
Noname manuscript No.
(will be inserted by the editor)

Workload assignment for global real-time scheduling on
unrelated clustered platforms

Antoine Bertout · Joël Goossens ·
Emmanuel Grolleau · Roy Jamil ·
Xavier Poczekajlo

the date of receipt and acceptance should be inserted later

Abstract Heterogeneous MPSoCs are being used more and more, from cellphones
to critical embedded systems. Most of those systems offer heterogeneous sets of
identical cores. In this paper, we propose new results on the global scheduling
approach. We extend fundamental global scheduling results on unrelated processors

to results on unrelated multicore platforms, a more realistic model. We introduce
several methods to construct the workload assignment of tasks to cores taking
advantage of this new model. Every studied result is optimal regarding schedula-
bility, and all the proposed methods but one have a polynomial time complexity.
Thanks to the model, the produced schedules have a limited degree of migrations.
The benefits of the methods are demonstrated and compared using synthetic tasks
sets. Practical limitations of the global scheduling approach on unrelated platforms
are discussed, but we argue that it is still worth investigating considering modern
MPSoCs.

Keywords real-time scheduling, global scheduling, multiprocessor, heterogeneous
platform

A. Bertout
LIAS, Université de Poitiers, ISAE-ENSMA, Poitiers, France E-mail: antoine.bertout@univ-
poitiers.fr

J. Goossens
Université libre de Bruxelles, Brussels, Belgium E-mail: joel.goossens@ulb.be

E. Grolleau
LIAS, ISAE-ENSMA, Université de Poitiers, Chasseneuil Futuroscope, France E-mail: grol-
leau@ensma.fr

R. Jamil
AC6, LIAS, ISAE-ENSMA, Courbevoie, France E-mail: roy.jamil@ac6.fr

X. Poczekajlo
Université libre de Bruxelles, Brussels, Belgium E-mail: Xavier.Poczekajlo@ulb.ac.be

2 Antoine Bertout et al.

(a) flat platform model (b) unrelated multicore platforms model

Fig. 1: Illustration of flat versus clustered platform model

1 Introduction

1.1 Motivation

In the keynote speech [15] of the 2019 RTNS edition, Marko Bertogna exposed how
heterogeneous architectures found in current and incoming safety-critical innova-
tions such as autonomous vehicles open promising opportunities for the real-time
community to bridge practical application with theoretical aspects. Heterogeneous

MultiProcessor System-on-Chip platforms (MPSoCs) are now widely spread in most
embedded systems domains, from infotainment and automated driving system in
cars to smartphones and drones. These platforms usually offer several different sets
of identical computing cores, called clusters, and may also contain specific hard-
ware like specialised processing units (e.g. GPU, NPU) or programmable logic tiles
(FPGA). The cluster architectures are typically inspired from multicore architec-
tures and, through a hypervisor, allow a single operating system (OS) to globally
schedule tasks easily and efficiently. Nevertheless on heterogeneous MPSoCs, differ-
ent clusters may have different instruction set architectures (ISAs), and may host
different OSs. For example, the STM32MP157C-DK2®MPSoC from STMicroelec-
tronics is composed of two clusters. On one hand its Cortex-A7® multicore cluster
has a Memory Management Unit (MMU) allowing memory virtualisation, and can
host a multi-purpose Linux OS. On the other hand, its microcontroller Cortex-
M4® is a single-core cluster without MMU that can only support lightweight
OS (e.g. FreeRTOS or minimal single process RTOS compliant with the POSIX
1003.13 PSE51 [3] profile) or be used directly bare metal. While belonging to the
same ARM Cortex®family, these cores have different ISAs. Thus, performing a
task migration from one cluster to another requires the task code to be compiled
for both types of architecture. Moreover, preemption cannot be allowed between
every instruction since the low level instructions are different, and can even be
executed out of order on some architectures. On these platforms, migrating a task
from a cluster to another would therefore require to determine specific migration
points in the code.

This paper is focused on real-time scheduling of a set of tasks. Each task releases
a —potentially— infinite set of jobs which have the same worst-case execution-
time (WCET) on a fictional core. A fictional core is used as a reference to express
core processing rates. It is modelled so that all tasks may be executed on it. Jobs
must be completed by a given deadline to respect the real-time constraints. In
the literature, a platform is often viewed as “flat”, as represented in Figure 1(a).
In extenso, there is no hierarchy between cores and all migrations are considered

Workload assignment on unrelated clustered platforms 3

as having the same cost. This is an abstraction since most modern platforms are
composed of one or several clusters of cores, as represented in Figure 1(b). Clus-
ter cores are identical, but may differ from one cluster to another in the case of
unrelated multicore platforms. In this paper, the jobs are executed on a comput-
ing platform of unrelated clusters. Each cluster is characterised by its number of
identical cores, and each task has a specific processing rate on each cluster. In the
literature, multiprocessor systems are generally classified into three categories [23,
12]. (1) Identical : all the processors are identical and execute the tasks at the same
processing rate; (2) Uniform: each processor is characterised by a speed, e.g., a
processor of speed 2 executes any task twice faster than a processor of speed 1;
(3) Unrelated : the processing rate depends on both the processor and the task.
There exists a fourth category: consistent architecture. This is a particular case of
unrelated architecture where the heterogeneity is consistent. Informally, whenever
a processor executes a task faster than the others processors then it is also faster
at executing the other tasks. While this notion was already considered in the lit-
erature, see for instance [7,18], we provide in Section 2.3 a formalisation of this
kind of architecture.

The scheduler on a multiprocessor platform can be global or partitioned. In
global scheduling, any job may be executed on any core, i.e. migrate without re-
striction. By contrast, in partitioned scheduling each task is assigned to a single
core and migration is not allowed. The multicore cluster model allows for an in-
termediate category: in clustered scheduling [12], each task is assigned to a single
cluster and jobs can only migrate between cores within the cluster. In this paper,
we assume a global scheduling on unrelated multicore platforms. The migrations
between cores of the same cluster are defined as intra-cluster migrations while the
inter-cluster migrations correspond to migrations between cores of different clus-
ters. On most platforms, inter-cluster migrations require software support and a
specific development effort. This is very costly because of the online execution
overhead and time consuming as it requires specific development effort. Today,
popular scheduler implementations support symmetrical multiprocessing (SMP)
that allows intra-cluster migrations (e.g. the Completely Fair Scheduler (CFS) of
the Linux kernel). They are therefore transparent to the application developer,
and the online overhead generated is smaller than the inter-cluster migration one.
Finally, as the scheduler presented in this work is partly based on a template
schedule that is repeated over time, it can be classified as an offline scheduling
algorithm. On the contrary, online scheduling defines algorithms whose decisions
are taken dynamically during the system lifetime to react to unforeseeable events
(e.g. when jobs complete before their worst-case execution time).

1.2 State of the art

Partitioned scheduling on heterogeneous platforms is a NP-hard problem and has
been studied in several works [10,38,13]. Global scheduling on heterogeneous plat-
forms, also known as unrelated multiprocessor platforms, was initiated by the
seminal paper [9]. Since then, the global scheduling on unrelated platforms has re-
ceived less attention. This may be due to the fact that hardware platforms generally
do not support inter-cluster migration of tasks, that may require a full software
support. However, global scheduling allows theoretically a full utilisation of the

4 Antoine Bertout et al.

platform, moreover when neglecting migration cost, the problem of feasibility on
unrelated platforms can be addressed in polynomial time [9,30] for independent,
implicit deadlines (see Section 2.1 for a formal definition), tasks scheduled globally.
In the literature, e.g. in [9,19], the global scheduling upon unrelated platforms is
performed in two phases. All the computations are done offline. First, a workload
assignment matrix is computed. The workload assignment decides which fraction
of processing capacity of a core has to be assigned to each task. Secondly, giving
this workload assignment, a template schedule is built. The template schedule is
then directly used online.

Recently, MPSoCs with unrelated clusters sharing the same ISA, like the ARM
big.LITTLE®architecture, have motivated some work [19] on the optimal global
scheduling. Indeed, sharing the same ISA makes the inter-cluster migrations more
realistic. In the latter work, the authors adopt a novel strategy, taking into account
the hierarchical nature of the set of clusters. They first focus on the assignment
of tasks to clusters, and then on cores, which limits the number of inter-cluster
migrations. Nevertheless, this method, called Hetero-Split, is limited to a plat-
form with only two types of clusters. These two-types platforms also motivated
clustered approach with intra-migration like in [36]. New platforms, integrating
more than two types of clusters like the Mediatek Helio X20®are developed. This
MPSoC includes three clusters (two fast Cortex-A72®cores, four middle speed
Cortex-A53®cores and four slow Cortex-A53®cores) sharing the same ISA with
a hardware support for inter-cluster migration. This revives interest in the global
scheduling of unrelated clusters.

1.3 Contributions and organisation

This paper is an extended version of [17] published in the RTNS 2020 conference.
Its content has been enriched on the following points.

– We added experiments on several real heterogeneous MPSoCs showing that
the order of magnitude of the time needed for a task to migrate between two
cores of the same cluster is smaller than the time required for a task to mi-
grate between two different clusters. These experiments justify the hypothesis
that considering a hierarchy of core clusters has many advantages compared
to considering a flat platform model, like the seminal work on unrelated mul-
tiprocessor platforms do.

