we consider the preimage Ω of the graph of δϕi in Pi × Qi. It is
an algebraic subgroup and, since Pi/Z(DG) ≃ Gi/Z(G) is connected, Ω/(Z(DG)×
Z(DG)) is connected too, and we have Ω = Ω◦(Z(DG)× Z(DG)).

We consider the group

Y H
i := γ−1

H (XH
i ) ∩ Ci

∗
Z(DG)

◦ = γ−1
H (XH

i ) ∩ P ◦
i ,

where XH
i is the torsion part of Z(H)◦ ∩H ′

i. Then we have

δ(YiF/F ) = δ(γ−1
G (Xi)/F ∩ Ci

∗
Z(DG)

◦F/F )

= δ(γ−1
G (Xi)/F ) ∩ δ(Ci

∗
Z(DG)

◦F/F )

But we have G = DG/F , so γ−1
G (Xi)/F is precisely Xi, that is the torsion part

of Z(G)◦ ∩ G′
i. Hence δ(γ−1

G (Xi)/F ) is the torsion part of Z(H)◦ ∩ H ′
i, that is

δ(γ−1
G (Xi)/F ) = XH

i . Moreover, we have Pi = Ci
∗
Z(DG), so we find

δ(Ci
∗
Z(DG)

◦F/F ) = δ(P ◦
i F/F ) = P ◦

i E/E,

and we obtain
δ(YiF/F ) = XH

i ∩ P ◦
i E/E

= (γ−1
H (XH

i )/E) ∩ (P ◦
i E/E)

= (γ−1
H (XH

i ) ∩ P ◦
i )E/E

= Y H
i E/E

Thus, the isomorphism δ induces an isomorphism δ∗i : P ◦
i F/YiF → P ◦

i E/Y H
i E

and, since we have P ◦
i ∩ F ≤ Yi ≤ P ◦

i and P ◦
i ∩ E ≤ Y H

i ≤ P ◦
i , the isomorphism

δ induces an isomorphism δ0i : P ◦
i /Yi → P ◦

i /Y
H
i . We consider the isomorphism

δi := δ0i ◦ϕ
−1
i from P ◦

i /Yi to P
◦
i /Y

H
i . Let δi be the isomorphism from P ◦

i /Z(DG)
◦Yi

to P ◦
i /Z(DG)

◦Y H
i induced by δi. Since Z(DG)

◦Yi and Z(DG)
◦Y H

i have finite index
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in Z(DG), the graph of δi has finite index in Ω/(Z(DG)
◦Yi×Z(DG)

◦Y H
i ), because

Ω/(Z(DG) × Z(DG)) is the graph of δϕi . Since Q is an algebraically closed field

and of characteristic zero, the connected algebraic groups over Q have no proper
subgroup of finite index. In particular, P ◦

i /Z(DG)
◦Yi has no proper subgroup of

finite index, so the graph of δi has no proper subgroup of finite index. Moreover,
by considering ΩY := Ω◦(Yi × Y H

i ) and ZY := Z(DG)
◦Yi × Z(DG)

◦Y H
i , then the

group ΩY /ZY is connected, so ΩY /ZY has no proper subgroup of finite index. This

implies that the graph of δi is ΩY /ZY . In particular, δi is an isomorphism of
algebraic groups.

Let Θ denote the preimage in P ◦
i × P ◦

i of the graph of δi. Then we have
ΩY = ΘZY , and Ω′

Y (Yi × Y H
i )/(Yi × Y H

i ) = Θ′(Yi × Y H
i )/(Yi × Y H

i ) is the graph
of the restriction of δi to (P ◦

i )
′/Yi. Moreover, since ZY Ω

′
Y /Ω

′
Y (Yi × Y H

i ) is a
connected algebraic subgroup of the connected abelian group ΩY /Ω

′
Y (Yi × Y H

i ), it
has an algebraic complement W0/Ω

′
Y (Yi × Y H

i ).

(1) The algebraic groups W := W ◦
0 and Ci

∗
are isomorphic, and W ∩(Zi×P ◦

i )

and W ∩ (P ◦
i × Zi) are trivial, where Zi := T (G)× (×j 6=iZ(Cj

∗
)◦). Moreover, the

image of the first (resp. the second) projection of W (Zi×Zi) in P ◦
i ×P ◦

i is surjective.

For each k, let Zk := T (G) × (×j 6=kZ(Cj
∗
)◦). Then we have Z(DG)

◦ =

Z(Ck
∗
)◦ × Zk for each k. Let ZW := ZiYi ×ZiY

H
i ≤ P ◦

i × P ◦
i . Since Lemma 8.0.7

gives Z(Ci
∗
)◦ ≤ (Ci

∗
)′, we obtain ZY ≤ ((P ◦

i )
′ × (P ◦

i )
′)ZW . Then W0((P

◦
i )

′ ×
(P ◦

i )
′)ZW contains Ω◦ ≤ ΩY and, since ΩY /ZY is the graph of the isomorphism

δi : P
◦
i /Z(DG)

◦Yi → P ◦
i /Z(DG)

◦Y H
i , its first (resp. second) projection in P ◦

i ×P ◦
i

is surjective. Moreover, since Ω′
Y (Yi×Y H

i )/(Yi×Y H
i ) = Θ′(Yi×Y H

i )/(Yi×Y H
i ) is

the graph of the restriction to (P ◦
i )

′Yi/Yi of the isomorphism δi : P
◦
i /Yi → P ◦

i /Y
H
i ,

the first (resp. second) projection of W0Ω
′
Y ZW in P ◦

i × P ◦
i is surjective too. But

W0 contains Ω′
Y , so we have (W0Ω

′
Y ZW )◦ = (W0ZW )◦ ≤ WZW , and since P ◦

i is
connected, the first (resp. second) projection of WZW in P ◦

i × P ◦
i is surjective.

We verify that rk(W ) = rk(Ci
∗
). We have

rk(W ) = rk(W0)
= rk(W0/Ω

′
Y (Yi × Y H

i )) + rk(Ω′
Y (Yi × Y H

i ))
= (rk(ΩY /Ω

′
Y (Yi × Y H

i ))− rk(ZY Ω
′
Y /Ω

′
Y (Yi × Y H

i )))
+rk(Ω′

Y (Yi × Y H
i )),

and since Yi×Y H
i is finite, we obtain rk(W ) = rk(ΩY )−rk(ZY Ω

′
Y /Ω

′
Y ) = rk(ΩY )−

(rk(ZY )− rk(ZY ∩ Ω′
Y )). Moreover, by definition of Ω, we have

rk(ΩY ) = rk(Ω)
= rk(Ω/(Z(DG)× Z(DG))) + rk(Z(DG)× Z(DG))
= rk(Pi/Z(DG)) + rk(ZY )
= rk(P ◦

i /Z(DG)
◦Yi) + rk(ZY )

= rk(Ci
∗
Z(DG)

◦/Z(DG)
◦) + rk(ZY )

= rk(Ci
∗
/(Ci

∗
∩ Z(DG)

◦)) + rk(ZY )

= rk(Ci
∗
)− rk(Ci

∗
∩ Z(DG)

◦) + rk(ZY ),

and since DG is the direct product of Ci
∗
by another connected algebraic group, we

obtain rk(ΩY ) = rk(Ci
∗
)−rk(Z(Ci

∗
)◦)+rk(ZY ). Since for each central finite sub-

group Y of DG we have Z(DG/Y ) = Z(DG)/Y , we have Z(DG/Yi) = Z(DG)/Yi.
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Since DG is the central product of the groups P1, . . . , Pn, we have Z(P ◦
i /Yi) =

Z(DG/Yi) ∩ P ◦
i /Yi. Therefore, since Pi contains Z(DG), we obtain

Z(P ◦
i /Yi)

◦ = (Z(DG/Yi) ∩ P ◦
i /Yi)

◦ = (Z(DG)/Yi ∩ P ◦
i /Yi)

◦ = Z(DG)
◦Yi/Yi.

In the same way, we have Z(P ◦
i /Y

H
i )◦ = Z(DG)

◦Y H
i /Y H

i , so

δi(Z(DG)
◦Yi/Yi) = Z(DG)

◦Y H
i /Y H

i .

