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Wild Bootstrap Bandwidth Selection of Recursive Nonparametric Relative
Regression for Independent Functional Data

Yousri Slaoui,∗

Université de Poitiers, France

Abstract

We propose and investigate a new kernel regression estimator based on the minimization of the mean squared relative
error. We study the properties of the proposed recursive estimator and compare it with the recursive estimator based
on the minimization of the mean squared error proposed by Slaoui (2018). It turns out that, with an adequate choice
of the parameters, the proposed estimator performs better than the recursive estimator based on the minimization of
the mean squared error. We illustrate these theoretical results through a real chemometric dataset.

Key words: Asymptotic normality, Bootstrap, Functional data analysis, Functional nonparametric statistics, Mean
square relative error, Nonparametric estimation, Stochastic approximation algorithm.
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1. Introduction

Functional data have become more and more popular in modern statistics because of the progress in comput-
ing technology, in terms of both memory capacity and computing speed which have made it possible to record
vast amounts of data. It concerns many statistical methods dealing with random variables valued in some infinite-
dimensional space, called functional variables. Thus, a very large number of variables can be observed for the study
of the same phenomenon. This type of data appears in several fields including climatology, economics, psychology,
linguistics, medicine, and so on.

There has been an increasing interest in Functional Data Analysis (FDA) in the past decades, as it is highlighted
by the popular monograph of Ramsay and Silverman [43], who provide a detailed exposition of both theoretical and
practical aspects of functional data analysis. Statistical inference for FDA has been widely investigated (see, e.g.,
[28, 29]). The existing literature contains numerous studies on functional linear models (see, e.g., [7, 8, 26]). The
nonparametric treatment has been popularized by the book of Ferraty and Vieu [23] and now takes a large place in the
FDA literature; see the discussions in the recent surveys by Cuevas [15] who offers a short tutorial as well as a partial
survey of the FDA theory. We point also to the work [36] which gives a survey of nonparametric FDA and presents
a wide scope of open questions. Aneiro et al. [2] present various contributions into two categories: papers promoting
new methodology for data varying over a continuum, and papers concerned with very high- but finite-dimensional
problems.

In the last decade, data streams have become an increasingly important area of research. Common data streams
include Internet packet data, Twitter activity, Facebook news stream, and credit card transactions. In those situations,
data arrives regularly so that it is impossible to store them in a traditional database. In such a context, building a
recursive estimator which does not require to store all the data in memory and can be updated easily in order to deal
with online data is of great interest.

This work concerns nonparametric recursive estimation of the regression operator when the explanatory data are
curves and the response is real-valued, based on the minimization of the Mean Squared Relative Error (MSRE). This
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problem can be formulated by considering {Yi,Xi}
n
i=1 a sample of independent and identically distributed couples,

where Yi is real-valued and Xi takes values in some functional space E equipped with a semi-norm ‖·‖. A common
nonparametric model of this relationship is for i ∈ {1, . . . , n} given by

Yi = r (Xi) + εi,

where εi is a random variable. In ordinary predictions, we estimate the operator r by minimizing the expected squared
loss function:

E
[
(Y − r (X))2 |X

]
,

and we obtain as predictor the quantity E [Y |X], which gives the Mean Squared Error (MSE). However, when Y > 0
or in the presence of outliers, the use of the classical loss function can lead to unreasonable results, since all variables
have the same weight. Therefore, it is of interest to consider the response level (Y − r (X)) /Y rather than (Y − r (X))
and then it is necessary to consider the MSRE:

E

(Y − r (X)
Y

)2

|X

 .
Minimizing this loss function leads to predicting the quantity (see Park and Stefanski [40])

E
[
Y−1|X

]
E

[
Y−2|X

] .
By assuming that E

∣∣∣Y−l
i |X

∣∣∣ < ∞, for l ∈ {1, 2}, we define the regression functional as

r (u) :=
E

[
Y−1

i |Xi = u
]

E
[
Y−2

i |Xi = u
] ; u ∈ E, ∀i ∈ N.

Moreover, we set gl (u) = E
[
Y−l

i |Xi = u
]
, for all l ∈ N, u ∈ E, and i ∈ N. Then, we have the following relation,

g1 (u) = r (u) g2 (u).
The purpose of this study is to extend the work proposed first in the case of a real explanatory variable in Slaoui

[46] and then in the case of a functional explanatory variable in Slaoui [47]. The two previous estimators are based on
the minimization of the MSE. In the current work we propose to use the MSRE rather than the MSE criterion. Thus,
our proposed estimator is:

r̂n (χ, h) =
m̂n,1 (χ, h)
m̂n,2 (χ, h)

,

with

m̂n, j (χ, h) = (1 − γn) m̂n−1, j (χ, h) + γnh−1
n K

(
‖χ − Xn‖

hn

)
Y− j

n ; j ∈ {1, 2} , (1)

where (γn) and (hn) are sequences of positive real numbers which are converging to 0, K is a kernel and h ∈
{h1, . . . , hn}. The recursive property (1) is particularly useful for large samples, because r̂n can be updated easily
using additional observation. Throughout this paper, we suppose that m̂0, j (χ, h) = 0, for j ∈ {1, 2}; and we let∏

n =
∏n

i=1 (1 − γi). Then, we can estimate the operator r by

r̂n (χ, h) =

∏
n
∑n

k=1
∏−1

k γkh−1
k Y−1

k K
(
‖χ−Xk‖

hk

)
∏

n
∑n

k=1
∏−1

k γkh−1
k Y−2

k K
(
‖χ−Xk‖

hk

) . (2)

Despite that the MSRE is widely used in practice as a measure of performance, the theoretical properties of this
alternative regression were not frequently used until the work of Narula and Wellington [39]. Since this work, we
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can find some criteria based on minimizing the sum of Absolute Relative Errors (ARE) and others on the sum of
squared relative errors (SRE). For example, see [33] for some models in software engineering, [9] for some examples
in medicine or [10] for some financial applications. Note that most of the recent methods are concerned with the
estimation of unknown parameters (see, [49] for recent advances and references).

In the framework of nonparametric estimations, Jones et al. [31] studied the asymptotic properties of an estimator
minimizing the sum of the squared relative errors by considering the kernel estimation methods and a local linear
approach. Moreover, in the functional framework, only the paper by Demongeot et al. [17] has paid attention to the
study of nonparametric prediction via relative error regression. As far as we know, there is no work on recursive
estimators in the functional nonparametric literature based on the minimization of the MSRE. The works of Amiri et
al. [1] and Slaoui [47], both proposed recursive estimation of the operator r based on the minimization of the MSE.

Furthermore, the functional bootstrap literature is not widely developed. Poltis and Romano [41] developed some
weak convergence results for approximating sums of weakly dependent stationary Hilbert space valued random vari-
ables under the asymptotic validity of a stationary bootstrap method. Cuevas et al. [14] presented a Monte Carlo
study analyzing the performance of the bootstrap confidence bands of several functional estimators. Raña et al. [42]
considered a naive and a wild bootstrap procedure to construct pointwise confidence intervals for a nonparametric
regression function when the predictor is of functional nature and when the data are dependent. More recently, Aneiro
et al. [3] proposed a naive and a wild bootstrap procedure to approximate the distribution of kernel-based estimators
under α-mixing conditions, whereas Shang [45] considered bootstrap methods for estimating the long-run covariance
of stationary functional time series.