– We conducted experiments on real heterogeneous MPSoCs to show that, while
the uniform model (processors are characterised by a uniform speed, acting as
a global accelerator or decelerator of execution time) does not apply to cur-
rent technology for several reasons (different instruction sets, impact of cache
memory, impact of front side bus speed, etc.), an intermediate platform model
between uniform and unrelated is a realistic compromise. This model, that we
call consistent, simply states that some processors are faster than others, but
allows the speed gain to be task dependent rather than global.

– We have included additional experiments to compare the proposed methods
among each-other as well as with the state of the art methods.

In this work, we introduce a new model with a two-levels hierarchical platform:
a platform has a set of heterogeneous clusters, each cluster is composed by a set of

Workload assignment on unrelated clustered platforms 5

identical cores. To the best of our knowledge, this hierarchical platform model has
only been addressed in the context of optimal global scheduling with two types
of clusters. We start with practical considerations and physical experiments on
heterogeneous MPSoCs platforms showing that this hierarchical model is closer to
the reality than the flat model. We then define the notion of consistent platforms,
expressing that some clusters are faster than others, but that the speed ratio is not
global (unlike the uniform model) but rather per task. We measure the execution
time of various tasks on a heterogeneous MPSoC to show that this assumption
is realistic on some real platforms. Then, we take advantage of the hierarchical
model by proposing several new workload assignment methods derived from for-
mer methods applied on flat models. We show that a system is feasible if, and only
if, a workload assignment exists. The proof is an elegant mathematical formulation
inspired from [30], extending the proof given in [9] for the flat model to both the
flat and hierarchical model. These new methods are then tested by simulation on
synthetic tasks sets, showing their advantages over the existing methods. These
workload assignment methods show a reduced amount of inter-cluster migrations
thus improving their applicability. Finally, we discuss the gap between the cur-
rent theoretical approaches to schedule tasks on heterogeneous platforms and the
reality.

Section 2 introduces the task and platform model which is justified in Sec-
tion 3 by practical experiments on a heterogeneous MPSoC. Section 4 presents
the new workload assignment methods. We then evaluate the performances of the
new methods in Section 5, and discuss the practicability of global scheduling on
heterogeneous platforms in Section 6.

2 Task and platform model

2.1 Task model

The workload is modelled by a set of n periodic tasks Γ
.
= {τi | i = 1, . . . , n} (the

symbol
.
= means is equal by definition to). Each task τi is defined by two parameters

(Ci, Ti) where Ci is the worst-case execution time on a fictional processor capable to
execute it —chosen arbitrarily—, and Ti is the release period. Each task releases a
job every period Ti. The first job of a task is released at t = 0, the kth at t = k×Ti
and has to complete by (k+1)×Ti (tasks are said to have implicit deadlines). The
utilisation of a task τi is ui

.
= Ci

Ti
.

2.2 Platform model

An unrelated multicore platform is modelled by a set Π of ṁ clusters Π
.
= {π̇h |

h = 1, . . . , ṁ}. Each cluster π̇h contains ṁh identical cores π̇h
.
= {πh1

, . . . , πhṁh
}. A

job of τi that is executed on a core πhk
for t time units will progress by ṙi,h×t units

of its execution time. Within the cluster π̇h, every core has the same processing
rate ṙi,h for each task τi. If ṙi,h = 0, then τi cannot be executed on the cluster π̇h,
this couple task/cluster is said to be incompatible. A job of τi is completed when
its progress reaches its worst-case execution time (WCET) Ci.

6 Antoine Bertout et al.

τi ṙi,1 ṙi,2
τ1 2 1
τ2 2 1

(a) Uniform clusters

τi ṙi,1 ṙi,2
τ1 4 3
τ2 2 1

(b) Consistent clusters

τi ṙi,1 ṙi,2
τ1 4 2
τ2 1 3

(c) Unrelated clusters

Table 1: Platform classification example

2.3 Consistent clusters

The unrelated model captures the heterogeneity of platforms made of different
types of processing units (e.g. CPU, GPU or NPU). In this setting a task τ1 may
be executed faster on a cluster (or processor) π̇1 than a task τ2, that in turn
may be executed faster than τ1 on a cluster π̇2. When a task set is exclusively
executed on a unique type of processing unit (e.g. CPU clusters with different
micro-architecture), there may be a particular setting of the unrelated model that
better reflects this kind of platform. In this case, there is still a speed by cluster and
task but some clusters are always faster than the others. This particular setting,
here named consistent, is more general than the uniform multiprocessor model
where some clusters are faster than the others, but always proportionally to their
speed.

This section provides a formalisation of the notion of consistent clusters. First,
to be consistent the platform must have a relative order on the clusters.

Definition 1 (Faster cluster) A cluster π̇k is faster than cluster π̇` (π̇k ≥ π̇`) if

∀1 ≤ i ≤ n ṙi,k ≥ ṙi,`

Now we introduce a tie-breaker to have the notion of the fastest cluster:

Definition 2 (Fastest cluster) π̇k is defined to be the fastest processor if k is the
smallest index such that ∀1 ≤ ` ≤ m π̇k ≥ π̇`

Without loss of generality (by reordering the clusters) we can assume that π̇1
is the fastest cluster. By repeating the same definition on the remaining clusters
and without loss of generality we can assume, if the platform is consistent, that
π̇1 > π̇2 > · · · > π̇m, i.e., we have a total order on the clusters.

Scheduling tasks on consistent clusters is a particular case of the unrelated
setting but is more general than the uniform setting.

The Table 1 illustrates this classification with three examples of platform.
In example 1(a), cluster π̇1 is twice faster than cluster π̇2 for every task, the
clusters are uniform. The clusters are consistent in example 1(b) because π̇1 is
faster than π̇2 but non-uniformly for every task. The cluster speeds are not globally
comparable in example 1(c), the clusters are unrelated.

2.4 Assumptions

In this paper, we make the following assumptions. We consider the time as con-
tinuous, and that a job may be preempted at any time (fluid schedule). The tasks
are sequential so they cannot be executed in parallel. Preemptions and migrations
are performed at no extra cost. Also, a task set is feasible on a given platform if,
and only if, there exists a schedule where every job of every task can be completed
by its deadline.

Workload assignment on unrelated clustered platforms 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π̇1 τ1 τ1 τ1 τ1

π̇2 τ1

Fig. 2: One task in an offline global schedule

3 Experimental justification of the platform model

In this section, we investigate the migration cost of tasks within and between
clusters (intra- and inter-cluster migrations). First, we investigate how inter-cluster
migrations may be done in practice (Section 3.1) and estimate the possible cost
of such migrations by measuring the communication time needed to share data.
Then, in Section 3.2, we compare the results against intra-cluster migrations in a
heterogeneous MPSoC to demonstrate the interest of the clustered model. Finally,
by measuring the execution time of task upon different CPU clusters (Section 3.3),
we show that the consistent setting fits well to actual heterogeneous MPSoCs.

Notice that the presented methods are deployed to give a reasonable approxi-
mation of the impact of migrations in a heterogeneous platform. It does not aim
at providing fined-grained and precise measurement techniques.

3.1 Soft-migration points between heterogeneous clusters

Consider on Figure 2 some offline schedule that is to be executed on any two cores
belonging to different clusters. This figure represents the execution of three jobs
of a single task τ1 of period T1 = 5. The complete schedule is repeated every 15
time units and τ1 is first activated at t = 0. The first two jobs are completely
executed on cluster π̇1. However, the third job starts its execution on cluster π̇1, is
half executed, and then migrates to finish its execution on π̇2. Given the Figure 2,
the cores of π̇2 are three times slower for executing task τ1, than the cores of π̇1.
Indeed, if the task τ1 is executed exclusively on π̇1 the cumulative duration before
completion is 2 time units. But if the task τ1 is executed during one time unit on
π̇1 we see that the remaining computation time on π̇2 is three time units, while
the remaining computation time on π̇1 is one time units. The fourth job will be
executed back on π̇1, therefore the task has to migrate back at the end of the
execution of the job on π̇2.

Within a cluster, a multicore OS manages the tasks intra-cluster migrations
transparently. Nevertheless, inter-cluster migration is, at least on current technol-
ogy present in heterogeneous MPSoCs1, not supported and would require an effort
from the programmer.

Somehow, the compiler would have to generate different codes depending on
the cores, not only as a matter of instruction sets, but also as a matter of com-
munication and control. This is illustrated on Listing 1, using a pseudo-C++ like
code, using a POSIX-inspired API.

1 Except for heterogenous platform sharing the same instruction set architecture like the
ARM big.LITTLE.

8 Antoine Bertout et al.

1 Task Original_tau_1 {

2 Local variables declarations

3 Initialization code

4 for (;;) {

5 wait activation

6 First&Second half of the code

7 }

8 }

9 Task tau_1_on_cluster1 {

10 static unsigned count =0;

11 static bool first=true;

12 Local variables declarations

13 Initialization code

14 for (;;) {

15 wait activation

16 if (! first && count ==0) {

17 // migration from cluster2 to cluster1

18 deserialize(wait_AMP_msg () ,&local vars);

19 }

20 first=false;

21 First half of the code

22 if (count ==2) {

23 // migration from cluster1 to cluster2

24 send_AMP_msg(serialize(local vars));

25 } else {

26 Second half of the code

27 count =(count +1)%3;

28 }

29 }

30 }

31 Task tau_1_on_cluster2 {

32 static unsigned count;

33 Local variables declarations

34 for (;;) {

35 // migration from cluster1 to cluster2

36 deserialize(wait_AMP_msg () ,&local vars);

37 Second half of the code

38 count=(count +1)%3;

39 // migration from cluster2 to cluster1

40 send_AMP_msg(serialize(local vars));

41 }

42 }

Listing 1: Implementation of soft-migration points

The first task is the original task, that would remain the same if the task
was always executed on the same cluster. The second task is the task executed

Workload assignment on unrelated clustered platforms 9

on cluster π̇1, and the third is the task executed on cluster π̇2, in order for the
schedule to follow pattern of Figure 2. Every three jobs, the task is migrating after
half of its computation to π̇2, and every time a job is executed on π̇2, it will migrate
back at the end to π̇1. In the Listing 1, the migration is performed as follows: local
variables of the tasks are serialized2 in a byte array, that is sent from a cluster to
another, using the available inter-cluster communication protocol.