Since Ω′
Y (Yi × Y H

i )/(Yi × Y H
i ) = Θ′(Yi × Y H

i )/(Yi × Y H
i ) is the graph of the

restriction to (P ◦
i )

′Yi/Yi of δi, the latter proves that (ZY ∩ Ω′
Y )Yi/Yi is the graph

of the restriction to (Z(DG)
◦Yi ∩ (P ◦

i )
′Yi)/Yi of δi. Now, since Yi × Y H

i is finite,
we have

rk(ZY ∩Ω′
Y ) = rk(Z(DG)

◦Yi ∩ (P ◦
i )

′Yi)

= rk(Z(DG)
◦ ∩ (P ◦

i )
′)

= rk(Z(DG)
◦ ∩ (Ci

∗
)′)

= rk(Z(Ci
∗
)◦ ∩ (Ci

∗
)′),

and since Lemma 8.0.7 implies that (Ci
∗
)′ contains Z(Ci

∗
)◦, we obtain rk(ZY ∩

Ω′
Y ) = rk(Z(Ci

∗
)◦), and

rk(W ) = rk(ΩY )− rk(ZY ) + rk(ZY ∩ Ω′
Y )

= (rk(Ci
∗
)− rk(Z(Ci

∗
)◦) + rk(ZY ))− rk(ZY ) + rk(Z(Ci

∗
)◦)

= rk(Ci
∗
),

as claimed.
We show that W/(W ∩ (Yi × Y H

i )) and Ci are isomorphic as algebraic groups.
Indeed, there is an isomorphism of algebraic groups between Ci and

γ−1
G (Ci)/γ

−1
G (Xi) = Ci

∗
γ−1
G (Xi)/γ

−1
G (Xi) ≃ Ci

∗
/(γ−1

G (Xi) ∩ Ci
∗
),

and since we have P ◦
i = Ci

∗
Z(DG)

◦ = Ci
∗
×Zi, the groups P ◦

i /(γ
−1
G (Xi) ∩Ci

∗
)Zi

and Ci are isomorphic as algebraic groups. Thus, since Zi contains γ−1
G (Xi) ∩

T (G) ≤ T (G), the algebraic groups Ci and P ◦
i /YiZi are isomorphic by Lemma

8.0.17, so Ci and (P ◦
i × P ◦

i )/(YiZi × P ◦
i ) are isomorphic too. Now, since the first

projection of WZW in P ◦
i ×P ◦

i is surjective, that is WZW ({1}×P ◦
i ) = P ◦

i ×P ◦
i , the

algebraic groups Ci and WZW /(WZW ∩ (YiZi×P ◦
i )) are isomorphic. Hence, since

ZW is contained in YiZi×P ◦
i , the algebraic groups Ci and W/(W ∩ (YiZi×P ◦

i )) =
W/(W∩(WZW∩(YiZi×P ◦

i ))) are isomorphic. In particular, since we have rk(W ) =

rk(Ci
∗
) = rk(Ci) by the previous paragraph, the intersection W ∩ (YiZi × P ◦

i ) is

finite. Since ΩY /ZY is the graph of δi, we have ΩY ∩ (Z(DG)
◦Yi × P ◦

i ) = ZY and
W ∩ (YiZi × P ◦

i ) ≤ ΩY ∩ (Z(DG)
◦Yi × P ◦

i ) is contained in W ∩ ZY ≤ W0 ∩ ZY ≤
Ω′

Y (Yi × Y H
i ), so we find

W ∩ (YiZi × P ◦
i ) ≤ W ∩ ZY

≤ ZY ∩ Ω′
Y (Yi × Y H

i ))
≤ (Z(DG)

◦Yi ∩ (P ◦
i )

′Yi)× (Z(DG)
◦Y H

i ∩ (P ◦
i )

′Y H
i ).
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Let WP (resp. WQ) be the image of the finite group W ∩ (YiZi × P ◦
i ) by the first

(resp. the second) projection in P ◦
i × P ◦

i . Then WPF/F is a finite subgroup of

(Z(DG)
◦Yi ∩ (P ◦

i )
′Yi)F/F = (Z(DG)

◦YiF/F ) ∩ ((P ◦
i )

′YiF/F )
= (γG(Z(DG))

◦γG(Yi)) ∩ ((γG(Pi)
◦)′γG(Yi))

≤ (Z(G)◦Xi) ∩ ((G◦
i )

′Xi)
= Z(G)◦ ∩G′

i,

so WPF/F is contained in Xi, and WP is contained in γ−1
G (Xi) ∩ P ◦

i = Yi. In the
same way we obtain WQ ≤ Y H

i , so we have W ∩ (YiZi × P ◦
i ) ≤ Yi × Y H

i . Thus

W/(W ∩ (Yi × Y H
i )) and Ci are isomorphic as algebraic groups.

We prove thatW and Ci
∗
are isomorphic as algebraic groups, and thatW∩(Zi×

P ◦
i ) and W ∩ (P ◦

i ×Zi) are trivial. Since the exponent of Yi × Y H
i is ni by Lemma

8.0.17, and since W/(W ∩ (Yi × Y H
i )) and Ci are isomorphic as algebraic groups,

there is an isogeny ι1 from Ci
∗
to W . Since the first projection of WZW in P ◦

i ×P ◦
i

is surjective, and since P ◦
i is connected, the first projection ofW (Zi×Zi) in P ◦

i ×P ◦
i

is surjective too. Thus we have P ◦
i ×P ◦

i = (W (Zi ×Zi))({1}×P ◦
i ) = W (Zi×P ◦

i ).

Since we have P ◦
i = Ci

∗
× Zi, the algebraic groups W (Zi × P ◦

i )/(Zi × P ◦
i ) and

Ci
∗
are isomorphic, so W/(W ∩ (Zi × P ◦

i )) and Ci
∗
are isomorphic too. Therefore,

since we have rk(W ) = rk(Ci
∗
), there is an isogeny ι2 from W to Ci

∗
with kernel

W ∩ (Zi × P ◦
i ). Now ι2 ◦ ι1 is an isogeny from Ci

∗
to Ci

∗
. Since ker(ι2 ◦ ι1) is

finite and since Ci
∗
is connected, the preimage of Z(Ci

∗
) by ι2 ◦ ι1 is precisely

Z(Ci
∗
). In particular, if XC denotes the torsion part of Z(Ci

∗
), then XC contains

ker(ι2 ◦ ι1), and XC/ ker(ι2 ◦ ι1) is isomorphic to XC . But Lemma 8.0.7 implies

that (Ci
∗
)′ contains Z(Ci

∗
)◦, so Z(Ci

∗
)◦ has no nontrivial torus, and it is torsion-

free. Hence XC is finite and ker(ι2 ◦ ι1) is trivial. Thus ι2 ◦ ι1 is an automorphism

of Ci
∗
, and ι2 is an isomorphism from W to Ci

∗
. In particular, W and Ci

∗
are

isomorphic as algebraic groups, and since the kernel of ι2 is W ∩ (Zi×P ◦
i ), we have

W ∩ (Zi × P ◦
i ) = 1. In the same way, we obtain W ∩ (P ◦

i × Zi) = 1.

(2) P ◦
i is the direct product of Zi by Ri (resp. Si), the first (resp. the second)

projection in P ◦
i × P ◦

i is surjective, and W is the graph of an isomorphism of
algebraic groups ωi : Ri → Si.

Since we have W ∩ ({1} × Si) ≤ W ∩ (Zi × P ◦
i ) = 1 and W ∩ (Ri × {1}) ≤

W ∩ (P ◦
i × Zi) = 1, the algebraic group W is the graph of an isomorphism ωi :

Ri → Si of algebraic groups. Moreover, since we have W ∩ (Zi × P ◦
i ) = 1 (resp.

W ∩ (P ◦
i ×Zi) = 1), the subgroup Ri∩Zi (resp. Si∩Zi) is trivial. Therefore, since

the first (resp. the second) projection of W (Zi × Zi) in P ◦
i × P ◦

i is surjective, P ◦
i

is the direct product of Ri by Zi (resp. Si by Zi).

(3) DG is the direct product of T (G) and of the groups Rk (resp. Sk) for
k ∈ {1, . . . , n}.

We note that, for each k, since we have P ◦
k = Ck

∗
× Zk = Rk × Zk, we

find (Ck
∗
)′ = R′

k, Z(Ck
∗
) = Z(P ◦

k ) ∩ Ck
∗
and Z(Rk) = Z(P ◦

k ) ∩ Rk. Therefore,

since (Ck
∗
)′ contains Z(Ck

∗
)◦ (Lemma 8.0.7), the subgroup Rk ≥ (Ck

∗
)′ contains

Z(Ck
∗
)◦, and Z(Rk) contains Z(Ck

∗
)◦. But we have Z(P ◦

k ) = Z(Ck
∗
) × Zk =

Z(Rk) × Zk, hence we obtain Z(Rk)
◦ = Z(Ck

∗
)◦ for each k. In particular, the

product T (G)(
∏n

j=1 Rj) contains Zk = T (G)× (×j 6=kZ(Rj)
◦) for each k, and since
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P ◦
k is the direct product of Rk by Zk for each k, this product contains Ck

∗
for each

k. Thus we have DG = T (G)(
∏n

j=1 Rj). Since DG is the central product of T (G)

and of the groups Pj = Cj
∗
Z(DG) for j ∈ {1, . . . , n}, and since Rj is contained

in Pj for each j, the group DG is the central product of T (G) and of the groups
Rj for j ∈ {1, . . . , n}. This implies that Z(DG) is the product of the groups T (G)

and Z(Rj) for j ∈ {1, . . . , n}. Moreover, since the algebraic groups Rk and Ck
∗

are isomorphic for each k, and since DG is the direct product of T (G) and of Cj
∗

for j ∈ {1, . . . , n}, we have rk(DG) = rk(T (G)) +
∑n

j=1 rk(Cj
∗
) = rk(T (G)) +∑n

j=1 rk(Rj). Therefore, for each k, the intersection Ik := Rk ∩ (T (G)
∏

j 6=k Rj)

is finite. Since DG is the central product of T (G) and of the groups Rj for j ∈
{1, . . . , n}, the subgroup Ik is central in Rk.

For each k, since (Ck
∗
)′ contains Z(Ck

∗
)◦ by Lemma 8.0.7, the maximal torus

of Z(Ck
∗
)◦ is trivial, and Z(Ck

∗
)◦ is torsion-free. Consequently, for each k, the

torsion part JC
k of Z(Ck

∗
) is finite, and Z(Ck

∗
) is the direct product of JC

k by

Z(Ck
∗
)◦. But, for each k, the algebraic groups Rk and Ck

∗
are isomorphic, hence

Z(Rk) is the direct product of its torsion part Jk ≃ JC
k by Z(Rk)

◦. Since DG is

the direct product of T (G) ≤ Z(DG)
◦ and of the groups Cj

∗
for j ∈ {1, . . . , n},

the subgroup Z(DG) is the direct product of T (G) and of the groups Z(Cj
∗
) for

j ∈ {1, . . . , n}. Thus Z(DG) is the direct product of Z(DG)
◦ and of the groups JC

j

for j ∈ {1, . . . , n}. In particular, its Morley degree is
∑n

j=1 |J
C
j | =

∑n
j=1 |Jj |. Since

Z(DG) is the product of the groups T (G) and Z(Rj) for j ∈ {1, . . . , n}, and since
Z(Rj) is the direct product of Jj by Z(Rj)

◦ for each j, the subgroup Z(DG) is the
product of Z(DG)

◦ and of the groups Jj for j ∈ {1, . . . , n}. But its Morley degree
is

∑n
k=1 |Jj |, hence Z(DG) is the direct product of Z(DG)

◦ and of the groups Jj
for j ∈ {1, . . . , n}.