The first purpose of this paper, is to study, under some general conditions, the asymptotic properties of an alterna-
tive functional recursive kernel estimator of the regression operator r. Secondly, we propose an automatic bandwidth
selection through a wild bootstrap method. Thirdly, we compare the performance of the proposed recursive estimator
r̂n based on the minimization of the MSRE to the recursive functional regression estimator introduced by Slaoui [47],
the latter is based on the minimization of the MSE and defined as

řn (χ, h) =

∏
n
∑n

k=1
∏−1

k γkh−1
k YkK

(
‖χ−Xk‖

hk

)
∏

n
∑n

k=1
∏−1

k γkh−1
k K

(
‖χ−Xk‖

hk

) . (3)

The layout of the present paper is as follows. Section 2 is devoted to the main results of the present work. Section 3
is dedicated to application results by using a real dataset. We conclude the article in Section 4. To avoid interrupting
the flow of this paper, all mathematical developments are relegated to Appendix A.

2. Assumptions and main results

Firstly, we define the following class of regularly varying sequences.

Definition 1. Let γ ∈ R and (vn)n≥1 be a non-random positive sequence. We say that (vn) ∈ GS (γ) if

lim
n→+∞

n
[
1 −

vn−1

vn

]
= γ. (4)

Condition (4) was introduced by Galambos and Seneta [24] to define regularly varying sequences (see also Bojanic
and Seneta [6]) and by Mokkadem and Pelletier [37] in the context of stochastic approximation algorithms. Note that
GS stands for Galambos and Seneta. Typical sequences in GS (γ) are, for b ∈ R, nγ

(
log n

)b, nγ
(
log log n

)b, and
so on. In this section, we investigate the asymptotic properties of the proposed estimator (2). Before presenting the
assumptions, let us give some notations. Let F be the cumulative distribution function of the random variable ‖X − χ‖:

Fχ (t) = Pr (‖X − χ‖ ≤ t)

and let B (χ, t) be the ball in E with center χ and radius t:

B (χ, t) = {χ1 ∈ E; ‖χ1 − χ‖ ≤ t} .
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Moreover, we let for any s ∈ [0, 1]

τχ,h (s) =
Fχ (hs)
Fχ (h)

.

For any β ∈ {1, 2}

ψχ,β (u) = E
[{

gβ (X) − gβ (χ)
}
| ‖X − χ‖ = u

]
.

For simplicity, we introduce the following notation:

ξ = lim
n→+∞

(nγn)−1 , (5)

B (χ) =

(
ψ′χ,1 (0) − r (χ)ψ′χ,2 (0)

)
g2 (χ)

, V (χ) =

(
g2 (χ) − 4r (χ) g3 (χ) + 3r2 (χ) g4 (χ)

)
g2

2 (χ)
.

We denote by C or/and C′ some real generic constants supposed to be strictly positive. The assumptions which we
shall refer to are the following:

(A1) For β ∈ {1, 2, 3, 4} and for all u ∈ E the functions gβ (u) are bounded and continuous in a neighborhood of u.

(A2) For β ∈ {1, 2} and for all u ∈ E the function ψχ,β (u) is assumed to admit a derivative at t = 0 and ψ′χ,β (0) is
uniformly Lipschitz continuous of order α ∈ (0, 1] in χ.

(A3) For all χ1 ∈ E, Fχ1 (0) = 0 and Fχ1 (t) /Fχ (t) is Lipschitz continuous of order α ∈ (0, 1] in χ1, uniformly in t in
a neighborhood of 0.

(A4) K : R → R is a continuous, bounded function with support on the compact [0, 1], such that mint∈[0,1]K (t) > 0,
and is a differentiable function on (0, 1) where its first derivative function K′ is such that: −∞ < C < K′ (t) <
C′ < 0.
Now, it is possible to introduce the following notation used first by Ferraty et al. [21]:

Mχ,0 = K (1) −
∫ 1

0
(tK (t))′ τχ,0 (t) dt, Mχ,1 = K (1) −

∫ 1

0
K′ (t) τχ,0 (t) dt,

Mχ,2 = K2 (1) −
∫ 1

0

(
K2 (t)

)′
τχ,0 (t) dt.

(A5) For any s ∈ [0, 1], there exists a function τχ,0 (.) such that, τχ,0 (s) = limh→0τχ,h (s), τχ,0 (s) < ∞,
sups∈[0,1]

∣∣∣τχ,h (s) − τχ,0 (s)
∣∣∣ = o (1), Mχ, j > 0 for j ∈ {0, 1, 2}, and Mχ, j is Lipschitz continuous of order α ∈ (0, 1]

for j ∈ {0, 1, 2}.

(A6) (i) (γn) ∈ GS (−γ) with γ ∈ (1/2, 1].
(ii) (hn) ∈ GS (−a) with a ∈ (0, 1).
(iii)

(
Fχ (hn)

)
∈ GS (−Fa) with Fa ∈ (0, γ).

(iv) limn→∞ (nγn) ∈ (min {Fa, (γ + Fa) /2 − a} ,∞
]
.

(v) (bn) ∈ GS (−b) with b ∈ ((γ − Fa) /2, a).
(vi)

(
Fχ (bn)

)
∈ GS (−Fb) with Fb ∈ (0,Fa).

(A7) For each n, there exist rn ≥ 1, ln ∈ GS (−l) with l > b + (γ − Fa) /2 and t1,n, . . . , trn,n such that
B (χ, h) ⊂

⋃rn
k=1 B

(
tk,n, ln

)
, with rn = O

(
nbn/hn

)
.
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Assumption (A1) ensures that the inverse moments of the response variable E
[
Y−βi |Xi = u

]
, for all, β ∈ {1, 2, 3, 4},

and all u ∈ E are bounded and continuous in a neighborhood of u. Assumption (A6) (iii) indicates that the small ball
probability satisfies γ−1

n Fχ (hn) → ∞ as n goes to ∞ for any χ ∈ E. Assumption (A6) (iv) is standard in the frame-
work of stochastic approximation algorithms, it implies in particular that the limit of

([
nγn

]−1
)

is finite. Assumption

(A6) (v) ensures that b1+α
n

(
γ−1

n Fχ (hn)
)1/2
→ 0 as n goes to ∞ for α ∈ (0, 1]. Assumption (A6) (vi) indicates that[

Fχ (hn) /Fχ (bn)
]

log n → 0 as n goes to ∞. Assumption (A7) ensures that lnb−1
n

(
γ−1

n Fχ (hn)
)1/2
→ 0 as n goes to ∞.

Moreover, we give two examples of functional spaces for which Assumption (A7) is fulfilled.

Example 1 (Functional spaces satisfying the assumption (A7)).

1. Let E is a separable Hilbert space, with inner product <, > and with orthonormal basis
{
e j : j ∈ {1, . . . ,∞}

}
.