In order to estimate inter-cluster migration duration on actual platforms, we
therefore measured how much time it takes from a cluster to transfer 512 bytes
of data (that could correspond to the serialization of a middle-size task’s local
variables) and the control to another cluster. The experiments are done in both
directions, because as it can be seen on the results, they are far from identical.

AMP platforms. We consider two different heterogeneous MPSoCs, the i.MX 8®,
and the STM32MP157C-DK2®from STMicroelectronics (STM32MP1 in the se-
quel). Both platforms are ARM based architectures, composed of a cluster of high
performance, fast Cortex-A®cores, and a single Cortex-M®microcontroller.

AMP messaging protocol. Most of the heterogeneous platforms provide an imple-
mentation of AMP messaging protocol. Their processors communicate through an
inter-processor communication controller providing interrupt signalling and mes-
saging status flags to manage data exchange through a shared memory. The sender
core sets a status flag to occupied, writes the message to the shared memory, then
generates an interrupt on the receiving core, which reads the message, and then
clears the status flag. The protocol’s firmware on the microcontroller’s side is a
library to be included, but on the Linux side we use a dedicated driver to receive
or send messages, using standard read/write system calls. In the following experi-
ment, we used RPMsg and RPMsg-Lite [2] frameworks on STM32MP1 and i.MX
8, respectively. Both frameworks are actually the only available implementations
of an AMP messaging protocol on the given platforms.

AMP measurement technique. The method employed is proposed in [26]. It is based
on a common clock on the board: the sender triggers it when calling the AMP send
function, and then polls its value until it is stopped. The second core, as soon as it
receives an AMP message, stops the clock. Thus, the first core obtains at its next
poll of the clock value the elapsed time, and exports the values. Each measurement
represents in an order of magnitude, the communication time in addition to the
interference with other Linux background threads in the normal state.

Results. The measurements are displayed in Figure 3 the duration for 512 bytes to
pass between core clusters as an AMP message. 512 bytes represents the maximum
size of the AMP buffer in the protocol’s driver (we observed that the size of the
message has a little impact on the measurement time). We made 50,000 measures
represented in four box plots. The fast cluster is running Linux, patched with
PREEMPT RT, with a fixed operating frequency, while the microcontroller is
used bare metal. Each box plot represents the measures on one platform, either

2 In our context, serialization handles potential endianness differences, memory alignment
depending on underlying architecture and compilation options, or differences in type represen-
tation

10 Antoine Bertout et al.

imx8 STM32MP1

1.2

1.4

1.6

1.8

·104

ex
ec

u
ti

o
n

ti
m

e
d

is
tr

ib
u

ti
o
n

(n
s)

Linux to M4

imx8 STM32MP1

4

5

6

7

·104

ex
ec

u
ti

o
n

ti
m

e
d

is
tr

ib
u
ti

o
n

(n
s)

M4 to Linux

Fig. 3: Inter-cluster communication time for 512 bytes

i.MX8 i.MX8-Stress ST ST-Stress

1,000

1,500

2,000

ex
ec

u
ti

o
n

ti
m

e
d

is
tr

ib
u

ti
o
n

(n
s)

Migration cost in nanoseconds

i.MX8 i.MX8-Stress ST ST-Stress

800

1,000

1,200

ex
ec

u
ti

o
n

ti
m

e
d

is
tr

ib
u

ti
o
n

(c
y
cl

es
)

Migration cost in cycles

Fig. 4: Intra-cluster migration time

from the fast cluster to the slow cluster (left hand graph), or from the slow cluster
to the fast cluster. For example, the leftmost box plot states that in order for 512
bytes to be transferred from the fast cluster to the slow cluster on an i.MX 8, we
need between 11.5 and 18 microseconds (µs), with an median of 14.1 µs, a lower
quartile of 13.3 and an upper quartile of 15.5 µs. The other platform showed a less
variable duration between duration between 12 and 14 µs. This is not to be used
to compare both platforms, because it relies on the AMP library implementation.
The communication between the microcontroller and the Linux operated cluster
is much longer, since on one platform it takes from 30 to 55 µs, and around 70 µs
on the other platform.

3.2 Cost of inter- versus intra-cluster migration

To be able to compare the order of magnitude inter- versus intra-cluster migration,
we setup some experiments on the same platforms to measure the (intra-cluster)
migration time within the Linux cluster.

Linux side configurations. We set a fixed CPU frequency, which avoids any fre-
quency variation due to the processor’s load, and we used the highest priority
with the sched fifo scheduling policy.

Workload assignment on unrelated clustered platforms 11

Measurement technique. The measurement method is described in [26] and based
on the CLOCK MONOTONIC POSIX clock, which is a system wide clock [1].
The execution time by is simply the clock difference between before and after a
migration.

Results. We measured 10,000 times the migration time between two cores, while
stressing the environment or not. Stressing the environment consists in creating
50 low priority processes communicating through sockets to keep the cores busy.
On the left hand side of Figure 4, we can see that on the i.MX 8, the intra-cluster
migration time is under 1 µs, while for the STM32MP1, it is always under 2 µs.

This shows that the cost of an inter-cluster migration is, at least, between 10 and

55 times longer on i.MX 8, and between 6 and 35 times longer on STM32MP1
than the cost of an intra-cluster migration. This is showing how useful it can be
to differentiate both types of migrations on the platform model.

In the sequel, while we showed experimentally that migration costs exist, we
will still assume a zero-cost migration of preemption, as this hypothesis is manda-
tory to find a polynomial time feasibility test. Indeed, feasibility is NP-hard in the
strong sense for a single-core processor platform as soon as preemption delay is
taken into account [34,33]. Nevertheless, we will keep in mind that it is better to
favor intra-cluster migration while avoiding if possible inter-cluster migration.

3.3 Variability of the execution time of task in a heterogeneous MPSoC

In this section, we measure the execution time of six different test programs to
observe the behaviour of a heterogeneous MPSoC platforms, the STM32MP1.
Computing a WCET on such platform is out of the scope of this paper, here we
consider the order of magnitude of the measured execution times to compare the
different results. We measured 10 000 executions on a single core of the Cortex-
A®, and 1 000 executions on the Cortex-M®since it shows much less variation in
execution time.

In the related figures, the measure distribution is depicted using box plots. We
here remove the extreme values (outliers) from the data to improve the general
trend visualisation using the following standardised values: any value that was 1.5
lower or larger than the interquartile range —difference between upper and lower
quartiles— was discarded. It contains, from bottom to top: the lowest value, the
lower quartile, the median quartile, the upper quartile and the highest value. Notice
that the percentage of outliers is generally below 0,1% and reaches exceptionally
5% for the stressed programs.

The test programs description follows and their execution times distributions
are illustrated in Figure 5.

– BigNum: uses the BigNum library [28], which implements operations on large
integers represented as arrays. Depending on its parameters, it may be com-
putationally intensive. Our test BigNum1 executes 5 additions, BigNum2 exe-
cutes 8 divisions, and BigNum3 is more computationally intensive as it executes
12 additions and multiplications. When the Linux system is stressed, we ob-
serve major variations of the execution times. For example, the Tukey box for
BigNum1 ranges from around 37.2 microseconds (µs) to 37.4 µs without stress,

12 Antoine Bertout et al.

when it can be measured up to 38.6 µs when stressed. The behaviour shows
much less variation on the bare metal Cortex-M®core, but is close to 4 times
slower than on the Cortex-A®core. The same ratio —approximately 4— can
be observed for the three variants of BigNum.

– n-body: computes the movement of planets using a symplectic integrator [29].
It starts with a short initialisation phase and then does intensive floating point
operations to determine the planet movements. For this program, we observe
a ratio greater than 10 between the execution times on the A core compared
to the execution on the M core. This is probably due to the presence of a Co-
Processor ARM Neon®on the fast cores. This ratio is getting close to 15 for
the 50 iterations of this program, which contains more floating point compu-
tationally intensive operations.

– FFT: a Fast Fourier Transform, computationally intensive with floating point
operations. Similarly to Nbody-50 moves, this task is executed around 15 times
faster on a Cortex-A®than on a Cortex-M®.

These samples illustrate the fact that the acceleration factor of a processor is
not global on heterogeneous MPSoCs platforms, but rather based on the task usage
of specific hardware parts of the processor (like here, a FPU). Usually, a faster
processor tends to be better equipped in supplementary hardware co-processors
than a slower processor, enforcing the fact that most actual heterogeneous MPSoCs
can be called consistent on most types of tasks.