Now we consider k ∈ {1, . . . , n} and x ∈ Ik. Then there are u ∈ T (G) and
xj ∈ Rj for each j 6= k such that x = u

∏
j 6=k xj . Let xk := x−1. Then we have

u
∏n

j=1 xj = 1 and, for each j, we find xj = u−1
∏

l 6=j xl ∈ Ij . For each j, since Ij is

a finite central subgroup of Rj , we have Ij ≤ Jj . But we have u ∈ T (G) ≤ Z(DG)
◦,

and Z(DG) is the direct product of Z(DG)
◦ and of the groups Jj for j ∈ {1, . . . , n}.

Hence we find u = 1 and xj = 1 for each j. In particular, x and Ik are trivial.
Thus DG is the direct product of T (G) and of the groups Rk for k ∈ {1, . . . , n}, as
desired. In the same way, DG is the direct product of T (G) and of the groups Sk

for k ∈ {1, . . . , n}.

(4) Determination of the quasi-standard automorphism α of DG.

Since, for each j, the group Z(Cj
∗
)◦ is torsion-free, and since Z(DG)

◦ is the

direct product of T (G) and of the groups Z(Cj
∗
)◦ for j ∈ {1, . . . , n}, the torsion

part S of T (G) is the one of Z(DG)
◦. Since we have ZF = ZE = Z(DG), the

quotient SF/F (resp. SE/E) is the torsion part of Z(DG/F )◦ (resp. Z(DG/E)◦),
and we obtain δ(SF/F ) = SE/E. Moreover, since F ∩ T (G) = E ∩ T (G) = 1, the
automorphism δ induces an automorphism δS of S such that δ(xF ) = δS(x)E for
each x ∈ S.

LetX := T (G)∩D′
GF . Since we have T (G)∩D′

G = T (G)∩(C1
∗
×· · ·×Cn

∗
)′ = 1,

the subgroup X of T (G) is finite, and it is contained in S ≤ T (G). If S = 1, we
denote by ϕX the identity map of T (G). Otherwise T (G) is a torus, and Lemma
8.0.16 provides a quasi-standard automorphism ϕX of T (G) such that ϕX(x) =
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δS(x) for each x ∈ X . We consider the automorphism α of DG defined as follows:

for each j, for each x ∈ Rj , α(x) = (ωj ◦ ϕj)(x);

for each x ∈ T (G), α(x) = ϕX(x).

Thus α is a quasi-standard automorphism of DG.

(5) DG/Z(DG)
◦α(F ) and DG/Z(DG)

◦E are isomorphic as algebraic groups.

Let α : DG/F → DG/α(F ) be the abstract isomorphism induced by α, and let
ν = δ ◦ α−1. For each i, we have

α(Pi/F ) = α(Pi)/α(F ) = α(RiZ(DG))/α(F ) = SiZ(DG)/α(F ) = Pi/α(F ),

and ν(Pi/α(F )) = δ(Pi/F ) = Pi/E. We show that the map

ν : DG/Z(DG)
◦α(F ) → DG/Z(DG)

◦E

induced by ν is an isomorphism of algebraic groups. We consider the abstract
isomorphism αZ : DG/Z(DG)

◦F → DG/Z(DG)
◦α(F ) induced by α, and let δ :

DG/Z(DG)
◦F → DG/Z(DG)

◦E be the abstract isomorphism induced by δ. For
each i, we denote by νi : P

◦
i α(F )/Z(DG)

◦α(F ) → P ◦
i E/Z(DG)

◦E the restriction
of ν to P ◦

i α(F )/Z(DG)
◦α(F ). For each i, since the subgroup Ri (resp. Si) covers

P ◦
i F/Z(DG)

◦F (resp. P ◦
i α(F )/Z(DG)

◦α(F )), and since ωi : Ri → Si satisfies

ωi(Ri ∩ Z(DG)
◦F ) = ωi(Ri) ∩ α(Z(DG)

◦F ) = Si ∩ Z(DG)
◦α(F ),

the map ωi induces an isomorphism of algebraic groups

ωi : P
◦
i F/Z(DG)

◦F → P ◦
i α(F )/Z(DG)

◦α(F ).

Thus, for each i and each x ∈ P ◦
i α(F )/Z(DG)

◦α(F ), we have

νi(x) = (δ ◦ (αZ)−1)(x) = (δ ◦ ϕ−1
i ◦ ω−1

i )(x),

so we obtain

νi = (δ ◦ ϕ−1
i ) ◦ ω−1

i .

But, for each i, we have

Yi = γ−1
G (Xi) ∩ Ci

∗
Z(DG)

◦ ≤ γ−1
G (Z(G)◦) ∩ P ◦

i = Z(DG)
◦F ∩ P ◦

i ,

and F ∩P ◦
i ≤ γ−1

G (Xi)∩Ci
∗
Z(DG)

◦ = Yi, so we have Z(DG)
◦Yi = Z(DG)

◦F ∩P ◦
i ,

and in the same way, Z(DG)
◦Y H

i = Z(DG)
◦E∩P ◦

i . Hence the isomorphism δ◦ϕ−1
i :

P ◦
i F/Z(DG)

◦F → P ◦
i E/Z(DG)

◦E is induced by δi, and it is algebraic. Since ωi is
an isomorphism of algebraic groups too, this proves that νi is an isomorphism of
algebraic groups. Since DG is generated by the subgroups P ◦

i for i = 1, . . . , n, the
map ν is an isomorphism of algebraic groups, as desired.

(6) Final argument.

Let ∆ be the preimage of the graph of ν inDG×DG, and let ZD = Z(DG)
◦α(F )×

Z(DG)
◦E. Then ∆ZD/ZD is the graph of ν, so it is an algebraic group and, since

DG/Z(DG)
◦α(F ) is connected, ∆ZD/ZD is connected. Moreover, since ZD/(α(F )×

E) is connected too, ∆ZD/(α(F )×E) is connected. We have (∆ZD/(α(F )×E))′ =
∆′(α(F ) × E)/(α(F ) × E), so ∆′(α(F ) × E)/(α(F ) × E) is a connected algebraic
subgroup of ∆ZD/(α(F )× E).

We consider the diagonal ∆0 of T (G) × T (G), and let ρ be the isomorphism
from T (G)α(F )/α(F ) to T (G)E/E whose graph is ∆0(α(F ) × E)/(α(F ) × E).
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Let u ∈ D′
Gα(F )/α(F ) ∩ T (G)α(F )/α(F ). Then there exists x ∈ X such that

α−1(u) = xF . Hence we have ν(u) = δ(xF ) = δS(x)E = ϕX(x)E = α(x)E, and

(u, ν(u)) = (α(x)α(F ), α(x)E) ∈ ∆0(α(F ) × E)/(α(F ) × E).

Consequently, for each u ∈ D′
Gα(F )/α(F )∩T (G)α(F )/α(F ), we have ν(u) = ρ(u),

and we can define an isomorphism

νρ : D′
GT (G)α(F )/α(F ) → D′

GT (G)E/E

by νρ(x) = ν(x) for each x ∈ D′
Gα(F )/α(F ), and νρ(x) = ρ(x) for each x ∈

T (G)α(F )/α(F ). Then the graph of νρ is

∆1/(α(F )× E) := ∆′∆0(α(F )× E)/(α(F ) × E).

Moreover, since ∆′(α(F )×E)/(α(F )×E) and ∆0(α(F )×E)/(α(F )×E) are two
algebraic groups, ∆1 is algebraic, and νρ is an isomorphism of algebraic groups.

Since ∆1/(α(F ) × E) is the graph of an isomorphism of algebraic groups be-
tween two connected algebraic groups, it is connected. Since ∆ZD/(α(F ) × E) is
connected, ∆ZD/∆1 is connected too. But ∆1 contains ∆′, so ∆ZD/∆1 is abelian.
Hence, since ∆ZD/∆1 and ZD∆1/∆1 are connected, there is an algebraic comple-
ment ∆2/∆1 of ZD∆1/∆1 in ∆ZD/∆1. Now, since ∆ZD/ZD is the graph of ν, we
have ∆ZD/ZD ∩ (DG × Z(DG)

◦E)/ZD = 1 and

∆2 ∩ (DG × E) ≤ ∆ZD ∩ (DG × E)
= ZD ∩ (DG × E)
= Z(DG)

◦α(F ) × E.

Consequently we obtain

∆2 ∩ (DG × E) = ∆2 ∩ (Z(DG)
◦α(F )× E)

≤ ∆2 ∩ ZD

≤ ∆1.

Finally, , since ∆1/(α(F ) × E) is the graph of an isomorphism of algebraic groups
from D′

GT (G)α(F )/α(F ) to D′
GT (G)E/E, we find

∆2 ∩ (DG × E) = ∆1 ∩ (DG × E) = α(F ) × E.