For any (χ1, χ2) ∈ E × E, and for k > 0, we let dk be the semi-metric defined by:

dk (χ1, χ2) =

√√√ k∑
j=1

< χ1 − χ2, e j >2.

The space (E, dk) fulfills Assumption (A7).

2. Let E is the space of all continuous functions χ : [a, b]→ R with ‖χ‖γ ≤ C, where −∞ < a < b < ∞, 0 < γ < ∞,
let γ1 be the largest integer strictly smaller than γ and ‖.‖2 be the Euclidean norm:

‖χ‖γ = maxk≤γ1 supt

∣∣∣χ(k) (t)
∣∣∣ + supt1,t2

∣∣∣χ(γ1) (t1) − χ(γ1) (t2)
∣∣∣

‖t1 − t2‖
γ−γ1
2

.

The space (E, dLp ) fulfills the Assumption (A7), where dLp is the Lp distance in E and p ∈ [1,∞].

Remark 1.
The intuition behind the use of such bandwidth hn belonging to GS (−a) is that the ratio hn−1/hn is equal to 1 + a/n +

o (1/n), the application of Lemma 1 (given in the Appendix) under the assumption (A6), ensures that the bias and the
variance depend only on hn and not on h1, . . . , hn.

Our first result is the following proposition, which gives the bias and the variance of r̂n.

Proposition 1 (Bias and variance of r̂n). Let Assumptions (A1) − (A6) be satisfied.

1. If a ∈ (0, (γ − Fa) /2], then

E
[
r̂n (χ, h)

]
− r (χ) = B (χ)

1 − (Fa − a) ξ
1 − Faξ

Mχ,0

Mχ,1
hn [1 + o (1)] . (6)

If a ∈ ((γ − Fa) /2, 1), then

E
[
r̂n (χ, h)

]
− r (χ) = o

(√
γnFχ (hn)−1

)
.

2. If a ∈ (0, (γ − Fa) /2), then

var
[
r̂n (χ, h)

]
= o

(
h2

n

)
. (7)

If a ∈ [(γ − Fa) /2, 1), then

var
[
r̂n (χ, h)

]
= V (χ)

(1 − (Fa − a) ξ)2

(2 − (Fa + γ − 2a) ξ)
Mχ,2

M2
χ,1

γn

Fχ (hn)
[1 + o (1)] . (8)
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3. If limn→∞ (nγn) > max {Fa, (Fa + γ) /2 − a}, then (6) and (8) hold simultaneously.

The bias and the variance of the estimator r̂n defined by the stochastic approximation algorithm (2) then heavily
depends on the choice of the stepsize γn. Let us now recall that the bias and variance of the nonrecursive estimator
r̃n (χ, h), proposed in Demongeot et al. [17] are given by

E
[̃
rn (χ, h)

]
− r (χ) = B (χ)

Mχ,0

Mχ,1
hn [1 + o (1)] ,

var
[̃
rn (χ, h)

]
= V (χ)

Mχ,2

M2
χ,1

γn

Fχ (hn)
[1 + o (1)] .

To illustrate the benefit of choosing non-standard weights γn, we give some possible choices of the sequence γn and
compare the bias and variance of r̂n with those of r̃n.

Example 2 (Choices of γn minimizing the bias of r̂n).
In view of (6), the asymptotic bias of r̂n is minimum when ξ = 0, that is, when (γn) is chosen so that limn→∞ (nγn) = ∞,
and then we have

E
[
r̂n (χ, h)

]
− r (χ) = E

[̃
rn (χ, h)

]
− r (χ) = B (χ)

Mχ,0

Mχ,1
hn [1 + o (1)] .

This choice is not interesting since we have

lim
n→∞

var (̃rn (χ, h))
var (r̂n (χ, h))

= 0.

It is advised in this situation to use the averaging principle for the stochastic approximation algorithm to ensure an
optimal convergence rate (see, [38]).

Example 3 (Choices of γn minimizing the variance of r̂n).
It follows from (8), that, to minimize the asymptotic variance of r̂n, γ should be equal to 1, (γn) must satisfy limn→∞ (nγn) =

1 − a, and we then have

var
[
r̂n (χ, h)

]
= (1 − Fa)V (χ)

Mχ,2

M2
χ,1

γn

Fχ (hn)
[1 + o (1)] .

Using an adequate choice of γn, the variance of the proposed recursive estimator r̂n can be smaller than that of the
nonrecursive estimator. To conclude this example, let us mention that the two most simple stepsizes that minimize the
variance of r̂n are γn = [1 − a] n−1 and γn = hn

(∑n
k=1 hk

)−1
.

Let us now state the following theorem, which gives the convergence rate of the estimator r̂n defined in (2).

Theorem 1 (Weak pointwise convergence rate). Let Assumptions (A1) − (A6) be satisfied.

1. If there exists c ≥ 0 such that γ−1
n h2

nFχ (hn)→ c, then√
γ−1

n Fχ (hn) (r̂n (χ, h) − r (χ))

D
→ N

c1/2B (χ)
1 − (Fa − a) ξ

1 − Faξ

Mχ,0

Mχ,1
,V (χ)

(1 − (Fa − a) ξ)2

(2 − (Fa + γ − 2a) ξ)
Mχ,2

M2
χ,1

 .
2. If γ−1

n h2
nFχ (hn)→ ∞, then

1
hn

(r̂n (χ, h) − r (χ))
Pr
→ B (χ)

1 − (Fa − a) ξ
1 − Faξ

Mχ,0

Mχ,1
,

6



where
D
→ denotes convergence in distribution, N is the Gaussian distribution, and

Pr
→ denotes convergence in proba-

bility.

Let us now consider the case where the bandwidth hn is chosen so that limn→∞γ
−1
n h2

nFχ (hn) = 0 (which corre-
sponds to under-smoothing). Thus, the proposed estimator fulfils the following central limit theorem:√

γ−1
n Fχ (hn) (r̂n (χ, h) − r (χ))

D
→ N

(
0,V (χ) (1−(Fa−a)ξ)2

(2−(Fa+γ−2a)ξ)
Mχ,2

M2
χ,1

)
.