4 Workload assignment methods

In this section, we focus on different methods to assign the workload of tasks to
a platform. As far as we know, every optimal scheduling method of the litera-
ture [38] for unrelated multiprocessor platforms (from real-time [9] or operational
research [30] areas), starts with a workload assignment phase (made offline). From
an input made of tasks parameters and platform rates, this phase decides the frac-
tion of processing capacity of each core assigned to tasks. The tasks have to be
completed within their period thanks to this assignment, without overloading the
cores. With the exception of [19], presented in this section to serve as a compar-
ison for the experiments of Section 5, most of the existing works have expressed
the workload assignment phase as a LP problem. A Linear Programming (LP)
problem can be solved in polynomial time [27].

The solution of the LP problem is a cluster workload assignment matrix X =
[xi,h]h=1,...,ṁ

i=1,...,n where xi,h is the fraction of a core in the cluster π̇h used by a task
τi.

As shown experimentally in Section 3, inter-cluster migrations are more costly
in terms of time overhead and task programming effort than intra-cluster migra-
tions. We quantify the impact of such migrations by the definition of the presence

of a task on a cluster, introduced in [9]. Formally, a task τi has a presence on a
cluster π̇h iff xi,h > 0. The number of presences Ṗri corresponds to the number of

times where τi has a presence in a cluster: Ṗri
.
= |{xi,h > 0 | h = 1, . . . , ṁ}|

A task τi will have to migrate between clusters if, and only if, Ṗri > 1. There-
fore, any presence greater than one is a presence in excess that will generate at
least one inter-cluster migration at runtime.

Workload assignment on unrelated clustered platforms 13

A A stressed M

3.7

3.75

3.8

3.85

3.9

3.95
·104

ex
ec

u
ti

o
n

ti
m

e
d

is
tr

ib
u

ti
o
n

(n
s)

-
A

sc
a
le

BigNum1

1.4

1.4

1.4

1.4

1.4
·105

ex
ec

u
ti

o
n

ti
m

e
d

is
tr

ib
u

ti
o
n

(n
s)

-
M

sc
a
le

A A stressed M
3.75

3.8

3.85

3.9

3.95

4
·106

ex
ec

u
ti

o
n

ti
m

e
d

is
tr

ib
u

ti
o
n

(n
s)

-
A

sc
a
le

BigNum2

1.6

1.6

1.6

1.6

1.6

·107
ex

ec
u

ti
o
n

ti
m

e
d

is
tr

ib
u

ti
o
n

(n
s)

-
M

sc
a
le

A A stressed M

8.15

8.2

8.25

·106

ex
ec

u
ti

o
n

ti
m

e
d

is
tr

ib
u

ti
o
n

(n
s)

-
A

sc
a
le

BigNum3

3.48

3.48

·107

ex
ec

u
ti

o
n

ti
m

e
d

is
tr

ib
u

ti
o
n

(n
s)

-
M

sc
a
le

A A stressed M

1.87

1.88

1.88
·105

ex
ec

u
ti

o
n

ti
m

e
d
is

tr
ib

u
ti

o
n

(n
s)

-
A

sc
a
le

FFT

2

2.2

2.4

2.6

2.8
·106

ex
ec

u
ti

o
n

ti
m

e
d

is
tr

ib
u

ti
o
n

(n
s)

-
M

sc
a
le

A A stressed M

1,550

1,600

1,650
ex

ec
u

ti
o
n

ti
m

e
d

is
tr

ib
u

ti
o
n

(n
s)

-
A

sc
a
le

Nbody-init

1.4

1.6

1.8

·104

ex
ec

u
ti

o
n

ti
m

e
d

is
tr

ib
u

ti
o
n

(n
s)

-
M

sc
a
le

A A stressed M

3.2

3.4

3.6

3.8

4
·105

ex
ec

u
ti

o
n

ti
m

e
d

is
tr

ib
u

ti
o
n

(n
s)

-
A

sc
a
le

Nbody-50

1.02

1.03

1.04

1.05

1.06

·107

ex
ec

u
ti

o
n

ti
m

e
d

is
tr

ib
u

ti
o
n

(n
s)

-
M

sc
a
le

Fig. 5: Execution time distribution of different programs

In this section, we first formulate the cluster workload assignment as a LP
problem and show that it is an exact feasibility test. This formulation extends the
seminal LP problem of [9]. Then, we present a Mixed-Integer Linear Programming
(MILP) formulation minimising the number of presences of tasks on clusters. Fi-
nally, we present succinctly a method from the literature limited to two types of
clusters that will be experimentally compared to the other LP-based solutions.

4.1 Workload assignment as a LP problem

Assigning the workload of tasks on clusters can be expressed using three sets of
constraints, defined in LP-Cluster:

14 Antoine Bertout et al.

LP 1 (LP-Cluster).

ṁ∑
h=1

xi,h × ṙi,h = ui i = 1, 2, . . . , n (1)

ṁ∑
h=1

xi,h ≤ 1 i = 1, 2, . . . , n (2)

n∑
i=1

xi,h ≤ ṁh h = 1, 2, . . . , ṁ (3)

objective constraint: any

Equation 1 ensures that enough processing capacity is allocated to each task by
reserving a processing capacity fraction on each cluster. Equation 2 constrains the
total capacity fraction allocated to a task to be less than or equal to one. This
ensures that the task can be scheduled without being executed on two cores at the
same time (see Theorem 1). Equation 3 states that the used capacity of a cluster
π̇h is less than or equal to its total capacity, which is the capacity of its ṁh cores.

If the LP-Cluster is successfully solved, the xi,h represent a successful cluster
workload assignment (or assignment of tasks on clusters).

Theorem 1 A system is feasible on the platform if, and only if, LP-Cluster has a

solution.

Proof. First we prove that (i) if there is no solution to the LP, then the system is
not feasible. This will occur if Equation 2 or Equation 3 are not satisfied. In the
first case, there would be at least one task τi such that

∑ṁ
h=1 xi,h > 1. It means

that τi must be executed in parallel which is forbidden in our model of sequential
tasks. In the second case, a cluster π̇h would need a processing capacity higher
than its total capacity ṁh.

Now we prove that (ii) finding a solution to this LP problem guarantees that the
system is feasible. The proof sketch is depicted in Figure 6. The cluster workload
assignment matrix X is of dimension n × ṁ. Indeed, by construction of the LP
problem, it has n rows with a sum of coefficients less than one, and ṁ columns
with a sum of coefficients less than ṁh, for each column h = 1, . . . , ṁ. First,
we replace each column h, corresponding to the task assignment to cluster π̇h
by ṁh columns, one for each core, such that the sum of the coefficients on each
of the columns is not greater than one. For the sake of the proof, we simply
consider, on each row i of the new columns k = 1, . . . , ṁh, x′i,hk

.
=

xi,h

ṁh
, such

that the total capacity fraction allocated to each task on each cluster is evenly
distributed on each of its cores. In this manner, we obtain a workload assignment
matrix on the cores Xc of dimension n ×M , where M

.
=
∑ṁ

h=1 ṁh is the total
number of cores. On each column, x′i,hk

.
=

xi,h

ṁh
represents the capacity fraction of

core πhk
allocated to task τi. By construction, since originally the used capacity

of cluster π̇h to tasks was
∑n

i=1 xi,h ≤ ṁh, we have on each column for πjk ,∑n
i=1 x

′
i,hk
≤ 1 (see Xc on Figure 6). From this cluster cores workload assignment

matrix, we can easily create a bistochastic matrix B of size (n + M) × (n + M),
as done in [30]. A bistochastic (or doubly stochastic) matrix is a square matrix of
non-negative real numbers, having each of its rows and columns summing to 1.

Workload assignment on unrelated clustered platforms 15

x1,1 . . . x1,ṁ

.

..
.
..

...
...

xn,1 . . . xn,ṁ





π̇1 . . . π̇ṁ

τ1

..

.

...

τn

≤ ṁ1 . . . ≤ ṁṁ

≤ 1

..

.

...

≤ 1

X =

Cluster to cores extension

Xc =

x1,1/ṁ1 . . . x1,1/ṁ1 x1,2/ṁ2 . . . x1,2/ṁ2 · · · · · · x1,ṁ/ṁṁ

..

.
..
.

..

.
..
.

..

.

...
...

...
...

...

xn,1/ṁ1 . . . xn,1/ṁ1 xn,2/ṁ2 . . . xn,2/ṁ2 · · · · · · xn,ṁ/ṁṁ





π11 . . . π1ṁ1
π21 · · · π2ṁ2 · · · · · · πṁṁṁ

τ1

..

.

...

τn

≤ 1 . ≤ 1

≤ 1

...

...