In the same way, we obtain ∆2 ∩ (α(F ) ×DG) = α(F ) × E.

Since Lemma 8.0.7 implies that (Ci
∗
)′ contains Z(Ci

∗
)◦ for each i, the subgroup

D′
GT (G) contains Z(DG)

◦. Therefore, for each x ∈ Z(DG)
◦F/F = Z(DG/F )◦,

there exist d ∈ (D′
GF/F ) ∩ (Z(DG)

◦F/F ) and u ∈ T (G)F/F such that x = d u,
and we have

νρ(x) = νρ(d)νρ(u) = ν(d)ρ(u) ∈ Z(DG/E)◦ · T (G)E/E = Z(DG)
◦E/E.

The latter proves that νρ(Z(DG)
◦F/F ) = Z(DG)

◦E/E. Thus, since the graph of
νρ is ∆1/(α(F )×E), the group (∆1∩ZD)/(α(F )×E) is the graph of the restriction
of νρ to Z(DG)

◦F/F . Consequently, we obtain

rk(∆1 ∩ ZD) = rk((∆1 ∩ ZD)/(α(F )× E)) = rk(Z(DG)
◦F/F ) = rk(Z(DG)).

This yields

rk(ZD∆1) = rk(ZD) + rk(∆1)− rk(∆1 ∩ ZD)
= 2rk(Z(DG)) + rk(∆1)− rk(Z(DG))
= rk(Z(DG)) + rk(∆1).
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Moreover, since ∆ZD/ZD is the graph of ν, we have

rk(∆ZD/ZD) = rk(DG/Z(DG)
◦α(F )) = rk(DG)− rk(Z(DG))

and

rk(∆ZD) = (rk(DG)− rk(Z(DG))) + rk(ZD) = rk(DG) + rk(Z(DG)).

Now, since ∆2/∆1 is a complement of ZD∆1/∆1 in ∆ZD/∆1, we find

rk(∆2) = rk(∆ZD/∆1)− rk(ZD∆1/∆1) + rk(∆1)
= rk(∆ZD)− rk(ZD∆1) + rk(∆1)
= (rk(DG) + rk(Z(DG)))− (rk(Z(DG)) + rk(∆1)) + rk(∆1)
= rk(DG).

Since we have ∆2 ∩ (DG × E) = α(F )× E and ∆2 ∩ (α(F ) ×DG) = α(F ) × E by
the previous paragraph, the latter implies that ∆2/(α(F ) × E) is the graph of an
isomorphism β from DG/α(F ) to DG/E. Moreover, β is algebraic since ∆2 is an
algebraic group.

Finally, DG/α(F ) and DG/E are isomorphic as algebraic groups, as desired.
�

We note that Theorem 8.0.18 together with Lemma 8.0.14 provide Theorem
1.0.2 in the case K = Q.





CHAPTER 9

The Main Theorem for K 6= Q

In this section, we fix a connected affine ACF0-group M = (G, · ,−1 , 1, · · · ),
interpretable in the pure field Q. In other words, G is the group of rational points
over Q of a connected affine algebraic Q-group, and the structure M is a reduct
of the algebraic structure of G. Moreover, we consider an elementary substructure
M∗ = (G∗, · · · ) of M. We note that the structures M and M∗ have finite Morley
rank, so any infinite field, interpretable in M or M∗, is algebraically closed by a
theorem of A. Macintyre [5, Theorem 8.1].

Moreover, we may remark that, since M is interpretable in the pure field Q,
any definable field in an elementary substructure N ∗ of a reduct N of M is still
isomorphic to Q (see Fact 2.2.3), and (N ,N ∗) is a Vaughtian pair if N 6= N ∗ [27,
Definition 4.3.35]. This is at the basis of the following lemma.

Lemma 9.0.1. – Let U∗/V ∗ be a definable section of G∗, and let U/V be its
canonical extension to G. If U/V is definably isomorphic to K+ (resp. K∗) for an
infinite interpretable field K, then U = U∗V .

Proof – In this case, there is an infinite field L, interpretable in M∗, and
a definable morphism α from U∗ to L+ (resp. L∗), with kernel V ∗. Then we
have L = M0/R0 for M0 a definable subset of (G∗)n, where n is an integer, and
R0 a definable equivalence relation over M0. We consider the extensions L1, M1,
R1 and α1 to G of L, M0, R0 and α respectively. Since L1 is an infinite field,
interpretable in Q, Fact 2.2.3 says that L1 is isomorphic to Q. Moreover, L is
infinite and interpretable in M∗, so it is algebraically closed. Since Q has no
proper algebraically closed subfield, this implies that the canonical embedding of L
in L1 is an isomorphism: the subset M0 of M1 covers L1 = M1/R1. Thus, for each
u ∈ U , there is u∗ ∈ U∗ such that α1(u) = α1(u

∗). Since α1 is a morphism with
kernel V , this yields the result. �

We note that, since G is connected and since its ground field is algebraically
closed and of characteristic zero, there is no proper subgroup of finite index in G.

Proposition 9.0.2. – G = G∗Z(G)◦.

Proof – Since there is no proper subgroup of finite index in G, we have just
to prove that G = G∗Z(G). Let B∗ be a Borel subgroup of G∗, that is a maximal
solvable connected definable subgroup, and let B be its extension to G. Then B is
a maximal solvable connected definable subgroup of G, so it is an algebraic Borel
subgroup of G by Fact 2.2.1 and Lemma 4.0.3. In particular, we have Z(B) = Z(G),
so Z(B∗) = Z(G∗). Moreover, since B is the extension of B∗, we have B = d(B∗).
Let D = D/Z(G) be the largest connected definable subgroup of B = B/Z(G)
contained in B∗ = B∗Z(G)/Z(G). Then D is normal in B∗, so D is normal in B.

79
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If D = B∗, then we have B∗ = B. Since the conjugates of B cover G, the
ones of B∗ in G∗ cover G∗. In particular, G∗ = G∗Z(G)/Z(G) is generated by
the conjugates of D in G∗. Now, since D is definable in G and connected, G∗ is a
connected definable subgroup of G. Since G∗ is an elementary substructure of G,
this proves that G∗ = G, and G = G∗Z(G). Hence we may assume D 6= B∗.

Let D∗
0/Z(G∗) be the largest connected definable subgroup of B∗/Z(G∗), with

D∗
0 contained in D, and let D0 be its extension to G. Then D∗

0 is normal in B∗, and
D0/Z(G) is a normal connected definable subgroup of B/Z(G), and D0 is contained
in D. Let U∗/D∗

0 be a B∗-minimal section of B∗, and let U be the extension of U∗

to G. Then U/D0 is a B-minimal section of B. By choice of D∗
0 , the subgroups U

∗

and U are not contained in D, and U∗/Z(G∗) and U/Z(G) are connected.
If U/D0 is definably isomorphic to K+ or K∗ for an infinite interpretable field

K, then Lemma 9.0.1 gives U = U∗D0. But this implies that U is contained in
B∗D, hence U/Z(G) is contained in B∗, contradicting the maximality of D.

If the Fitting subgroup F (B) covers U/D0, then U/D0 is definably isomorphic

to a section of F (B)/Z(B). But F (B)/Z(B) is a Ũ -group by Fact 2.4.12, hence

U/D0 is a Ũ -group by Fact 2.4.10. Since Q is algebraically closed of characteristic
zero, there is no infinite definable group of bounded exponent in F (B)/Z(B), and
Fact 2.4.8 shows that F (B)/Z(B) is torsion-free. In particular, U/D0 is torsion-
free. Consequently, by B-minimality of U/D0, Fact 2.4.8 provides an interpretable
algebraically closed field L of characteristic zero such that U/D0 is definably iso-
morphic to L+. This contradicts the previous paragraph, so F (B) does not cover
U/D0, and (F (B) ∩ U)D0/D0 is finite. But D0 contains Z(B) and F (B)/Z(B) is
torsion-free, so F (B) avoids U/D0.

Since B is a connected solvable algebraic group, B/F (B)◦ is abelian, and F (B)
is a maximal nilpotent subgroup of B, so F (B) is the intersection of the centralizers
of the B-minimal sections of B. Then we find finitely many B-minimal sections
R1/S1, . . . , Rn/Sn of B such that F (B) is the intersection of their centralizers in B.
Now, for each i = 1, . . . , n, either B centralizes Ri/Si, or B/CB(Ri/Si) is definably
isomorphic to K∗

i for an interpretable algebraically closed field Ki (Fact 2.2.2).
Consequently, for each i = 1, . . . , n such that CB(Ri/Si) does not cover U/D0,
there is a finite subgroup Fi/D0 of U/D0 such that U/Fi is definably isomorphic
to an infinite definable subgroup of K∗

i . Morover, in Q, the fields Ki and Q are

definably isomorphic (Fact 2.2.3), so K∗
i has Morley rank one (in Q). This implies

that U/Fi is definably isomorphic to K∗
i .

If i and j are two elements of {1, . . . , n} such that CB(Ri/Si) and CB(Rj/Sj)
do not cover U/D0, then U/FiFj is definably isomorphic to K∗

i and K∗
j , so Ki and

Kj are definably isomorphic (Lemma 5.1.4). Moreover, since F (B) avoids U/D0,
the intersection of the subgroups Fi of this form is D0. Thus, there is i ∈ {1, . . . , n}
such that U/D0 is definably isomorphic to a subgroup of (K∗

i )
n. By minimality

of U/D0, this implies that U/D0 is definably isomorphic to K∗
i , contradicting that

U/D0 is definably isomorphic to no group of the formK∗ for an infinite interpretable
field K. This finishes the proof. �

Corollary 9.0.3. – If G′ contains Z(G)◦, then G = G∗, otherwise the pure
group G is isomorphic to G∗ ×Q+.