Let φ denote the distribution function N (0, 1), and tα/2 be so that φ
(
tα/2

)
= 1 − tα/2 (where α ∈ (0, 1)). Then the

approximate asymptotic confidence band of r (χ), with level 1 − α, is given byr̂n (χ, h) − φ
(
tα/2

) √
γ−1

n F̂n (hn)

√
(2 − (Fa + γ − 2a) ξ)

(1 − (Fa − a) ξ)2

M̂2
1

M̂2V̂ (χ)
,

r̂n (χ, h) + φ
(
tα/2

) √
γ−1

n F̂n (hn)

√
(2 − (Fa + γ − 2a) ξ)

(1 − (Fa − a) ξ)2

M̂2
1

M̂2V̂ (χ)

 ,
where F̂n is the empirical distribution function, and

M̂i =

n∑
k=1

∏
n
∏−1

k γkKi
(
‖χ−Xk‖

hk

)
F̂ (hk)

, i ∈ {1, 2} ,

V̂ (χ) = ĝn,2 (χ, h) − 4r̂n (χ, h) ĝn,3 (χ, h) + 3r̂2
n (χ) ĝn,4 (χ, h) ,

ĝn,β (χ, h) =

∏
n
∑n

k=1
∏−1

k γkh−1
k Y−βk K

(
‖χ−Xk‖

hk

)
∏

n
∑n

k=1
∏−1

k γkh−1
k E

[
K

(
‖χ−Xk‖

hk

)] . (9)

Remark 2. By considering the choice of the stepsize γn that minimize the variance of r̂n, the approximate asymptotic
confidence band of r (χ) with level 1 − α of the proposed recursive estimator is given byr̂n (χ, h) −

√
1 − Faφ

(
tα/2

) √
nF̂n (hn)

M̂2
1

M̂2V̂ (χ)
, r̂n (χ, h) +

√
1 − Faφ

(
tα/2

) √
nF̂n (hn)

M̂2
1

M̂2V̂ (χ)

 ,
however the approximate asymptotic confidence band of r (χ) with level 1−α of the nonrecursive estimator r̃n is given
by ̃rn (χ, h) − φ

(
tα/2

) √
nF̂n (hn)

M̃2
1

M̃2Ṽ (χ)
, r̃n (χ, h) + φ

(
tα/2

) √
nF̂n (hn)

M̃2
1

M̃2Ṽ (χ)

 ,
where

M̃i =
1

nF̂ (hn)

n∑
k=1

Ki
(
‖χ − Xk‖

hn

)
, i ∈ {1, 2} ,

Ṽ (χ) = g̃n,2 (χ, h) − 4̃rn (χ, h) g̃n,3 (χ, h) + 3̃r2
n (χ) g̃n,4 (χ, h) ,

g̃n,β (χ, h) =

∑n
k=1 Y−βk K

(
‖χ−Xk‖

hn

)
∑n

k=1 E
[
K

(
‖χ−Xk‖

hn

)] .
Now, in order to measure the quality of our recursive estimator (2), we use the following quantity:

MS E
[
r̂n (χ, h)

]
= (E (r̂n (χ, h)) − r (χ))2 + var (r̂n (χ, h)) .

The next proposition gives the MSE of the proposed recursive estimator based on the minimization of the MSRE and
defined in (2).
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Proposition 2 (MSE of r̂n (χ, h)). Let Assumptions (A1) − (A6) be satisfied,

1. If a ∈ (0, (γ − Fa) /2), then

MS E
[
r̂n (χ, h)

]
= B2 (χ)

(
1 − (Fa − a) ξ

1 − Faξ

)2 M2
χ,0

M2
χ,1

h2
n + o

(
h2

n

)
.

2. If a = (γ − Fa) /2, then

MS E
[
r̂n (χ, h)

]
= B2 (χ)

(
1 − (Fa − a) ξ

1 − Faξ

)2 M2
χ,0

M2
χ,1

h2
n +V (χ)

(1 − (Fa − a) ξ)2

(2 − (Fa + γ − 2a) ξ)
Mχ,2

M2
χ,1

γn

Fχ (hn)

+o
(
h2

n +
γn

Fχ (hn)

)
.

3. If a ∈ ((γ − Fa) /2, 1), then

MS E
[
r̂n (χ, h)

]
= V (χ)

(1 − (Fa − a) ξ)2

(2 − (Fa + γ − 2a) ξ)
Mχ,2

M2
χ,1

γn

Fχ (hn)
+ o

(
γn

Fχ (hn)

)
.

2.1. Bandwidth selection

In the framework of nonparametric kernel estimators, the data-driven bandwidth selection methods studied in the
literature can be divided into three broad classes: cross-validation techniques, plug-in methods, and the bootstrap
approach. A detailed comparison of the three techniques can be found in [16]. Here, we adapt the wild bootstrap
procedure proposed in [27] to approximate the distribution of the error of our proposed recursive kernel regression
estimator based on the minimization of the MSRE.

2.1.1. Wild bootstrap method
The wild bootstrap adapted first to functional data in [21], then under dependence conditions in [42], and more

recently to the recursive estimation of the functional variable in [47]. The main idea of the wild bootstrap is that, rather
than using the naive bootstrap approach of resampling from the pairs {Yi,Xi}

n
i=1, we resample from the estimated

residuals ε̂i = Yi − r̂n (Xi, h). Then, we use the obtained data to construct an estimator with a distribution that
approximates the distribution of the original estimator, and where each bootstrap residual ε∗i is drawn from a two-
point distribution, such that E

(
ε∗i

)
= 0, E

(
ε∗2i

)
= ε̂2

i , and E
(
ε∗3i

)
= ε̂3

i . Such a distribution equals

G∗i =

5 +
√

5
10

 δ
ε̂i

(1−
√

5)
2

+

5 −
√

5
10

 δ
ε̂i

(1+
√

5)
2

.

Our adapted procedure for the bandwidth selection when estimating recursively the operator r based on the minimiza-
tion of the MSRE in the case of functional setting is performed in three steps:

Step 1: We construct the bootstrapped residuals ε∗i drawn from the distribution G∗i .

Step 2: Resampling, new observations Y∗−l
i = ĝn,l (χi, b) + Y−l

i ε
∗
i , for l ∈ {1, 2}, where

ĝn,l (χ, b) =

∏
n
∑n

k=1
∏−1

k γkb−1
k K

(
‖χ−Xk‖

bk

)
Y−l

k∏
n
∑n

k=1
∏−1

k γkb−1
k E

[
K

(
‖χ−Xk‖

bk

)] ,
b ∈ {b1, . . . , bn} and bn should be larger than hn.
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Step 3: Given the bootstrapped data
{
Xi,Y∗i

}n

i=1
, we compute the kernel regression estimator,

r̂∗n (χ, h) =

∏
n
∑n

k=1
∏−1

k γkh−1
k K

(
‖χ−Xk‖

hk

)
Y∗−1

k∏
n
∑n

k=1
∏−1

k γkh−1
k K

(
‖χ−Xk‖

hk

)
Y∗−2

k

.

We repeat NB times this wild bootstrapping scheme, and we use the empirical distribution r̂∗n (χ, h)− r̂n (χ, b) for
selecting an optimal bandwidth.

Given NB replications of the proposed wild bootstrap procedure and given a fixed set H of bandwidths, the boot-
strapped bandwidth h∗ is defined by:

h∗ = h∗ (χ) = arg minh∈H

 1
NB

NB∑
J=1

(
r̂∗n (χ, h) − r̂n (χ, b)

)2

 . (10)

We expect that the bootstrapped bandwidths will be close to the optimal ones. The good behavior of the bootstrapping
approach (10) as an automatic bandwidth selection procedure was shown in Ferraty et al. [21] via some simulations
in the case of regression estimation based on the minimization of the MSE. They indicate that both the theoretical
quadratic loss and its data-driven bootstrapping approach have the same convex shape. Moreover, they compare the
theoretical minimal quadratic loss with the error obtained by using the bootstrapped bandwidth h∗. As mentioned
in Ferraty et al. [21], the theoretical support for this bootstrap bandwidth procedure is still an open question.