≤ 1

Fig. 6: Proof sketch for Theorem 1

Formally, ∀i = 1, . . . , n :
∑n+M

h=1 Bi,h = 1 and ∀h = 1, . . . ,M :
∑n+M

i=1 Bi,h = 1. B is
constructed as follows:

Xc Bn

BM Xt
c


B

.
=

Bn is a n×n diagonal matrix, such that Bn(i, i)
.
= 1−

∑ṁ
h=1

∑ṁh

k=1 x
′
i,hk
∀i. The

diagonal coefficients of Bn correspond to the laxity of the task τi, i.e. the fraction
of time during which τi is left idle. BM is a M ×M diagonal matrix, such that
BM (hk, hk)

.
= 1 −

∑n
i=1 x

′
i,hk
∀hk. The diagonal coefficients of BM correspond to

the slack of the core πhk
, i.e. the fraction of time during which πhk

is left idle. Xt
c

is the transpose of the core workload assignment matrix Xc, and has a dimension
M × n. By construction, we obtain a square bistochastic matrix B of dimension
(n+M)× (n+M) expressing the fraction of each core that has to be allocated to
each task, as well as the slack of the cores and the laxity of the tasks. Following
the Birkhoff-von Neumann (BvN) theorem, such a matrix can be decomposed into
a convex combination of permutation matrices A

.
= δ1P1 + δ2P2 + · · ·+ δkPk [30],

16 Antoine Bertout et al.

where δi is a real coefficient ∈ (0, 1],
∑k

i=1 δi = 1, and Pi is a permutation matrix.
A permutation matrix is a binary square matrix where there is exactly one 1 on
each row and each column. This can be seen as a matching between tasks (rows)
and cores (columns). Indeed, one and only one coefficient Pi(h, k) = 1 means that
task on column k will be assigned to the core of the row h for a duration δi. The
assignment matrix Xc states that assigning a ratio of x′i,hk

of core πhk
to task τi

during each of its periods ensures that its jobs will be completed. However, we
need to ensure that a job is never executed on two different cores at the same
time.

For each time window [t1, tk), between two successive releases at times t1 and
tk (or deadlines since tasks have implicit deadlines), we can use the BvN decom-
position to create such a schedule. We use the matching P1 on the time window
[t1, δ1 × (tk − t1)), by definition of a permutation matrix, this matching ensures
that a task is assigned to at most one core in this time windows. Similarly, we can
use the following permutation matrices obtained in the BvN decomposition, each
permutation matrix Pi covering a sub-interval of duration δi × (tk − t1). Since by

the BvN theorem,
∑k

i=1 δi = 1, we can completely schedule every task on the in-
terval [t1, tk), ensuring that a task is never executed on more than one core at the
same time. This one time unit schedule can then be stretched to fit into intervals
of time delimited by successive task release dates. This technique is also referred
to as deadline partitioning [32].

4.2 About linear algebra for scheduling purposes

Theorem 1 shows that finding a solution to LP-Cluster asserts the feasibility of the
system. Moreover, it shows that building a schedule from a workload assignment
matrix is exactly equivalent to finding a BvN decomposition of this matrix. This
result indicates that linear algebra results could be used to improve the schedule
construction.

One may note that minimising the number of permutation matrices in a BvN
decomposition is similar to minimising the number of scheduling decisions. Indeed,
each different permutation matrix corresponds to a different schedule decision (i.e.
which jobs are executed at a given instant, and on which cores). Taking schedule
decisions lead to preemptions and/or migrations (both inter- or intra-cluster).
Therefore, minimising the number of scheduling points may be a solution to reduce
the number of preemption and migrations. This is an example of optimisation of
the template schedule construction [9,19,16].

The next property concerns the complexity of the BvN decomposition:

Theorem 2 (Dufossé 2016 [24]) The problem of deciding if there is a BvN decompo-

sition of a given doubly stochastic matrix with k permutation matrices is NP-complete

in the strong sense.

Since the decision problem is NP-complete in the strong sense, the optimisation
problem of minimising the number of permutation matrices in a BvN decompo-
sition is NP-hard in the strong sense. Thus, optimising the number of scheduling
decisions cannot be done efficiently.

In the remainder, we focus only on modifying the workload assignment to re-
duce the number of preemptions and migrations. However, using linear algebra

Workload assignment on unrelated clustered platforms 17

techniques to sub-optimally reduce the number of scheduling decisions will be ex-
plored in future works.

4.3 LP-Feas and LP-CFeas

In [9], author presents a LP-Feas, a LP model for assigning the workload on an
unrelated real-time multiprocessor platform. This work was primarily focused on
feasibility, and does not aim at minimising the number of presences. It is very close
to the LP formulation of the makespan minimisation in job shop scheduling on
unrelated single-core processors given in [30]. In that work, the model is using a flat

platform model. To fit our model notations, we consider a hierarchical hardware
with one core per cluster, i.e. ∀h, ṁh = 1. The different LPs are named LP-α
(where α is the name of the LP) for LP addressing the flat platform model (i.e.,
models not considering clustered), while LP-Cα is used to qualify a LP variant
that considers the hierarchical model.

LP 2 (LP-Feas [9]). The workload assignment is solution of the following LP:

ṁ∑
h=1

xi,h × ṙi,h = ui i = 1, 2, . . . , n (4)

ṁ∑
h=1

xi,h ≤ ` i = 1, 2, . . . , n (5)

n∑
i=1

xi,h ≤ ` h = 1, 2, . . . , ṁ (6)

Minimise makespan objective: Minimise `, the system is feasible if, and only if,
` ≤ 1.

The immediate extension of LP-Feas to clusters is the following:

LP 3 (LP-CFeas). The workload assignment is solution of the following LP:

ṁ∑
h=1

xi,h × ṙi,h = ui i = 1, 2, . . . , n (7)

ṁ∑
h=1

xi,h ≤ ` i = 1, 2, . . . , n (8)

n∑
i=1

xi,h ≤ ṁh × ` h = 1, 2, . . . , ṁ (9)

Minimise makespan objective: Minimise `, the system is feasible if, and only if,
` ≤ 1.

LP-Feas and LP-CFeas differ in Equations 6 and 9: since on a unrelated mul-
ticore platform, a cluster π̇h has ṁh cores, a total capacity of ṁh can be allocated
to tasks. It is straightforward that the condition ` ≤ 1 constrains solutions of
LP-CFeas to be solutions of LP-Cluster. Therefore by Theroem 1, a solution of
LP-CFeas with ` ≤ 1 can be used to build a feasible schedule.

18 Antoine Bertout et al.

0 1 2 3 4 5 6 7 8 9 10

π1 τ1 τ2

π2 τ2 τ1

(a) LP-CFeas
0 1 2 3 4 5 6 7 8 9 10

π1 τ1 τ2

π2 idle

(b) LP-CLoad

Fig. 7: Rectangle schedule computed from LP-CFeas versus schedule favouring fast
cores utilisation computed from LP-Cload

4.4 LP-Load and LP-CLoad

LP-Feas and LP-CFeas tend to reduce the makespan of the schedule that will be
stretched between successive releases. As an example, let two tasks be scheduled
on two very different cores: one being ten times faster than the other one for all the
tasks. Consider the system of two tasks Γ = {τ1, τ2}, with both WCET given by
C1 = C2 = 5 and both periods given by T1 = T2 = 10. The platform is composed
of two clusters of one core each, with Π = {π̇1, π̇2}, both clusters having only
one core ṁ1 = ṁ2 = 1, and having respective rates ṙ1,1 = ṙ2,1 = 10 for π̇1, and
ṙ1,2 = ṙ2,2 = 1 for π̇2. The workload assignment matrix computed by LP-CFeas
(or equivalently LP-Feas since clusters have one core) is given by XLP-CFeas =[
5/11 5/11
5/11 5/11

]
(5/11 ≈ 0.4545). This would lead to a schedule repeated between

every successive release (which is every ten time units in our simple example since
both tasks have a period of 10), as shown in Figure 7(a).

When considering the number of presences of tasks on clusters, a more interest-
ing workload assignment would favour a high utilisation, or load, on faster cores:

XLP-CLoad =

[
1/2 1/2
0 0

]
. Such workload assignment could lead to a schedule such

as Figure 7(b), which does not produce any inter-cluster migration. LP-CLoad is
a LP formulation with the same constraints as LP-Cluster, with the objective of
minimising the used capacity of the system. On the unrelated multicore platforms
problem, it is defined for LP-Cluster as: LP-CLoad: Minimise

∑n
i=1

∑ṁ
h=1 xi,h.

LP-CLoad can be used in the context of a flat platform model. To do so, one
simply has to assume that each core is a cluster of size one, i.e. ṁh = 1 for every
cluster π̇h.

4.5 Minimal number of presences: ILP-CMig

Even if non polynomial, an optimal method minimising the number of presences
of tasks on clusters can be useful. Indeed, a system designer may prefer spending
a couple of hours waiting for the assignment to be computed rather than spending
development time and facing the complexity to implement an inter-cluster migra-
tion. Since we are working at the cluster level, the size of the problem, at least in
the number of clusters, can be as small as two or three in practice. We propose
a Mixed Integer Linear Programming (MILP) formulation called ILP-CMig, based
on the LP-Cluster. In addition, we introduce a boolean variable bi,h. Variable bi,h
is 1 if task τi is present on cluster π̇h, and 0 otherwise. The objective is to minimise
the total number of presences.

Workload assignment on unrelated clustered platforms 19

LP 4 (ILP-CMig). The workload assignment is solution of LP-Cluster (Equations 1,

2, 3) with the following additional constraints:

bi,h ∈ {0, 1} i = 1, . . . , n;h = 1, . . . , ṁ (10)

xi,h ≤ bi,h i = 1, . . . , n;h = 1, . . . , ṁ (11)

bi,h < 1 + xi,h i = 1, . . . , n;h = 1, . . . , ṁ (12)

Minimise presence objective: Minimise
∑n

i

∑ṁ
h bi,h

The non-clustered version ILP-Mig has the same set of constraints than LP-
Cluster where each core is considered as a cluster with a single core. Of course,
the complexity of ILP-Mig will grow rapidly with the number of cores, which is
higher than the number of clusters of the platform, and will be more and more in
the future. While ILP-CMig will minimize the number of inter-cluster migrations,
ILP-Mig will minimize the total number of migrations (intra- and inter- without
distinction).