Proof – In the first case, Proposition 9.0.2 gives G′ = (G∗)′, so G∗ ≥ G′

contains Z(G)◦, and again Proposition 9.0.2 provides the result.
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In the second case, we note that, since the ground field of G is of characteristic
zero, there are finitely many elements of order n in Z(G) for each n ∈ N. Hence
Z(G∗) contains the torsion of Z(G). Moreover, since G is an ACF0-group, Z(G)◦

is divisible, so Z(G∗)◦ is divisible too. Therefore Z(G∗)◦ = G∗ ∩ Z(G)◦ has a
complement D in Z(G)◦, and D is divisible and torsion-free since Z(G)◦ is divisible
and since Z(G∗) contains the torsion of Z(G). Now Proposition 9.0.2 gives G =
G∗ × D. Since D is divisible and torsion-free, it is a direct product of countably
many copies of Q, and Q+ is isomorphic to Q+ ×D. But Z(G)◦ is not contained
in G′, hence Lemma 8.0.14 shows that G is isomorphic as abstract group to

G×Q+ ≃ G∗ ×D ×Q+ ≃ G∗ ×Q+,

and the result follows. �

For the following corollary, we use the notion of a prime model and its basic
properties in our context.

Definition 9.0.4. – A model T of a theory M is a prime model of T if for
any model N of T there is an elementary embedding of M into N .

The following result applies especially to groups of finite Morley rank (see [27,
§6-7]).

Fact 9.0.5. Let T be an ω-stable theory.

• [27, Corollary 4.2.16] If M and N are prime models of T , then they are
isomorphic.

• [27, Theorem 4.2.20] The theory T has a prime model.

Corollary 9.0.6. – Let H be another connected affine algebraic group over Q
(a group of rational points). If the pure groupsG andH are elementarily equivalent,
then they are abstractly isomorphic.

Proof – We assume that M = (G, · ,−1 , 1), and we consider the structure
N = (H, · ,−1 , 1). Let T be the theory of M and N . By Fact 9.0.5, there is an
elementary substructure M0 = (G0, · ,−1 , 1) of M (resp. N0 = (H0, · ,−1 , 1) of
N ), where M0 (resp. N0) is a prime model of T . Then M0 and N0 are isomorphic
by Fact 9.0.5. Now Corollary 9.0.3 says that,

• either G′ contains Z(G)◦, therefore H ′ contains Z(H)◦, and we have G =
G0 ≃ H0 = H ;

• or G′ does not contain Z(G)◦, therefore H ′ does not contain Z(H)◦, and
we have

G ≃ G∗ ×Q+ ≃ H∗ ×Q+ ≃ H.

�

From now on, we are ready for the proof of Theorem 1.0.2 and, simultaneously,
for the one of Theorem 1.0.1 in the affine case.

In this proof, we have to distinguish an algebraic group from a group of rational
points (cf. Remark 1.2.2).

Proof of Theorem 1.0.2 in the general case, and of Theorem 1.0.1

for affine groups – Let K be an algebraically closed field of characteristic zero,
and let G be a connected affine algebraic Q-group. We consider an elementary
substructure K1 of the pure field K, with K1 isomorphic to Q. In particular,
G(K1) is the elementary substructure of G(K) in K1. Then Lemma 8.0.14 and
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Theorem 8.0.18 provide the existence of a connected affine algebraic Q-group DG

(that is, DG is a functor), and of a finite central subgroup F of DG(K1), such that
for each affine algebraic Q-group H , the groups G(K1) and H(K1) are isomorphic
as abstract groups if and only if the group H(K1) is isomorphic as algebraic group
to a group of the form

DG(K1)/α1(F )× (K1)
s
+ ,

where α1 is a quasi-standard automorphism of DG(K1), and s is an admissi-
ble exponent. We may assume that there is an integer s such that G(K1) and
DG(K1)/F × (K1)

s
+ are isomorphic as algebraic groups, and we may assume that

DG(K1) is constructed as DG in §8. We consider the elementary extension DG(K)
of DG(K1) to K. We note that, since the extension of F to K is F , the groups
G(K) and DG(K)/F ×Ks

+ are isomorphic as algebraic groups.
Firstly, if G(K)′ contains Z(G(K))◦, then for each quasi-standard automor-

phism α of DG(K), the groups DG(K)/F and DG(K)/α(F ) are abstractly isomor-
phic. Secondly, if Z(G(K))◦ is not contained in G(K)′, we consider an integer r and
a quasi-standard automorphism α of DG(K), and we show that DG(K)/α(F )×Kr

+

is abstractly isomorphic to G(K). Since Z(G(K))◦ is not contained in G(K)′, the
subgroup Z(G(K1))

◦ is not contained in G(K1)
′, and the subgroup T1 of DG(K1),

corresponding to T (G(K1)) in §8, is either (K1)+, or (K
∗
1 )

k for a positive integer k.
Hence DG(K) has an algebraic subgroup A (a group of rational points) such that
we have either DG(K) = A × K+, or DG(K) = A × (K∗)k for a positive integer
k. Since K has characteristic zero, the groups K+ (resp. (K∗)k) and K+ × K l

+

(resp. (K∗)k ×K l
+) are abstractly isomorphic for each integer l. This implies that

DG(K)/F is abstractly isomorphic to DG(K)/F ×K l
+ for each integer l. In partic-

ular, the groups G(K), DG(K)/F and DG(K)/F ×Kr
+ are abstractly isomorphic.

Since DG(K)/F and DG(K)/α(F ) are abstractly isomorphic too, we obtain that
the groups G(K) and DG(K)/α(F )×Kr

+ are abstractly isomorphic.

Now we consider a connected affine algebraic Q-group H , and we assume that
the pure groups G(K) and H(K) are elementarily equivalent. Then H(K1) is the
elementary substructure of H(K) in K1, so the pure groups G(K1) and H(K1)
are elementarily equivalent, and Corollary 9.0.6 shows that G(K1) and H(K1) are
abstractly isomorphic. Consequently, there exists a quasi-standard automorphism
α1 of DG(K1) such that:

• either G(K1)
′ contains Z(G(K1))

◦, and H(K1) and DG(K1)/α1(F ) are
isomorphic as algebraic groups;

• or G(K1)
′ does not contain Z(G(K1))

◦, and there is an integer r such that
H(K1) and DG(K1)/α1(F )× (K1)

r
+ are isomorphic as algebraic groups.

Since α1(F ) is finite, its extension to K is α1(F ), and one of the following two
conditions is satisfied:

• either Z(G(K))◦ ≤ G(K)′, and H(K) and DG(K)/α1(F ) are isomorphic
as algebraic groups;

• or Z(G(K))◦ 6≤ G(K)′, andH(K) andDG(K)/α1(F )×Kr
+ are isomorphic

as algebraic groups.

Moreover, since α1 is a quasi-standard automorphism of DG(K1), there is two de-
compositions DG(K1) = R∗

1 × · · · × R∗
n and DG(K1) = S∗

1 × · · · × S∗
n of DG(K1),

where R∗
1, . . . , R

∗
n, S

∗
1 , . . . , S

∗
n are some algebraic subgroups of DG(K1) such that

α1(R
∗
i ) = S∗

i for each i, and such that the isomorphism αi
1 : R∗

i → S∗
i induced
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by α1 is standard for each i. Thus, for each i = 1, . . . , n, there is a field auto-
morphism δ∗i of K1 and an isomorphism µ∗

i : R∗
i → S∗

i of algebraic groups such
that αi

1 = µ∗
i ◦ δ

∗
i . Now we consider the extensions R1, . . . , Rn, S1, . . . , Sn to K of

R∗
1, . . . , R

∗
n, S

∗
1 , . . . , S

∗
n respectively, and the ones µ1, . . . , µn of µ∗

1, . . . , µ
∗
n respec-

tively. Moreover, for each i, we consider an extension δi to K of the automorphism
δ∗i of K1. Then, for each i, the isomorphism αi = µi ◦ δi from Ri to Si is stan-
dard, and it satisfies αi(x) = αi

1(x) for each x ∈ R∗
i . Now the automorphism α of

DG(K) defined by α(x) = αi(x) for each x ∈ Ri is quasi-standard, and it satisfies
α(F ) = α1(F ). Finally, H(K) has the desired form. �

Our main results are all derived from the Main Theorem 1.0.2. The abovemen-
tioned Theorem 1.0.1 in the general case is deduced from Lemma 9.0.8 below. On
the algebraic side, we have mainly two applications (Corollaries 9.0.7 and 9.0.9) in
which the technicalities of the general statement may be eliminated in particular
cases, by using Lemma 3.0.11 for the first application, and Lemma 9.0.8 for the
second one.

Corollary 9.0.7. – Let K and L be algebraically closed fields of characteristic
zero, and let G and H be connected affine algebraic groups defined over Q. Suppose
that neither G(K) nor H(L) can be decomposed as a central produce of two infinite
closed subgroups with finite intersection. If G(K) and H(L) are isomorphic as
abstract groups, then G and H are isomorphic as algebraic groups.

Lemma 9.0.8. – For any connected algebraic group G over an algebraically
closed field K of characteristic zero, there is a connected affine algebraic group GA

over K such that GA and G are abstractly isomorphic.