The wild bootstrap method in the case of the nonrecursive regression estimator based on the minimization of MSE
is given in Ferraty et al. [21]. The case of the recursive regression estimator based on the minimization of the MSE is
given in Slaoui [47].

Theorem 2. Assume that Assumptions (A1) − (A7) hold. Then, we have

supy∈R

∣∣∣∣∣PrS
(√

γ−1
n Fχ (hn)

{
r̂∗n (χ, h) − r̂n (χ, b)

}
≤ y

)
− Pr

(√
γ−1

n Fχ (hn) {r̂n (χ, h) − r (χ)} ≤ y
)∣∣∣∣∣ a.s.
→ 0,

where PrS denotes probability, conditionally on the the sample S (i.e., (Xi,Yi), i ∈ {1, . . . , n}).

Computational cost. The advantage of recursive estimators over their nonrecursive counterparts is that their update,
from a sample of size n to one of size n + 1, requires fewer computations. This property can be generalized, if we
suppose that we receive separately two sets of data, the first one of cardinal n1 that should be smaller or equal to n− 1
and the second set of cardinal n − n1. We can check that it follows from (1) that for j ∈ {1, 2}

ĝn, j (χ, h) =

n∏
j=n1+1

(
1 − γ j

)
ĝn1, j (χ, h) +

n−1∑
k=n1

 n∏
j=k+1

(
1 − γ j

) γk

hk
K

(
‖χ − Xk‖

hk

)
Y− j

k +
γn

hn
K

(
‖χ − Xn‖

hn

)
Y− j

n

= α1ĝn1, j (χ, h) +

n−1∑
k=n1

βk
γk

hk
K

(
‖χ − Xk‖

hk

)
Y− j

k +
γn

hn
K

(
‖χ − Xn‖

hn

)
Y− j

n ,

where α1 =
∏n

j=n1+1

(
1 − γ j

)
and βk =

∏n
j=k+1

(
1 − γ j

)
. It is clear, that we can use a bootstrap procedure to construct

an optimal bandwidth based on the first sample of size n1 and separately an optimal bandwidth based on the second
sample of size n − n1. Then the proposed estimator can be viewed as a linear combination of two estimators, which
improves the computational cost significantly.

Remark 3. The proposed recursive estimator is much better than the nonrecursive estimator in terms of computa-
tional times.

3. Applications

The aim of this section is to compare the performance of the proposed recursive estimator r̂n based on the mini-
mization of the MSRE defined in (2) to the recursive functional regression estimator introduced by Slaoui [47] based
on the minimization of the MSE and defined in (3) using a resampling bootstrap method.
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3.1. A chemometric application

This data is available online at [20]. This time series of spectra has been measured from wavelengths λ = 850
to λ = 1050nm for 215 fined chopped pieces of meat. From this times series, we extracted the 215 spectra of light
absorbance curvesX1, . . . ,X215 as functions of the wavelength, discretized into p = 100 points. The response variable
is the percentage of fat. These curves are displayed in Fig. 1.

In this functional context, the proposed estimator depends on the following parameters: Firstly, as measure of

proximity we consider the semi-metric d (χ1, χ2) =

√∫ (
χ(1)

1 (t) − χ(1)
2 (t)

)2
dt, where χ(1) denotes the first derivatives

of χ (since χ(1) is unknown we used B-spline approximation (see, [18, 19])). Secondly, since the choice of the kernel
function K was not crucial, we used the quadratic kernel K (u) =

(
1 − u2

)
1[0,1] (u) for all u ∈ R. Moreover, in order to

improve the speed of our proposed algorithm, the bandwidth h is assumed to belong to some grid in terms of k nearest
neighbors, h ∈ {h1, . . . , h50} = H, where hk is the radius of the ball of center χ and containing exactly k data curves
from X1, . . . ,X215 and where the number k is selected through a cross-validation procedure (here k = 8).

850 900 950 1000 1050
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s
o
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e

s

Fig. 1. These spectrometric curves data are available in [20].

Our main interest in this section is to compare the performance of two discussed estimators by determining the
relation between the spectrum and the fatness by estimating a functional regression model using the recursive estima-
tor (3) and using the recursive estimator (2). Notice that the routine ODM in the R Package OutlierDM [13] detected
20-outliers in the response variable Y .

For that reason, we decompose our sample of 215 pairs (Xi,Yi) in a learning and a testing sample. The learning
sample (L) has size 195, on which the various statistical methods are constructed and a testing sample (T ) of size 20,
which is used to examine the behavior of our method. We then measure the performance of the two estimators by the
Mean Squared Prediction Error (MSPE):

MSPE =
1

20

∑
i∈T

(
Ŷi − Yi

)2
,
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Fig. 2. Outlier detection for spectrometric data based on the MA plot. The MA plot visualizes the differences between measurements taken in two
samples, by transforming the data onto M (log ratio) and A (mean average) scales.

and the Mean Squared Prediction Relative Error (MSPRE):

MSPRE =
1

20

∑
i∈T

(
Ŷi − Yi

)2
Y−2

i ,

where Ŷi is the prediction for Yi obtained for each new curve Xi, i ∈ T , using one of the two estimators.

Table 1
MSPE and MSPRE results for the spectrometric data. Two approaches were implemented, (1) ”řn” is the recursive estimator based on the

minimization of the MSE, and (2) ”r̂n” is our recursive estimator based on the minimization of the MSRE.
Estimator MSPE MSPRE

řn 13.131 1.3302
r̂n 1.769 0.0915

We can observe from Table 1, that the proposed recursive estimator r̂n based on the minimization of the MSRE
gives a smaller MSPRE compared to the recursive estimator řn based on the minimization of the MSE. Imposing
the quantile regression fence lines on a MA plot (see Fig. 2), then we can classify data points into outliers and non-
outliers. In Fig. 2, the dashed line corresponds to the first and the third quantile and the continuous line corresponds
to the lower and the upper bound. The lower and upper fences are respectively equal to Q1 (A) − 1.5IQR (A) and
Q1 (A) + 1.5IQR (A), where IQR (A) = Q3 (A) − Q1 (A). The q-quantile is given by

arg minθi q
∑

i,Mi≥θi

|Mi − θi| + (1 − q)
∑

i,Mi≤θi

|Mi − θi| ,

where q ∈ ]0, 1[ and θi = β0 + β1Ai, used first by Koenker and Bassett [34] and more recently by Cho et al. [12].
11
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Fig. 3. Predicted values. Left plot: estimator (3) based on the MSE; Right plot: estimator (2) based on the MSRE.

Moreover, we plot in Fig. 3 the predicted values obtained using the two considered estimators as a function of the true
one for the 20 spectra in our testing sample.

4. Conclusion

In this article, we propose an automatic selection of the bandwidth of recursive nonparametric relative regression
for independent functional data. The proposed estimator asymptotically follows a normal distribution. The proposed
estimator is compared to the recursive estimator based on the minimization of the MSE for functional data proposed
by Slaoui [47] as an extension of the method introduced in Slaoui [46]. We showed that using some selected parame-
ters, the proposed recursive estimator outperformed the recursive estimator introduced in [47]. The application study
illustrates our finding.