4.6 Hetero-Split

In order to compare the previous methods to an efficient existing one, we consider
Hetero-Split [19]. This algorithm solves an equivalent expression of LP-Cluster
with a O(n log n) time complexity. It is restricted to systems having only two
different types of clusters. A property of this algorithm is to limit the number
of tasks having a number of presences in excess higher than one (i.e., assigned
to the two different clusters) to the total number of cores. Since there are only
two clusters, tasks are classified into two categories: either cluster π̇1 is more
efficient, or it is π̇2 that is more efficient for their execution. The method exploits
this dual property and thus cannot be easily extended to more than two types
of clusters. Nevertheless, it allows the use of McNaughton wrap-around rule to
efficiently create a schedule conforming to the workload assignment.

5 Experimental comparison of workload assignment methods

When neglecting the migration cost, every workload assignment method presented
in Section 4 is optimal regarding the feasibility. Since we know that this hypothesis
is unrealistic, we compare the number of presences in excess Ṗri−1 for the six
presented methods. The number of presences in excess is a lower bound on the
number of inter-cluster migrations. The LP based methods, as well as Hetero-Split,
are polynomial time methods, while the ILP-CMig method has an exponential
time complexity regarding the number of clusters and the number of tasks. In this
section, we compare the following methods:

– LP-Feas is the method minimising the makespan proposed in [9] considering the
“flat” core model, while its clustered version LP-CFeas presented in Section 4.3
considers the hierarchical clustered model;

– LP-Load (see Section 4.4), whose objective is to minimise the total core utili-
sation, its clustered version is LP-CLoad;

– Hetero-Split ([19]) a linear algorithm limited to two types of clusters;

20 Antoine Bertout et al.

– ILP-Mig is the “flat” core-based version of ILP-CMig, a MILP problem min-
imising the number of presences on clusters. In practice, ILP-CMig uses sig-
nificantly fewer variables than ILP-Mig.

In Section 2.3 we formalised the notion of consistent clusters.
Thus, the methods cited above are also compared using systems generated with

consistent clusters.
In this experiments, we focus on the average number number of presence in

excess but also in the percentage of systems with null inter-cluster presence in
excess corresponding to partitioned schedules.

5.1 Experimental setup

For the number of presences and simulation experiments, we have generated the
systems as follows. The number of types of clusters ṁ is either 2 or 5. The former
in order to compare Hetero-Split to the other methods, and the latter because five
different types of clusters is considered a large size for a heterogeneous MPSoC
nowadays. Then, the number of cores per type of cluster is set in [2, 5]. The number
of tasks n is arbitrarily bounded as follows: ṁ ≤ n ≤ 10 × ṁ. We then generate
every task such that its period Ti is determined using [25]. The parameter Ci

is based on Ti:
Ti
2 ≤ Ci ≤ Ti. We then generate the rates randomly and adjust

them so that the tasks fit the given utilisation. For experimentation purposes, the
clusters (the rates in particular) may be set to consistent.

Using this generator, we generate 1 000 systems per total utilisation range
u ∈ [p − 0.1, p), increasing p from 0.4 to 1, for both ṁ = 2 and ṁ = 5. The ratio
p = 1 corresponds to a full utilisation of the platform by the tasks. Here, p is equal
to the value of the LP-CFeas objective function result, which is the maximal plat-
form utilisation. The experimentation compares the different scheduling methods
over 28 000 randomly generated test systems. As ILP-Mig and ILP-CMig have an
exponential time complexity, they are tested using only a subset of the generated
systems.

5.2 Inter-cluster number of presences in excess

The workload assignment methods are compared in terms of inter-cluster presences
in Figure 8. First note that the scale is 10−2, meaning that in average, very few
tasks are assigned to different clusters, for both two and five types of clusters.

On the graphs a) and b) (with ṁ = 2), we observe that the consistent feature
of the systems has no noticeable impact on the results. Hetero-Split performs close
to LP-CFeas for low platform utilisation. At higher platform utilisation, Hetero-
Split dominates the other polynomial time assignment methods. We can see that
both the Feas-based LP solutions perform poorly at low platform utilisation com-
pared to the Load-based LP solutions for both two-types and five-types (graphs c)
and d)) of cores. This is due to Feas objective that tends to create “rectangular”
(i.e. all processors tend to be idle at the same instant) schedules by balancing the
tasks workload on different cores or clusters, as illustrated in Figure 7. While the
platform utilisation increases, the slack left at the right-hand side of this rectangle
reduces, and the solutions provided by both objective functions tend to be similar.

Workload assignment on unrelated clustered platforms 21

At high platform utilisation, we thus see that both clustered versions of the LP out-
perform both non-clustered versions. When combining the two approaches —both
the clustered version and the Load objective function—, we observe two to four
times fewer inter-cluster migrations compared to the seminal non-clustered Feas
objective function. On the consistent cores (with ṁ = 5), graph d) shows that LP-
Load even dominates LP-CFeas for low platform utilisation but its performances
seriously worsen for higher platform utilisation, when LP-CFeas meets LP-CLoad.
On graphs e) and f) (g) and h)), we see the proportion of generated systems for
which the assignment is completely clustered for two (five) types of clusters. It
is close to 100% for the ILP-CMig, while the clustered LP-CLoad dominates all
the other methods in terms of ratio of completely clustered workload assignments.
For similar utilisation, the greater the number of clusters, the more the tasks are
likely to be distributed and the less the systems are partitioned. Again, the con-
sistent feature has generally no impact on the results, except for Hetero-Split.
Indeed, comparing graphs e) and f), we observe that LP-CLoad performs better
than Hetero-Split regarding systems partitioning on consistent two-types systems.
However, Hetero-Split performs better in average on unrelated two-types systems,
especially at very high utilisation ([0.9,1]). This behaviour is due to the properties
of Hetero-Split. In short, Hetero-Split begins the workload assignment by assigning
the maximal fraction of tasks to their most capacity-efficient cluster. Then, the
rest of workload is distributed in order to respect the constraints of LP-Cluster.
In this manner, the first phase limits the presence of the tasks on both clusters.
However, with consistent clusters, all the tasks are more capacity-efficient on the
same fastest cluster. Thus, this globally reduces the number of tasks being entirely
assigned to only one cluster and increases the number of presences in excess.

5.3 Runtime measurement

The performance of the LP/ILP based solution in terms of execution time are
depicted in Table 2. The experiment has been conducted on a Intel I7500® multi-
core processor from a prototype written in the Python programming language. The
Parma Polyhedra Library [8] was used to solve the linear programs with rational
coefficients and CBC [37] to solve the mixed integer linear programs. The left table
gives the performances of the LP/ILP based solution with the same test systems.
In this experiment, the system utilisations are uniformly distributed in the range
[0.3, 1.0]. The rest of the system parameters are generated as in Section 5.1. The
table on the right gives the average performances with test systems ordered by
number of tasks. Thus, both tables are not comparable because they do not have
the same test systems. The left table gives the average computation time, per LP
or ILP for both ṁ = 2 and ṁ = 5 on unrelated clusters. For example, ILP-Mig
took an average of 0.061 second to compute the workload assignment with ṁ = 2.
We observe that the clustered version of a LP or an ILP is always faster than
the non-clustered version, which is normal since there are fewer variables in the
clustered versions. Also, the execution time from ṁ = 2 to ṁ = 5 increases dras-
tically and this affects less the clustered versions, since there are fewer additional
cluster variables than core variables. Hetero-Split is limited to two types (NA for
ṁ = 5) while ILP-Mig is not practicable in a reasonable time for ṁ = 5 (NA) with
the system parameters given in Section 5.1. As ILP-Mig is significantly slower for

22 Antoine Bertout et al.

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

·10−2

utilisation

p
re

se
n

ce
in

ex
ce

ss
(a

v
er

a
g
e)

a) Average number of inter-cluster presences in excess
for unrelated cores (ṁ = 2)

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

·10−2

utilisation

p
re

se
n

ce
in

ex
ce

ss
(a

v
er

a
g
e)

b) Average number of inter-cluster presences in excess
for consistent cores (ṁ = 2)

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

·10−2

utilisation

p
re

se
n

ce
in

ex
ce

ss
(a

v
er

a
g
e)

c) Average number of inter-cluster presences in excess
for unrelated cores (ṁ = 5)

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5
·10−2

utilisation

p
re

se
n

ce
in

ex
ce

ss
(a

v
er

a
g
e)

d) Average number of inter-cluster presences in excess
for consistent cores (ṁ = 5)

0.4 0.5 0.6 0.7 0.8 0.9 1
0 %

20 %

40 %

60 %

80 %

100 %

utilisation

p
er

ce
n
ta

g
e

o
f

sy
st

em
s

w
it

h
n
u

ll
p

re
se

n
ce

e) Systems with null inter-cluster presence in excess
for unrelated cores (ṁ = 2)

0.4 0.5 0.6 0.7 0.8 0.9 1
0 %

20 %

40 %

60 %

80 %

100 %

utilisation

p
er

ce
n
ta

g
e

o
f

sy
st

em
s

w
it

h
n
u

ll
p

re
se

n
ce

f) Systems with null inter-cluster presence in excess
for consistent cores (ṁ = 2)