Proof – Let N be the smallest connected normal algebraic subgroup of G such
that G/N is affine [31, §5, Corollary 3 p.431], and let A be the largest connected
affine algebraic subgroup of G [31, §5, Theorem 16]. Then, by [31, §5, Corollary 1
p.433], we haveN ≤ Z(G), and by [31, §5, Corollary 5 p.440], we have G = AN and
N contains only a finite number of elements of any given finite order. So (A ∩N)◦

and N are abelian and divisible, and (A ∩ N)◦ has a (nonnecessarily algebraic)
divisible complement R in N .

By the choice of A, the group (A∩N)◦ is the largest connected affine algebraic
subgroup of N , and N/(A ∩ N)◦ is an abelian variety by [31, §5, Theorem 16].
Consequently, for each integer n, the group R ≃ N/(A ∩ N)◦ has n2g elements
of order dividing n, where g denotes the dimension of N/(A ∩ N)◦. This implies
that R is abstractly isomorphic to the torus (K∗)2g, so the affine algebraic group
A × (K∗)2g is abstractly isomorphic to A × R. But we have G = AN = AR and
A ∩ R ≤ (A ∩ N) ∩ R is finite, so there is an abstract surjective homomorphism
τ : A× (K∗)2g → G such that τ(x, 1) = x for each x ∈ A, and with finite kernel E.
Hence there is an abstract isomorphism σ from G to the connected affine algebraic
group GA := (A× (K∗)2g)/E. �

Moreover, the previous lemma implies the following result.

Corollary 9.0.9. – Let G and H be two connected (nonnecessarily affine)
algebraic Q-groups and K be any algebraically closed field of characteristic zero.
If G(K) and H(K) are abstractly isomorphic, then they have a common algebraic
central extension.
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Moreover, G(K)/Z(G(K)) and H(K)/Z(H(K)) are isomorphic as algebraic
groups.



CHAPTER 10

Bi-interpretability and standard isomorphisms

We point out to the reader that again in all of this section, an algebraic group
over an algebraically closed field K will mean the group of rational points over K.
In particular, an algebraic group will be a group in the abstract sense.

Steinberg showed in [33, Theorem 30 p.158] that all the automorphisms of a
simple algebraic group over a perfect field are standard. In the present section
we aim at a characterization of the algebraic groups over an algebraically closed
field all of whose automorphisms as abstract groups are standard. We give a precise
characterization for the case of positive characteristic in Theorem 10.0.1 and a fairly
general criterion covering the case of characteristic zero in Theorem 10.2.1.

Our characterization in positive characteristic (Theorem 10.0.1) does not work
in characteristic zero, except for Q. The difference between these fields is the
presence of non-trivial derivations for fields of characteric zero non-isomorphic to
Q. Indeed, thanks to these non-trivial derivations, we can build counter-examples
(Examples 3.0.1 (1) and (3)).

Furthermore, we find model-theoretical characterizations of the algebraic groups
all of whose abstract automorphisms are standard (Theorems 10.1.4 and 10.1.5).

First we give our main result, where the meaning of the condition (1) is detailed
in Remark 10.0.2 below.

Theorem 10.0.1. – Let G be (the group of rational points of) a nontrivial
connected algebraic group over an algebraically closed field K, such that K has no
nonzero derivations (i.e. either its characteristic is positive, or K ≃ Q). Then the
following conditions are equivalent:

• any isomorphism α from G to another algebraic group over an alge-
braically closed field is standard;

• any automorphism of G is standard;
• (1) (Remark 10.0.2) there is no nonzero homomorphism from G to Z(G);

(2) the group G is not central product of two proper closed subgroups U
and V with U ∩ V finite.

Proof – If G satisfies (1) and (2), we consider the expanded pure group G.
Then G is definably affine by (1) and Lemma 10.1.3, and G is definably linear over
one interpretable field by (2) and Proposition 5.2.3. In this case, Fact 3.0.4 shows
that any isomorphism α from G to another algebraic group over an algebraically
closed field is standard. Moreover, this implies that any automorphism of G is
standard. Hence we may assume that any automorphism of G is standard, and we
have just to prove that G satisfies the conditions (1) and (2). Since this follows
from Lemmas 10.1.2 and 8.0.6, we obtain the result. �

Remark 10.0.2. – For the main results of this section, we are concerned by
connected algebraic groups G over an algebraically closed field K for which there is
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no nonzero homomorphism from G to Z(G). If p denotes the characteristic of K,
by [24, §19.5], this means that,

• either p > 0, the center Z(G) has no nontrivial torus, and either G/G′

is a torus (i.e. G is generated by its tori), or Z(G) has no nontrivial
unipotent element;

• or p = 0 and either G is perfect (i.e. G = G′), or Z(G) is finite.

10.1. Positive characteristic and bi-interpretability

In this part, we demonstrate strong links between bi-interpretability and stan-
dard automorphisms, since we characterize the groups all of whose abstract isomor-
phisms are standard by using bi-interpretability (Theorems 10.1.4 and 10.1.5).

At first, we show that we may build a nonstandard automorphism for some
algebraic groups, in the same vein as Lemma 8.0.6 (Lemmas 10.1.1 and 10.1.2).
Although these results seem natural, it is not clear that there exist direct proofs.

Lemma 10.1.1. – Let G be a connected affine algebraic group over an alge-
braically closed field K. If G′ does not contain Z(G)◦◦, then G has a nonstandard
automorphism α such that G = T × CG(α) for a subgroup T of Z(G)◦◦.

Proof – Let p be the characteristic of K. Let M be a maximal proper con-
nected closed subgroup of G containing G′ and not Z(G)◦◦. Then there is a con-
nected closed subgroup A ≤ Z(G)◦◦ of dimension one over K such that G = AM ,
and A ∩ M is finite. If A is divisible with torsion, let q be a prime integer with
q > p such that A has an element of order q, and such that q does not divide
|A ∩M |. Let T be a subgroup of A satisfying T ≃ Z(q∞), where Z(q∞) denotes
{x ∈ C | ∃n ∈ N, xqn = 1}. If A is divisible and torsion-free, let T be a subgroup of
A satisfying T ≃ Q+. If A is not divisible, then p is a prime, A ≃ K+ has exponent
p, and we consider a subgroup T of order p2 in A satisfying T ∩M = 1. Then we
have T ∩M = 1, and by using [5, Fact 1.1] when A is divisible, we find a subgroup
H of G containing M such that G = H × T . Moreover, there is an automorphism
τ of T such that CT (τ) = 1.

Now we consider the automorphism α of G defined by α(ht) = hτ(t) for each
h ∈ H and each t ∈ T . Then we have G = T × CG(α). We assume toward a
contradiction that α = β ◦ µ for µ a field automorphism of K, and β an isogeny.
Then we have µ(x) = β−1(x) for each x ∈ M . Thus, if M is nontrivial, then µ is
constructible, so either it is trivial, or p is a prime and µ is a power of the Frobenius
automorphism. In particular, the condition M 6= 1 implies that α is constructible,
so H = CG(α) is definable, and G/H ≃ T is definable too. But this is impossible
since either T is divisible and isomorphic to Q+ or Z(q∞), or |T | = p2 contradicting
that G is connected. Hence we have M = 1 and G = A.

Thus we may assume that either A = K+ or A = K∗. Let K0 denote the
prime subfield of K when p = 0 and denote the subfield of order p3 when p is
positive. We may assume that P := (K0)+ is contained in H when A = K+, and
that P := K∗

0 is contained in H when A = K∗. In particular, for each x ∈ P , we
have β(x) = α(x) = x.

• If A = K∗, then the only algebraic automorphisms of A are defined by
β∗(x) = x or β∗(x) = x−1 in characteristic zero and, in positive charac-
teristic, by β∗(x) = xps

or β∗(x) = x−ps

for s ∈ N.
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– If p = 0, since β(x) = x for each x ∈ P , we have β(x) = x for each
x ∈ A, and α = µ is a field automorphism.

– In positive characteristic, since β(x) = x for any x ∈ P and |P | = p3,
the automorphism β is a power of the Frobenius automorphism, and
α is a field automorphism too.

Then the fixed subfield K1 of α satisfies K∗/K∗
1 ≃ A/H ≃ T ≃ Z(q∞).

But for a subfield k of K we never have K∗/k∗ ≃ Z(q∞).
• If A = K+ in characteristic 0, since β(x) = x for each x ∈ P , we have
β(x) = x for each x ∈ A, and α = µ is a field automorphism. Then
K is an algebraically closed field with a subfield K1 = CK(α) such that
K+ ≃ (K1)+ ⊕Q+, a contradiction.

• If A = K+ in characteristic p > 0, then if α were standard, the algebraic
additive automorphism would be equal to a field automorphism on the
additive subgroup H of finite index p2. But α would be a field automor-
phism itself, which it is not since its centralizer is H and the order of
G/H ≃ T is p2.

�

Lemma 10.1.2. – Let G be a connected affine algebraic group over an alge-
braically closed field K. If there is a nonzero homomorphism from G to Z(G), then
G has a nonstandard automorphism.

Proof – We assume toward a contradiction that any automorphism of G is
standard. Then Lemma 10.1.1 shows that G′ contains Z(G)◦◦, so Z(G) has no
nontrivial torus. First we suppose that K is of positive characteristic. Then G/G′

is not a torus and Z(G) has a nontrivial unipotent element. Since G′ contains
Z(G)◦◦, we find a subgroup H of index p in G and containing G′Z(G). Since Z(G)
has a nontrivial unipotent element, there is an homomorphism γ : G → Z(G) with
kernel H . Then the map α : G → G, defined by α(x) = xγ(x) for each x ∈ G,
is an automorphism of G. Therefore α is standard and we have α = β ◦ µ for
µ a field automorphism of K and β an isogeny. Since G′ contains Z(G)◦◦, the
group G is not abelian and G′ is infinite. But we have α(x) = x for each x ∈ G′,
so µ is constructible. Hence α is constructible too, and H = CG(α) is definable,
contradicting that G is connected and that H is of index p in G. Thus we may
assume that K is of characteristic zero.