We plan to extend this work by considering Bernstein polynomials rather than kernels and to propose an adaptation
of the estimators developed in Jmaei et al. [30] and Slaoui and Jmaei [48] in the case of functional data. We plan also to
compare these estimators to the kernel nearest-neighbor approach developed in Kara et al. [32], the semi-parametric
functional projection pursuit regression [11], the single index model [25], the partial linear models [4, 35] and the
sparse modeling approach [5].

A. Proofs

Before proving our main results, we state the following technical lemma.

Lemma 1. Let vn ∈ GS (v∗), γn ∈ GS (−γ), and m > 0 such that m − v∗ξ > 0 where ξ is defined in (5). We have

lim
n→+∞

vn

n∑
k=1

∏m
n γk∏m
k vk

=
1

m − v∗ξ
.
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Moreover, for all positive sequences bn such that limn→+∞bn = 0,

lim
n→+∞

vn

n∑
k=1

∏m
n γk∏m
k vk

bk = 0.

Lemma 1 is widely applied throughout the proofs. Let us underline that it is its application, which requires
Assumption (A2) (iii) on the limit of (nγn) as n goes to infinity.
Our proofs are organized as follows. Proposition 1 and Theorem 1 are proved respectively, in Sections A.1 and A.2.

A.1. Proof of Proposition 1

First, we consider the following decomposition:

E
[
r̂n (χ, h)

]
− r (χ) =

E
[
ĝn,1 (χ, h)

]
E

[
ĝn,2 (χ, h)

] − r (χ) −
E

{
ĝn,1 (χ, h)

[
ĝn,2 (χ, h) − E

(
ĝn,2 (χ, h)

)]}{
E

[
ĝn,2 (χ, h)

]}2

+
E

{
r̂n (χ, h)

[
ĝn,2 (χ, h) − E

(
ĝn,2 (χ, h)

)]2
}

{
E

[
ĝn,2 (χ, h)

]}2 . (11)

Now, we focus on computing the expectation of ĝn,β (χ, h). It follows from (9), that

E
[
ĝn,β (χ, h)

]
=

∏
n
∑n

k=1
∏−1

k γkh−1
k E

[
Y−βk K

(
‖χ−Xk‖

hk

)]
∏

n
∑n

k=1
∏−1

k γkh−1
k E

[
K

(
‖χ−Xk‖

hk

)] .

Moreover, for α ∈ R, we have

E
[
Kα

(
‖χ − Xk‖

hk

)]
=

∫ 1

0
Kα (u) dPr

(
‖χ−Xk‖

hk

)
(u)

= Fχ (hk)
[
Kα (1) −

∫ 1

0
(Kα (u))′ τhk (u) du

]
.

Then, since limn→∞ (nγn) > Fa − a, we apply Lemma 1 to infer that

n∑
k=1

∏
n γk∏
k hk

E
[
K

(
‖χ − Xk‖

hk

)]
=

1
1 − (Fa − a) ξ

Mχ,1h−1
n Fχ (hn) [1 + o (1)] . (12)

Further, we have

E
[
Y−βk Kα

(
‖χ − Xk‖

hk

)]
= E

[
Kα

(
‖χ − Xk‖

hk

)
E

[
Y−βk |Xk

]
|Xk

]
= gβ (χ) E

[
Kα

(
‖χ − Xk‖

hk

)]
+ E

[
Kα

(
‖χ − Xk‖

hk

)
E

[{
gβ (Xk) − gβ (χ)

}
| ‖Xk − χ‖

]]
= gβ (χ) E

[
Kα

(
‖χ − Xk‖

hk

)]
+ E

[
Kα

(
‖χ − Xk‖

hk

)
ψχ,β (‖Xk − χ‖)

]
.

A Taylor expansion of ψχ,β around 0 ensures that

E
[
Kα

(
‖χ − Xk‖

hk

)
ψχ,β (‖Xk − χ‖)

]
=

∫ 1

0
ψχ,β (hku) Kα (u) dPr

(
‖χ−Xk‖

hk

)
(u)

= hkψ
′
χ,β (0)

∫ 1

0
uKα (u) dPr

(
‖χ−Xk‖

hk

)
(u) + o (hk) .
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Moreover, it follows from the proof of Lemma 2 in Ferraty et al. [21], the Assumption (A2) and Fubini’s theorem∫ 1

0
uKα (u) dPr

(
‖χ−Xk‖

hk

)
(u) = Fχ (hk)

[
Kα (1) −

∫ 1

0
(uKα (u))′ τhk (u) du

]
.

Then, we have, for all α and β in R

E
[
Y−βk Kα

(
‖χ − Xk‖

hk

)]
= gβ (χ) Fχ (hk)

[
Kα (1) −

∫ 1

0
(Kα (u))′ τhk (u) du

]
+hkψ

′
χ,β (0) Fχ (hk)

[
Kα (1) −

∫ 1

0
(uKα (u))′ τhk (u) du

]
. (13)

Whence, since we have limn→∞ (nγn) > Fa, the application of Lemma 1 gives

E
[
ĝn,β (χ, h)

]
= gβ (χ) + ψ′χ,β (0)

1 − (Fa − a) ξ
1 − Faξ

Mχ,0

Mχ,1
hn [1 + o (1)] . (14)

Now, we focus on computing the variance of ĝn,β (χ, h). It follows from (9), that

var
[
ĝn,β (χ, h)

]
=

∏2
n
∑n

k=1
∏−2

k γ2
kh−2

k var
[
Y−βk K

(
‖χ−Xk‖

hk

)]
(∏

n
∑n

k=1
∏−1

k γkh−1
k E

[
K

(
‖χ−Xk‖

hk

)])2 .

Moreover, it follows from (13)

var
[
Y−βk K

(
‖χ − Xk‖

hk

)]
= g2β (χ) Fχ (hk)

[
K2 (1) −

∫ 1

0

(
K2 (u)

)′
τhk (u) du

]
[1 + o (1)] .

Then, since limn→∞ (nγn) > (Fa + γ) /2 − a, we make use of Lemma 1 to infer that
n∑

k=1

∏2
n γ

2
k∏

k h2
k

var
[
Y−βk K

(
‖χ − Xk‖

hk

)]
=

1
2 − (Fa + γ − 2a) ξ

g2β (χ) Mχ,2
γn

h2
n

Fχ (hn) [1 + o (1)] . (15)

The combination of (12) and (15) ensures that

var
[
ĝn,β (χ)

]
=

(1 − (Fa − a) ξ)2

2 − (Fa + α − 2a) ξ
g2β (χ)

Mχ,2

M2
χ,1

γn

Fχ (hn)
[1 + o (1)] . (16)

In order to compute the covariance between ĝn,1 (χ, h) and ĝn,2 (χ, h), we use (9), then we readily have

E
[
ĝn,1 (χ, h) ĝn,2 (χ, h)

]
=

∏2
n
∑n

k=1
∏−2

k γ2
kh−2

k E
[
Y−3

k K2
(
‖χ−Xk‖

hk

)]
(∏

n
∑n

k=1
∏−1

k γkh−1
k E

[
K

(
‖χ−Xk‖

hk

)])2

+

∏2
n
∑n

k,k′=1
k,k′

∏−1
k Π−1

k′ γkγk′h−1
k E

[
Y−1

k K
(
‖χ−Xk‖

hk

)]
h−1

k′ E
[
Y−2

k′ K
(
‖χ−Xk′ ‖

hk′

)]
(∏

n
∑n

k=1
∏−1

k γkh−1
k E

[
K

(
‖χ−Xk‖

hk

)])2 .