0.4 0.5 0.6 0.7 0.8 0.9 1
0 %

20 %

40 %

60 %

80 %

100 %

utilisation

p
er

ce
n
ta

g
e

o
f

sy
st

em
s

w
it

h
n
u

ll
p

re
se

n
ce

g) Systems with null inter-cluster presence in excess
for unrelated cores (ṁ = 5)

0.4 0.5 0.6 0.7 0.8 0.9 1
0 %

20 %

40 %

60 %

80 %

100 %

utilisation

p
er

ce
n
ta

g
e

o
f

sy
st

em
s

w
it

h
n
u

ll
p

re
se

n
ce

h) Systems with null inter-cluster presence in excess
for consistent cores (ṁ = 5)

LP-Feas LP-Load LP-CFeas LP-CLoad ILP-Cmig Hetero-split

Fig. 8: Number of presences by workload assignment method for unrelated and
consistent clusters

Workload assignment on unrelated clustered platforms 23

ṁ = 2 ṁ = 5
LP-Feas 0.013 0.464
LP-Load 0.012 0.562
LP-CFeas 0.002 0.027
LP-CLoad 0.002 0.029
Hetero-Split 0.007 NA
ILP-Mig 0.061 NA
ILP-CMig 0.023 0.156

ILP-Mig, ṁ = 2
n time (s)
10 0.811
11 1.736
12 3.562
13 8.271
14 16.665
15 28.492
16 69.782
17 130.582

Table 2: Average execution time of the workload assignment methods in seconds

0 1

π1 τ3 idle τ1

π2 τ1 τ2

π3 τ2 τ3 τ4

(a) Template schedule ex-
ample

0 1 2 3 4 5 6 7 8 9 10

π1 τ3 τ1 τ3 τ1 τ3 τ1

π2 τ1 τ2 τ1 τ2 τ1 τ2

π3 τ2 τ3 τ4 τ2 τ3 τ4 τ2 τ3 τ4

T1 T2 T1, T3

(b) Stretched template schedule example

Fig. 9: Template-based scheduling

ṁ = 2 than its counterparts, we study how it is sensitive to the number of tasks
n on table on the right. It clearly shows that the execution time grows exponen-
tially with the number of tasks, making it intractable for large systems, contrary
to ILP-CMig.

6 Global scheduling applicability on heterogeneous platforms

In this section, we examine the applicability of the provided results. Specifically, we
discuss the applicability of the global scheduling on unrelated platforms. First, we
study the validity of considering migrations upon an unrelated platform. Second,
we expose some limitations on the use of a template to schedule tasks in practice.

6.1 How realistic is the migration of tasks upon unrelated platforms?

Actual heterogeneous platforms. The global scheduling theory on unrelated proces-
sors assumes that migrations of tasks between processors with heterogeneous archi-
tectures are possible. As mentioned in [35] to motivate partitioned scheduling, the
migration between processors with different instruction sets is at least challenging
if not unrealistic. Indeed, tasks code should be compiled for both architectures
and migration points determined beforehand if jobs migration is allowed, using
soft-migration points as shown in the sample code presented in Section 3.1. Con-
sequently, the context of the migrating task —the state of all active job local
variables— should also be saved and transferred to the destination core (e.g. by
using the OpenAMP framework) to ensure the continuation of this task at the
point it has stopped. Nevertheless, recent platforms as ARM big.LITTLE®are
game-changing. Those platforms embed clusters of cores different in their micro-
architecture (asymmetric) but having similar ISAs with full cache coherence. This

24 Antoine Bertout et al.

allows migrations between cores belonging to different clusters. Specifically, ARM
big.LITTLE®platforms are made of a cluster of fast but energy-consuming (big)
cores and a cluster of slower but more energy-efficient (LITTLE) cores. These plat-
forms are unrelated and cannot be classified as uniform as the rate of execution
still depends both on the task and the executing core. They are consistent (see
Section 5.1) in the sense that there exists an order of magnitude between the core
processing rate of different clusters: big cores executes tasks always faster than
LITTLE cores but not always with the same magnitude.

Applied scheduling in heterogeneous platforms. In practice, the Energy Aware Sched-
uler (EAS) [21] has been recently integrated in the mainline linux kernel (from
version 5.0) and supports migration between single-ISA cores of asymmetric clus-
ters. Based on a model of the cores energy consumption, EAS selects which core
to use —the most energy efficient— and at which frequency using the dynamic
voltage and frequency scaling (DVFS) mechanism. In line with the existing Com-
pletely Fair Scheduler (CFS) [20], EAS aims at providing a fair distribution of the
cores utilisation to non real-time tasks while maximising the overall performance
but also optimising energy usage. When CFS is designed for identical cores (sym-
metrical multi-processing or SMP in the OS terminology), EAS takes advantage
of recent asymmetric multi-processing (AMP) platforms as ARM big.LITTLE®.
SCHED DEADLINE [31] is an implementation of the global EDF scheduler [11] for
real-time tasks in Linux together with the Constant Bandwidth Server (CBS) [6]
algorithm to manage non real-time tasks. SCHED DEADLINE was designed for
identical cores (SMP) and may starve all the tasks upon a consistent (AMP) plat-
form. This issue amongst other was discussed by Luca Abeni in talks given during
the last two editions of the OSPM summit [22,5]. He proposed some practical
solutions (submitted as a linux kernel patchset in [4]) as adapting the admission
control test of tasks and selecting the least energy consuming processor capable of
executing the pending task. Interestingly, the latter proposal is valid because the
two clusters of cores are consistent. Consequently, studying the global scheduling
of unrelated platform is not only theoretical but practicable and the particular
case of consistent cores fits well to those modern platforms.

6.2 Template-based scheduling

In Section 4, we detail the workload assignment phase of tasks to cores. To the best
of our knowledge, any global scheduler on heterogeneous platform starts with such
a workload assignment phase. This workload assignment phase is then followed by
the construction of a template schedule. This template schedule contains a feasible
schedule of the periodic task set, over a time instant. An example of a template
schedule is given in Figure 9(a). We will now discuss the possible usages of this
template schedule.

In [9,19], this template schedule is stretched between every absolute task re-
leases, as illustrated in Figure 9(b). Repeating the template schedule every time
unit is acceptable for a feasibility test. It is however not acceptable in practice, due
to the number of preemptions and migrations involved. To limit the online over-
head, some techniques have been developed to improve the average case, as [14].
This work is designed in the context of an affinity mask model, with sporadic tasks.

Workload assignment on unrelated clustered platforms 25

In the worst case, however, this optimisation has no effect. Other works, as [39],
loosen the hypothesis of hard real-time tasks to soft real-time tasks with bounded
tardiness and allow intra-task parallelism via a DAG-task model. This change of
paradigm allows to reduce the overhead and thus improves the use in practice.
However, this change of paradigm may not be applied in the general case. One
could also argue that considering that the rate of a task is constant on a given
core is unrealistic. For example, if a task has a first part involving intensive integer
computation, followed by a second part of intensive floating point computation,
the rate of execution of both parts would differ depending on whether the core has
a FPU or not. As a result, the task should be split in more homogeneous sub-tasks,
such that each task can be considered as having a constant rate of execution on
each core. This requires a DAG-task model or at least a model that handles chains
of tasks to be considered.

The use of identical platform scheduling techniques for unrelated platform
scheduling has been explored. However, those techniques seem to be hard to gen-
eralise to unrelated platforms. In [19], the authors propose a global scheduling
algorithm for periodic tasks on a 2-types heterogeneous platform. After the work-
load assignment phase hetero-split, it performs the 2-types McNaughton hetero-wrap.
This 2-types McNaughton assigns the fractions of processing capacity of a task for
both cluster at once while preventing parallelism. To fill both cluster at once, the
first cluster is filled from left to right, while the second one is filled symmetrically
from the right to the left. Adapting this seminal McNaughton to two types platform
required several transformations. As indicated in Section 4.6, this transformations
based on a symmetrical filling seems hard to generalise to unrelated platforms with
any number of types.

As mentioned in [14], the template schedule produced could be optimised in
terms of preemptions with heuristics reordering the windows delimited by schedul-
ing points. However, it would not decrease the number of presences and the sched-
ule would remain static.

Repeating the same sequence over and over reduces the adaptability of the
system. To avoid this, an option would be to avoid the use of a template schedule.
Designing a more dynamic scheduler such as EDF or Last Laxity First (LLF) may
be difficult or require a very pessimistic approach. We believe that for consistent
platforms, the design of dynamic schedulers will be made much simpler due to
the monotonous characteristic of such platforms. The use of consistent platform
would ease both the design of the platform and the usability in practice, as those
platforms become more and more common on the market.

7 Conclusion

In this work, we have confirmed by practical considerations and experiments on a
real heterogeneous platform the intuition whereby inter-processor migrations are
more costly than intra-processor migrations. Starting from this observation, we
propose a new model to handle those two types of migrations differently. Based
on previous works, we use this cluster-based model to design the workload assign-
ment of an optimal scheduler on unrelated platforms. To do so, we propose a LP
formulation, with several objective functions. We show that this LP formulation
is an exact feasibility test and that its output may be used to construct an of-

26 Antoine Bertout et al.

fline schedule. We also propose an ILP formulation that is optimal regarding both
schedulability and the number of inter-cluster migrations. Using simulation, we
demonstrate the impact of our model on the number of inter-cluster migrations.
Our new solution outperforms the existing ones. The optimal ILP is used as a
reference.