From now on, G/G′ is nontrivial and Z(G) is infinite. SinceG′ contains Z(G)◦◦,
the groups G/Z(G)G′ and Z(G) have subgroups P/Z(G)G′ ≃ Q+ and Q ≃ Q+

respectively. Now P/Z(G)G′ has a complement X/Z(G)G′ in G/Z(G)G′ [5, Fact
1.1], and there is an epimorphism γ from G to Q with kernel X . Let α be the
automorphism of G defined, for each x ∈ G, by α(x) = xγ(x). Therefore α is
standard and we have α = β ◦µ for µ a field automorphism of K and β an isogeny.
Since G′ contains Z(G)◦◦, the group G is not abelian and G′ is infinite. But we
have α(x) = x for each x ∈ G′, so µ is constructible. Hence α is constructible too,
and X = CG(α) is definable. Now G/X ≃ Q+ is an abelian connected algebraic
group over K. This contradicts that, since K is algebraically closed, because any
infinite abelian algebraic group over K contains a copy of Q+ ⊕ Q+. This finishes
the proof. �

By Theorem 10.1.4, there is a strong link between bi-interpretability and stan-
dard automorphisms. Its proof uses the following lemma.



88 10. BI-INTERPRETABILITY AND STANDARD ISOMORPHISMS

Lemma 10.1.3. – Let G be a nontrivial connected algebraic group over an
algebraically closed field K. We assume that K has no nonzero derivations (i.e.
either its characteristic is positive, orK ≃ Q). If there is no nonzero homomorphism
from G to Z(G), then the expanded pure group G is definably affine.

Furthermore, if the characteristic of K is positive, then the pure group G is
definably affine.

Proof – If K ≃ Q, then either G is perfect or Z(G) is finite, so Theorems
5.3.4 and 7.3.2 imply that G is definably affine. Hence we may assume that the
characteristic of K is positive, and we have just to prove that the pure group G is
definably affine. If Z(G) has a nontrivial torus, thenG/G′ has a nontrivial torus [24,
§19.5], contradicting our hypothesis over G. But S(G) is a connected subgroup of a
pseudo-torus of the pure group G, so S(G) is a divisible closed subgroup of G and
it is a torus. Hence, since S(G) is central in G, it is trivial. In particular, this shows
that, if G is generated by its tori, then G is definably affine (Proposition 7.1.5).
Consequently, we may assume that Z(G) has no nontrivial unipotent element. That
is, Z(G) is finite and p does not divide its order. Then Proposition 7.4.1 says that
G is definably affine, finishing the proof. �

Theorem 10.1.4. – Let G be a nontrivial connected affine algebraic group over
an algebraically closed field K. Then the following conditions are equivalent:

• the field K and the expanded pure group G are bi-interpretable;
• the algebraic groupG and the expanded pure groupG are bi-interpretable;
• the expanded pure group G is definably linear over one interpretable field;
• every pure group isomorphism s between G and another algebraic group
H over an algebraically closed field L is standard;

• any automorphism of G is standard.

Proof – By Fact 2.2.3, to say that K and the expanded pure group G are
bi-interpretable is equivalent to say that, in the expanded pure group G, there an
interpretable field L and a definable isomorphism α from G to an algebraic group
over L. That is, G is definably linear over one interpretable field or, equivalently,
the algebraic group G and the expanded pure group G are bi-interpretable. In
particular, by Fact 3.0.4, this implies that the fourth condition. Moreover, the
fourth condition implies the fifth.

Now we assume that any automorphism of G is standard, and we consider the
expanded pure group G. We show that G is definably linear over one interpretable
field. By Proposition 5.2.3 and Lemma 8.0.6, it is sufficient to prove that G is
definably affine. By Lemma 10.1.3, we may assume that K is of characteristic zero.
Since any automorphism of G is standard, the image of any closed subgroup of G
by any automorphism of G is a closed subgroup. Hence each closed subgroup of
G is definable. On the other hand, Lemma 10.1.2 show that either G is perfect or
Z(G) is finite. Let T be a maximal torus of G. It is definable, and we show that it
is definably affine. Indeed, let B be a Borel subgroup of G containing T , and let U
be its unipotent radical. These subgroups are definable, and we have B = U ⋊ T
and Z(B) = Z(G) [24, §19.3 and §22.2]. If T ∩Z(B) is infinite, then G′ is perfect,
contradicting [24, §19.5]. Since each torus of F (B) is central in B, this implies
that T ∩ F (B) is finite. From now on, the intersection of the centralizers of the
B-minimal sections A of U is finite. But, for each B-minimal section A, either it is
centralized by T , or T/CT (A) is definably linear (Fact 2.2.2). Hence T is definably
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affine (Theorem 5.3.4 and Lemma 5.3.5). Consequently, the (definable) subgroup
R generated by the tori of G is definably affine (Theorem 5.2.1). Thus, we may
assume that G is not perfect, that is Z(G) is finite. Let V be the unipotent part of
G. It is definable, generated by its closed subgroup of dimension one, and satisfies
G = V R. Moreover, each closed subgroup A of dimension one in V is definable,
divisible and with no nontrivial proper definable subgroup. By Lemma 7.2.3, either
A ≃ ACG(R)/CG(R) is definably affine, or it centralizes R. In the second case,
since Z(G) is finite and since G = V R, we have A � Z(V ). In particular, A is
not a pseudo-torus (Fact 2.3.3 (iii)), so it is definably isomorphic to L+ for an
interpretable field L. Thus A is definably affine, and Theorem 5.2.1 says that V
and G = V R are definably affine too, as desired. �

When the ground field is of positive characteristic, we have a similar result by
considering the pure group rather than the expanded pure group.

Theorem 10.1.5. – Let G be a nontrivial connected affine algebraic group
over an algebraically closed field K of positive characteristic. Then the following
conditions are equivalent:

• the field K and the pure group G are bi-interpretable;
• the algebraic group G and the pure group G are bi-interpretable;
• the pure group G is definably linear over one interpretable field;
• every pure group isomorphism s between G and another algebraic group
H over an algebraically closed field L is standard;

• any automorphism of G is standard.

Proof – We prove the equivalence between the three first assertions as in the
proof of Theorem 10.1.4. Now, by Theorem 10.1.4, we have just to prove that if
any automorphism of G is standard, then the pure group G is definably linear over
one interpretable field. We notice that Lemmas 10.1.2 and 8.0.6 say that,

(1) there is no nonzero homomorphism from G to Z(G)
(2) G is not a central product G = U · V of two proper closed subgroups U

and V with U ∩ V finite.

In particular, by the second condition and Proposition 5.2.3, it is sufficient to prove
that G is definably affine. Hence the first condition and Lemma 10.1.3 yields the
result. �

Remark 10.1.6. – We notice that the previous result fails when the ground
field is of characteristic zero. Indeed, Example 3.0.1 (2) provides an example of an
algebraic group over K = Q all of whose automorphisms are standard, and such
that the ground field Q and the pure group G are not bi-interpretable.

10.2. Characteristic zero

Unlike the positive characteristic, we fail to find in zero characteristic an alge-
braic characterization of the algebraic groups all of whose abstract automorphisms
are standard. Indeed, we can build numerous non-standard automorphisms in this
case, and the conditions (1) and (2) below are not sufficient to have all the standard
automorphisms (Examples 3.0.1 (1) and (3)). However, the main result of this sec-
tion provides algebraic conditions under which any automorphism of a connected
algebraic group, defined over an algebraically closed field of characteristic zero, is
standard.
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Theorem 10.2.1. – Let G be a connected algebraic group over an algebraically
closed field K of characteristic zero. Then all of its automorphisms are standard if
it satisfies the following three conditions:

(1) either G is perfect or Z(G) is finite;
(2) G is not a central product of two proper closed subgroups U and V with

U ∩ V finite;
(3) for each characteristic abelian connected closed subgroup A of G, and each

maximal torus T of G, the centralizer CA(T ) is central in G,

Furthermore, under these conditions, the algebraic group G and the pure group G
are bi-interpretable.

Its proof requires the following results.

Lemma 10.2.2. – Let G be a connected ACF0-group. If G is perfect or if Z(G)

is finite, then F (G)◦ is a torsion-free Ũ -group.

Proof – We fix an algebraically closed field K of characteristic zero interpret-
ing G, and we consider G as an algebraic group over K. Since either G is perfect
or Z(G) is finite, the algebraic group G is affine. Moreover, we note that F (G)◦

is unipotent, otherwise the maximal torus T of F (G)◦ would be nontrivial, and
since G′ ∩T is finite [24, §19.5], the center Z(G) would be finite by our hypothesis,
contradicting [24, Corollary 16.3]. This implies that F (G)◦ is torsion-free, and that
F (G)◦ is the unipotent radical of G.

Let B be a Borel subgroup of G. In particular B contains F (G)◦. Then

F (B)/Z(B) is a Ũ -group by Fact 2.4.12, and since Z(B) = Z(G) by [24, Corollary

22.2.B], the quotient F (G)◦/(F (G)◦∩Z(G)) is a Ũ -group (Fact 2.4.10). In particu-

lar, since F (G)◦ is torsion-free, if Z(G) is finite, the subgroup F (G)◦ is a Ũ -group.
Hence we may assume that G is perfect.