Since limn→∞ (nγn) > (Fa + γ) /2 − a, the application of Lemma 1 together with (12) and (13), ensures that

cov
[
ĝn,1 (χ, h) , ĝn,2 (χ, h)

]
=

(1 − (Fa − a) ξ)2

2 − (Fa + α − 2a) ξ
g3 (χ)

Mχ,2

M2
χ,1

γn

Fχ (hn)
[1 + o (1)] . (17)

Let us now compute the expectation of r̂n (χ, h). First, it follows from (16), that

E
{
ĝn,1 (χ, h)

[
ĝn,2 (χ, h) − E

(
ĝn,2 (χ, h)

)]}
= O

(
γn

Fχ (hn)

)
, (18)

E
{
r̂n (χ, h)

[
ĝn,2 (χ, h) − E

(
ĝn,2 (χ, h)

)]2
}

= O
(

γn

Fχ (hn)

)
. (19)
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Then (6) follows from (11), (14), (18) and (19). Now, in order to compute the variance of r̂n (χ, h), we use the following
decomposition

var
[
r̂n (χ, h)

]
'

var
[
ĝn,1 (χ, h)

]{
E

[
ĝn,2 (χ, h)

]}2 − 4
E

[
ĝn,1 (χ, h)

]
cov

(
ĝn,1 (χ, h)), ĝn,2 (χ, h)

){
E

[
ĝn,2 (χ, h)

]}3

+3var
[
ĝn,2 (χ, h)

] {
E

[
ĝn,1 (χ, h)

]}2{
E

[
ĝn,2 (χ, h)

]}4 . (20)

The combination of (14), (16), (17) and (20), implies that

var
[
r̂n (χ, h)

]
= V (χ)

Mχ,2

M2
χ,1

(1 − (Fa − a) ξ)2

(2 − (Fa + γ − 2a) ξ)
γn

Fχ (hn)
[1 + o (1)] .

A.2. Proof of Theorem 1

Let us at first assume that, if a ≥ (γ + Fa) /2, then√
γ−1

n Fχ (hn)
(
r̂n (χ, h) − E

[
r̂n (χ, h)

]) D
→ N

0,V (χ)
(1 − (Fa − a) ξ)2

(2 − (Fa + γ − 2a) ξ)
Mχ,2

M2
χ,1

 . (21)

In the case when γ−1
n h2

nFχ (hn) → c, Part 1 of Theorem 1 follows from the combination of (6) and (21). In the case
γ−1

n h2
nFχ (hn)→ ∞, (7) implies that

h−2
n (r̂n (χ, h) − E (r̂n (χ, h)))

Pr
→ 0,

and the application of (6) gives Part 2 of Theorem 1.
We now prove (21). Using the fact that, for x such that ĝn,2 (χ, h) , 0, we have the following decomposition:

r̂n (χ, h) − r (χ) = Dn (χ, h)
g2 (χ)

ĝn,2 (χ, h)
, (22)

with

Dn (χ, h) =
1

g2 (χ)
{
ĝn,1 (χ, h) − r (χ) ĝn,2 (χ, h)

}
.

It follows from (22), that the asymptotic behavior of r̂n (χ, h) − r (χ) can be deduced from the one ofDn (χ, h). Let us
set

Zk (χ) =
γk∏
k hk

{
Y−1

k − r (χ) Y−2
k

}
K

(
‖χ − Xk‖

hk

)
,

f̂n (χ) =

n∑
k=1

∏
n γk∏
k hk

K
(
‖χ − Xk‖

hk

)
and

Tk (χ) = Zk (χ) − E
[
Zk (χ)

]
. (23)

Hence, we directly have

Dn (χ, h) − E
[
Dn (χ, h)

]
=

∏
n

g2 (χ) E
[
f̂n (χ)

] n∑
k=1

Tk (χ) .
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Since limn→∞ (nγn) > (Fa + γ) /2 − a, we apply Lemma 1 as well as (12), (13) and (23), to deduce that

v2
n =

n∑
k=1

var (Tk (χ)) =

n∑
k=1

γ2
k∏2

k h2
k

var
[{

Y−1
k − r (χ) Y−2

k

}
K

(
‖χ − Xk‖

hk

)]

= O

 n∑
k=1

γ2
k∏2

k h2
k

Fχ (hk)

 = O
(
γnFχ (hn)∏2

n h2
n

)
.

Moreover, using the fact that, for all p > 0,

E
[
|Zk (χ)|2+p

]
= O

Fχ (hk)

h1+p
k

 ,
and, since limn→∞ (nγn) > (Fa + γ) /2 − a, there exists a p > 0 such that limn→∞ (nγn) > 1+p

2+p ((Fa + γ) /2 − a).
Applying Lemma 1, we get

n∑
k=1

E
[
|Tk (χ)|2+p

]
= O

 n∑
k=1

γ
2+p
k∏2+p
k

E
[
|Zk (χ)|2+p

] = O

 n∑
k=1

∏−2−p
k γ

2+p
k Fχ (hk)

h1+p
k


= O

γ1+p
n Fχ (hn)∏2+p

n h1+p
n

 ,
and we thus obtain

1

v2+p
n

n∑
k=1

E
[
|Tk (χ)|2+p

]
= O

([
γnh−1

n Fχ (hn)
]p/2

)
= o (1) .

The convergence in (21) then follows from the application of Lyapounov’s theorem.

A.3. Proof of Theorem 2
The proof is based on the following decomposition:

PrS
(√

γ−1
n Fχ (hn)

{
r̂∗n (χ, h) − r̂n (χ, b)

}
≤ y

)
− Pr

( √
γ−1

n Fχ (hn) {r̂n (χ, h) − r (χ)} ≤ y
)

= T1 (y) + T2 (y) + T3 (y) ,

where

T1 (y) = PrS
(√

γ−1
n Fχ (hn)

{
r̂∗n (χ, h) − r̂n (χ, b)

}
≤ y

)
− Φ

y −
√
γ−1

n Fχ (hn)
{
ES

[
r̂∗n (χ, h)

]
− r̂n (χ, b)

}
√
γ−1

n Fχ (hn) VarS
[
r̂∗n (χ, h)

]
 ,

T2 (y) = Φ

y −
√
γ−1

n Fχ (hn)
{
E

[
r̂n (χ, h)

]
− r (χ)

}√
γ−1

n Fχ (hn) var
[
r̂n (χ, h)

]  − Pr
(√

γ−1
n Fχ (hn) {r̂n (χ, h) − r (χ)} ≤ y

)
,

T3 (y) = Φ

y −
√
γ−1

n Fχ (hn)
{
ES

[
r̂∗n (χ, h)

]
− r̂n (χ, b)

}
√
γ−1

n Fχ (hn) VarS
[
r̂∗n (χ, h)

]
 − Φ

y −
√
γ−1

n Fχ (hn)
{
E

[
r̂n (χ, h)

]
− r (χ)

}√
γ−1

n Fχ (hn) var
[
r̂n (χ, h)

]  ,
where ES and VarS denote expectation and variance, conditionally on the sample S, and Φ denotes the standard
normal distribution function. The first part of Theorem 1 ensures that

T2 (y)→ 0 a.s. ∀y ∈ R. (24)

Moreover,

T1 (y)→ 0 a.s. ∀y ∈ R, (25)

follows from the next lemma.
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Lemma 2. Assume that Assumptions (A1) − (A6) hold. Then, we have

r̂∗n (χ, h) − ES
[
r̂∗n (χ, h)

]√
VarS

[
r̂∗n (χ, h)

] d
→ N (0, 1) .