This new workload assignment thus improves the applicability of global schedul-
ing on unrelated platform, by reducing the online overheads. We discuss the ap-
plicability of global scheduling in the context of unrelated platform. We show that
global scheduling for heterogeneous platforms is actually used in practice. More-
over, we emphasized that a particular case of the unrelated platform model, the
consistent model, fits well to certain realistic platforms. Consistent platforms are
likely to be used in this context, because the theoretical migration model is close
to their behaviour for such platforms. We also discuss the existing usages of global
scheduling for the general unrelated case and their limitations.

In the future, we intend to evaluate the performance of an online scheduler,
such as a global EDF as such an algorithm may be more usable in practice. We
also believe that the consistent model is worth investigating. Its particular pro-
cessing characteristics and its closeness to actual platforms make it an interesting
candidate for incoming works. Closing the gap between theory and practice could
also be done by observing more complex task model, such as Gang scheduling or
a DAG-based task model.

Acknowledgements

First we would like to thank the anonymous reviewers for their valuable sugges-
tions.

The research is done in the context of the sofist project, supported by Project
arc (Concerted Research Action) of Federation Wallonie-Bruxelles. This research
is also supported by the European Union’s Horizon 2020 research and innovation
program under grant agreement No. 826610.

References

1. clock getres(2) - linux manual page. URL https://man7.org/linux/man-
pages/man2/clock gettime.2.html

2. RPMsg-lite user’s guide: RPMsg component. URL https://nxpmicro.github.io/rpmsg-lite/
3. IEEE standard for information technology- standardized application environment profile

(aep)-posix realtime and embedded application support. IEEE Std 1003.13-2003 (Revision
of IEEE Std 1003.13-1998) pp. i–164 (2004)

4. Abeni, L.: Rfc patch 0/6] capacity awareness for sched deadline (2019). URL
https://lkml.org/lkml/2019/5/6/11

5. Abeni, L.: Sched deadline on heterogeneous multicores (2019). URL
https://lwn.net/Articles/793281/. Power Management and Scheduling in the Linux
Kernel (OSPM summit III)

6. Abeni, L., Buttazzo, G.C.: Integrating multimedia applications in hard real-time systems.
In: Proceedings of the 19th IEEE Real-Time Systems Symposium, Madrid, Spain, Decem-
ber 2-4, 1998, pp. 4–13 (1998). DOI 10.1109/REAL.1998.739726

7. Armstrong, R.K.: Investigation of effect of different run-time distributions on smartnet
performance. Master’s thesis, Naval Postgraduate Scholl, Monterey, California (1997)

Workload assignment on unrelated clustered platforms 27

8. Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: Toward a complete
set of numerical abstractions for the analysis and verification of hardware and software
systems. Science of Computer Programming 72(1-2), 3–21 (2008)

9. Baruah, S.K.: Feasibility analysis of preemptive real-time systems upon heterogeneous
multiprocessor platforms. In: Real-Time Systems Symposium, pp. 37–46. IEEE (2004)

10. Baruah, S.K.: Partitioning real-time tasks among heterogeneous multiprocessors. In: 33rd
International Conference on Parallel Processing (ICPP), pp. 467–474. IEEE (2004)

11. Baruah, S.K., Baker, T.P.: Schedulability analysis of global EDF. Real-Time Systems
38(3), 223–235 (2008). DOI 10.1007/s11241-007-9047-9

12. Baruah, S.K., Bertogna, M., Buttazzo, G.: Multiprocessor Scheduling for Real-Time Sys-
tems. Springer (2015)

13. Baruah, S.K., Bonifaci, V., Bruni, R., Marchetti-Spaccamela, A.: ILP models for the allo-
cation of recurrent workloads upon heterogeneous multiprocessors. J. Scheduling 22(2),
195–209 (2019)

14. Baruah, S.K., Brandenburg, B.: Multiprocessor feasibility analysis of recurrent task sys-
tems with specified processor affinities. In: Real-Time Systems Symposium, pp. 160–169.
IEEE (2013)

15. Bertogna, M.: A view on future challenges for the real-time community (2019). URL
https://www.irit.fr/rtns2019/keynote/. RTNS 2019 Keynote

16. Bertout, A., Goossens, J., Grolleau, E., Poczekajlo, X.: Template schedule construction for
global real-time scheduling on unrelated multiprocessor platforms. In: Design, Automation
and Test in Europe Conference (Grenoble, France, March 2020) (2020)

17. Bertout, A., Goossens, J., Grolleau, E., Poczekajlo, X.: Workload assignment for
global real-time scheduling on unrelated multicore platforms. In: Proceedings of the
28th International Conference on Real-Time Networks and Systems, RTNS 2020, p.
139–148. Association for Computing Machinery, New York, NY, USA (2020). DOI
10.1145/3394810.3394823. URL https://doi.org/10.1145/3394810.3394823

18. Chen, H., Cheng, A.M.K., Kuo, Y.W.: Assigning real-time tasks to heterogeneous proces-
sors by applying ant colony optimization. Journal of Parallel and Distributed computing
71(1), 132–142 (2011)

19. Chwa, H.S., Seo, J., Lee, J., Shin, I.: Optimal real-time scheduling on two-type heteroge-
neous multicore platforms. In: Real-Time Systems Symposium, pp. 119–129. IEEE (2015)

20. kernel development community, T.: The linux kernel documentation: Completely fair
scheduler. https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
(2019). Accessed: 2019-12-18

21. kernel development community, T.: The linux kernel documentation: Energy aware
scheduling. https://www.kernel.org/doc/html/latest/scheduler/sched-energy.html (2019).
Accessed: 2019-12-18

22. Corbet, J.: Power-aware and capacity-aware migrations for real-time tasks (2018). URL
https://lwn.net/Articles/754923/. Power Management and Scheduling in the Linux Kernel
(OSPM summit II)

23. Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor systems.
ACM computing surveys (CSUR) 43(4), 35 (2011)

24. Dufossé, F., Uçar, B.: Notes on birkhoff–von neumann decomposition of doubly stochastic
matrices. Linear Algebra and its Applications 497, 108–115 (2016)

25. Goossens, J., Macq, C.: Limitation of the hyper-period in real-time periodic task set gen-
eration. In: Proceedings of the RTS Embedded System, pp. 133–148 (2001)

26. Jamil, R., Grolleau, E., Dautrevaux, B., Bertout, A.: Measurement-based timing analysis
on heterogeneous mpsocs: A practical approach. In: European Conference on Software
Architecture, pp. 279–293. Springer (2020)

27. Karmarkar, N.: A new polynomial-time algorithm for linear programming.
Combinatorica 4(4), 373–396 (1984). DOI 10.1007/BF02579150. URL
https://doi.org/10.1007/BF02579150

28. Kokke: tiny-bignum-c (2019). URL https://github.com/kokke/tiny-bignum-c
29. Kostya, M.: crystal-benchmarks-game (2018). URL https://github.com/kostya/crystal-

benchmarks-game
30. Lawler, E.L., Labetoulle, J.: On preemptive scheduling of unrelated parallel processors by

linear programming. J. ACM 25(4), 612–619 (1978)
31. Lelli, J., Scordino, C., Abeni, L., Faggioli, D.: Deadline scheduling in the linux kernel.

Software: Practice and Experience 46(6), 821–839 (2016)

28 Antoine Bertout et al.

32. Levin, G., Funk, S., Sadowski, C., Pye, I., Brandt, S.A.: DP-FAIR: A simple model
for understanding optimal multiprocessor scheduling. In: 22nd Euromicro Con-
ference on Real-Time Systems, ECRTS 2010, Brussels, Belgium, July 6-9, 2010,
pp. 3–13. IEEE Computer Society (2010). DOI 10.1109/ECRTS.2010.34. URL
https://doi.org/10.1109/ECRTS.2010.34

33. Phavorin, G., Richard, P., Goossens, J., Maiza, C., George, L., Chapeaux, T.: Online
and offline scheduling with cache-related preemption delays. Real-Time Systems 54(3),
662–699 (2018)

34. Phavorin, G., Richard, P., Maiza, C.: Complexity of scheduling real-time tasks subjected
to cache-related preemption delays. In: 20th Conference on Emerging Technologies &
Factory Automation, pp. 1–8. IEEE (2015)

35. Raravi, G., Andersson, B., Bletsas, K.: Assigning real-time tasks on heterogeneous mul-
tiprocessors with two unrelated types of processors. Real-Time Systems 49(1), 29–72
(2013)

36. Raravi, G., Andersson, B., Nélis, V., Bletsas, K.: Task assignment algorithms for two-type
heterogeneous multiprocessors. Real-Time Systems 50(1), 87–141 (2014)

37. Saltzman, M.J.: Coin-or: an open-source library for optimization. In: Programming lan-
guages and systems in computational economics and finance, pp. 3–32. Springer (2002)

38. Singh, J., Auluck, N.: Real time scheduling on heterogeneous multiprocessor systems - a
survey. In: Fourth International Conference on Parallel, Distributed and Grid Computing
(PDGC), pp. 73–78. IEEE (2016)

39. Tang, S., Voronov, S., Anderson, J.H.: GEDF tardiness: Open problems involving uniform
multiprocessors and affinity masks resolved. In: 31st Euromicro Conference on Real-Time
Systems, ECRTS 2019, July 9-12, 2019, Stuttgart, Germany, pp. 13:1–13:21 (2019)