Let R be a maximal reductive subgroup of G. Then we have G = F (G)◦ ⋊ R,
so G′ = [F (G)◦, G]⋊R′, and since G is perfect, we find F (G)◦ = [F (G)◦, G]. Now

Fact 2.4.13 says that F (G)◦ is a Ũ -group. �

Proposition 10.2.3. – Let G be a connected ACF0-group, and let K be an
algebraically closed field of characteristic zero interpreting G. We assume that
either G is perfect or Z(G) is finite. If the maximal tori of G, viewed as an algebraic
group over K, are definable in the ACF -group G, then G is definably affine.

Proof – Let T be a maximal torus of the algebraic group G over K, and
let U = F (G)◦. Then U is torsion-free by Lemma 10.2.2. In particular, it is a
unipotent subgroup of the algebraic group G, so T ∩ U is trivial. By Corollary
7.2.7, the quotient G/U is definably affine. Therefore T is definably affine, and the
subgroup T of G generated by the tori of G is definably affine too (Theorem 5.2.1).
Hence we may assume that T is proper in G. In particular, G is not perfect since
G/T is a unipotent group, so Z(G) is finite.

Moreover G/CG(T ) is definably linear by Lemma 7.2.3, so G/CU (T ) is de-
finably affine by Lemma 5.3.5, and we may assume that CU (T ) is nontrivial. In
particular, since CU (T ) is a normal subgroup of the nilpotent group U , the group
CZ(U)(T ) is nontrivial. But G/T is a unipotent group, so it is covered by the
unipotent radical of G, and since this one is contained in U = F (G)◦, we find
G = UT . Hence CZ(U)(T ) is central in G, contradicting that U is torsion-free and
Z(G) is finite. �
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Proof of Theorem 10.2.1 – We assume toward a contradiction that G is a
countexample to Theorem 10.2.1. By Fact 3.0.4, the pure group G is not definably
linear over an interpretable field. By (2) and Proposition 5.2.3, the pure group G
is not definably affine. Now G/Z(G) is not definably affine by (1), and by using
Theorem 5.3.4 if Z(G) is finite, and Lemma 7.3.1 if G is perfect.

Let T0 be the torsion subgroup of a maximal torus T of G, and let D = d(T0) be
the definable hull of T0 in the pure group G. We note that T is the Zariski closure of
T0, so D contains T , and since T0 ≤ T is abelian, D is abelian too. Moreover, since
G/Z(G) is not definably affine, we have TZ(G) < DZ(G) by Proposition 10.2.3.

Let U = F (G)◦. It is a torsion-free Ũ -group by Lemma 10.2.2, and G/U is
definably affine by Corollary 7.2.7. In particular, U is a unipotent group, and U
contains W (G) (Corollary 5.3.6). Since TW (G)/W (G) is definable by Corollary
5.2.4, we have TW (G) = DW (G), and since TZ(G) < DZ(G), the intersection
D ∩W (G) is noncentral in G.

We show that D ∩ Z(G) ∩W (G) is a characteristic subgroup of G. If T1 is a
maximal divisible abelian torsion subgroup of G, then T1 is formed by semisimple
elements, and its Zariski closure T1 is a torus. Actually, by maximality of T1, the
torus T1 is maximal, and T1 is the torsion subgroup of T1. Hence T1 is conjugate
with T0, and T0 is a maximal divisible abelian torsion subgroup of G. Thus, for any
automorphism α of G, the subgroup α(T0) is a maximal divisible abelian torsion
subgroup of G, and there exists g ∈ G such that α(T0) = T g

0 . Since D = d(T0) is the
definable hull of T0 in the pure group G, we have α(D) = Dg, and α(D ∩Z(G)) =
(D ∩ Z(G))g = D ∩ Z(G). Consequently, D ∩ Z(G) is a characteristic subgroup of
G, and since W (G) is characteristic in G too, we conclude that D ∩ Z(G) ∩W (G)
is a characteristic subgroup of G.

Let E/(D∩Z(G)∩W (G)) be aD-minimal subgroup of (D∩W (G))/(D∩Z(G)∩

W (G)). Since U is a Ũ -group, E/(D∩Z(G)∩W (G)) is definably isomorphic to L+

for an algebraically closed field L. Let A be the subgroup of W (G) generated by all
the images of E by the automorphisms of the pure group G. Since E is definable
and connected in the pure group G, the subgroup A of W (G) is definable and
connected in the pure group G too by Zilber’s Indecomposability Theorem ([28,
Theorem 2.9] or [5, Theorem 5.26]). Moreover, A is a characteristic subgroup of G,
and A/(D∩Z(G)∩W (G)) is definably affine over L by Theorem 5.2.1. Consequently
W (G) centralizes A/(D∩Z(G)∩W (G)) (Lemma 7.2.3), and A/(D∩Z(G)∩W (G))
is abelian. At this stage, if Z(G) is finite, then D∩Z(G)∩W (G) is a finite subgroup
of the torsion-free subgroup U , so A is abelian and CA(T ) is central in G by (3),
contradicting that E ≤ D ≤ CA(T ) is noncentral in G. Thus by (1), the group G
is perfect.

Since A = A/(D ∩ Z(G) ∩ W (G)) is definably affine over L, it is definably
linear over L (Theorem 5.3.4), and since it is torsion free and abelian, it is defin-
ably isomorphic isomorphic to an L-vector space. Then we find vector subspaces
A1, . . . , Ak of A of dimension one normalized by T and such that A is the direct
sum of A1, . . . , Ak. Since A is definably linear over L, these vector subspaces are
definable. Moreover, since W (G) centralizes A and since TW (G) = DW (G), they
are normalized by D as well. If T centralizes each subspace Ai, then T central-
izes A, and since T is a torus and A ≤ U is unipotent, the torus T centralizes A.
But G is perfect, so it is generated by its maximal tori, which are conjugate in
G, so G centralizes A, contradicting E � Z(G). Hence T does not centralize all
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the subpaces Ai. For each i, we denote by Ai the preimage of Ai in A. We fix
j ∈ {1, . . . , k} such that T does not centralize Aj . Since Aj ≤ U is torsion-free,
and since the dimension of Aj/Z(Aj) is at most one, Aj is abelian. Now, since D
is abelian, the group AjD is solvable of class two. But the codimension of D in

AjD is one since the dimension of Aj = Aj/(D ∩ Z(G) ∩ W (G)) is one, so since

D does not centralize Aj , it is a Carter subgroup of AjD. By Fact 6.0.1 (iν), we
find a definable connected characteristic abelian subgroup Bj of AjD such that
AjD = Bj ⋊D. Since D covers AjD/(AjD)′ (Fact 6.0.1 (iii)), the subgroup Bj is
contained in (AjD)′ ≤ Aj and it is torsion-free. Moreover, since the codimension
of D in AjD is one, the Zariski dimension of Bj is one, and since D does not cover

Aj , the subgroup Bj covers Aj . This implies that Bj is definably isomorphic to

L+ ≤ Aj . Now, if B denotes the largest connected subgroup of A definably linear

over L (Theorem 5.2.1), then B covers Aj , and B is central in A ≤ W (G) (Lemma
7.2.3). In particular, B is a characteristic abelian connected closed subgroup of G,
and by (3), the centralizer CB(T ) is central in G, so B does not contain E.

By the choice of B, the torus T centralizes all the section Ai not covered by
B, so T centralizes A/B. Hence, since G is generated by its maximal tori, the
section A/B is centralized by G, and G normalizes (D ∩ A)B ≥ EB > B. Since
the maximal divisible abelian torsion subgroups of G are conjugates, and since T0

is one of them with D = d(T0), the subgroup (D ∩ A)B is characteristic in G, and
since it contains E, we find A = (D ∩A)B. Thus, since B is central in A and since
D is abelian, the group A is abelian, and we have our final contradiction with (3)
since CA(T ) contains E. �
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Index of notations

Z(G) Center of a group
G′ Derived subgroup
G◦ Connected component of a group of finite Morley rank (Definition 2.1.3)
G◦◦ Identity component of an algebraic group (§4)
d(G) Definable hull (Definition 2.1.4)
F (G) Fitting subgroup (§2.3)
J(A) Definition 2.4.1
UK(G) Notation 2.4.3

Ũ(G) Definition 2.4.4
V (G) Notation 4.0.13
A(G) Corollary 5.2.2
W (G) Corollary 5.3.6
Φ(G) Frattini subgroup (Definition 6.0.4)
S(G) Notation 7.1.1
T (G) Notation 7.1.1
Q(G) Quasiunipotent radical (Definition 7.1.3)
Ci Construction of DG 8.0.3

Ci Construction of DG 8.0.3

Ci
∗

Construction of DG 8.0.3
T (G) Construction of DG 8.0.12
DG Construction of DG 8.0.1, 8.0.3 and 8.0.12
γG Construction of DG 8.0.12
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Centrally indecomposable group, 65
Connected

component, 13
group, 13

Conservative, 30

Decent torus, 14
Definable

function, 12
hull, 13
relation, 12

set, 11
Definably affine group, 42
Definably linear group, 28
Derivation, 17

Expanded pure group, 18

Fitting subgroup, 14
Frattini subgroup, 52

ACF -group, 27
ACFp-group, 27
UK-group, 15

Ũ-group, 15
Group of finite Morley rank, 12

Homogeneous UK-group, 15

Indecomposable group, 15
Interpretable, 12

S-minimal, 13

Prime model, 83
Pseudo-torus, 14
Pure

field, 11

group, 11

Quasi-standard isomorphism, 9
Quasiunipotent radical, 57

Standard isomorphism, 1, 6

Structure, 11
Subdefinable, 18

Vaughtian pair, 81
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