Now, from (24), (25) and Polya’s theorem (see, e.g., Serfling [44], p. 18) together with the continuity of the
function Φ, we arrive at

supy∈R |T1 (y)| + supy∈R |T2 (y)| → 0 a.s. ∀y ∈ R.

Finally, it remains to study the term T3 (y). Using the fact that, for any a > 0 and c ∈ R,

supy∈R |Φ (c + ay) − Φ (y)| ≤ |c| + max
{
a, a−1

}
− 1,

and considering

a =

√
var

[
r̂n (χ, h)

]
VarS

[
r̂∗n (χ, h)

]
and

c =

√
γ−1

n Fχ (hn)
{
E

[
r̂n (χ, h)

]
− r (χ) − ES

[
r̂∗n (χ, h)

]
+ r̂n (χ, b)

}
√
γ−1

n Fχ (hn) VarS
[
r̂∗n (χ, h)

] ,

we get

supy∈R |T3 (y)| ≤

∣∣∣∣∣∣∣∣∣
√
γ−1

n Fχ (hn)
{
E

[
r̂n (χ, h)

]
− r (χ) − ES

[
r̂∗n (χ, h)

]
+ r̂n (χ, b)

}
√
γ−1

n Fχ (hn) VarS
[
r̂∗n (χ, h)

]
∣∣∣∣∣∣∣∣∣

+max


√

var
[
r̂n (χ, h)

]
VarS

[
r̂∗n (χ, h)

] ,
√

VarS
[
r̂∗n (χ, h)

]
var

[
r̂n (χ, h)

]
 − 1. (26)

The combination of (8), (26) and the following two lemmas ensure the convergence of supy∈R |T3 (y)|.

Lemma 3. Assume that Assumptions (A1) − (A6) hold. Then√
var

[
r̂n (χ, h)

]
VarS

[
r̂∗n (χ, h)

] → 1 a.s.

Lemma 4. Assume that Assumptions (A1) − (A7) hold. Then√
γ−1

n Fχ (hn)
{
E

[
r̂n (χ, h)

]
− r (χ) − ES

[
r̂∗n (χ, h)

]
+ r̂n (χ, b)

}
→ 0 a.s.

A.3.1. Proof of Lemma 2
Using the fact that, for x such that ĝ∗n,2 (χ) , 0, we have the following decomposition:

r̂∗n (χ, h) − r (χ) = D∗n (χ, h)
g2 (χ)

ĝ∗n,2 (χ, h)
, (27)

with

D∗n (χ, h) =
1

g2 (χ)

{
ĝ∗n,1 (χ, h) − r (χ) ĝ∗n,2 (χ, h)

}
.
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It follows from (27), that the asymptotic behavior of r̂∗n (χ, h) − r (χ) can be deduced from the one ofD∗n (χ, h). Let us
set

Z∗k (χ) =
γk∏
k hk

{
Y∗−1

k − r (χ) Y∗−2
k

}
K

(
‖χ − Xk‖

hk

)
and

T ∗k (χ) = Z∗k (χ) − ES
[
Z∗k (χ)

]
. (28)

Hence, we readily infer that

D∗n (χ, h) − ES
[
D∗n (χ, h)

]
=

∏
n

g2 (χ) E
[
f̂n (χ)

] n∑
k=1

T ∗k (χ) .

Moreover, since we have for l ∈ {1, 2, 3}

VarS
[
Y∗−l

k

]
= E

[
Y−2l

k

]
ε2

k , ES
[
Y∗−l

k

]
= ĝn,l (χk, b) ,

and given that limn→∞ (nγn) > (Fa + γ) /2 − a, the application of Lemma 1 together with (12), (13) and (28), ensures
that

v∗2n =

n∑
k=1

VarS
(
T ∗k (χ)

)
=

n∑
k=1

γ2
k∏2

k h2
k

VarS
[{

Y∗−1
k − r (χ) Y∗−2

k

}
K

(
‖χ − Xk‖

hk

)]

= O

 n∑
k=1

γ2
k∏2

k h2
k

Fχ (hk)

 = O
(
γnFχ (hn)∏2

n h2
n

)
.

Now, we have, for all p > 0,

E
[∣∣∣Z∗k (χ)

∣∣∣2+p
]

= O

Fχ (hk)

h1+p
k

 ,
and, since limn→∞ (nγn) > (Fa + γ) /2−a, there exists p > 0 such that limn→∞ (nγn) > 1+p

2+p ((Fa + γ) /2 − a). Applying
again Lemma 1, we get

n∑
k=1

ES
[∣∣∣T ∗k (χ)

∣∣∣2+p
]

= O

 n∑
k=1

γ
2+p
k∏2+p
k

ES
[∣∣∣Z∗k (χ)

∣∣∣2+p
] = O

 n∑
k=1

∏−2−p
k γ

2+p
k Fχ (hk)

h1+p
k


= O

γ1+p
n Fχ (hn)∏2+p

n h1+p
n

 ,
and thus we obtain

1∣∣∣v∗n∣∣∣2+p

n∑
k=1

ES
[∣∣∣T ∗k (χ)

∣∣∣2+p
]

= O
([
γnh−1

n Fχ (hn)
]p/2

)
= o (1) .

The convergence in (21) then follows from the application of Lyapounov’s theorem.

A.3.2. Proof of Lemma 3
First, we use the following decomposition:

VarS
[
r̂∗n (χ, h)

]
'

VarS
[
ĝ∗n,1 (χ, h)

]
{
ES

[
ĝ∗n,2 (χ, h)

]}2 − 4
ES

[
ĝ∗n,1 (χ, h)

]
CovS

(
ĝ∗n,1 (χ, h)), ĝ∗n,2 (χ, h)

)
{
ES

[
ĝ∗n,2 (χ, h)

]}3

+3VarS
[
ĝ∗n,2 (χ, h)

] {
ES

[
ĝ∗n,1 (χ, h)

]}2{
ES

[
ĝ∗n,2 (χ, h)

]}4 . (29)
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Moreover, we have for l ∈ {1, 2}

VarS
[
ĝ∗n,l (χ, h)

]
=

∏2
n
∑n

k=1
∏−2

k γ2
kh−2

k K2
(
‖χ−Xk‖

hk

)
VarS

[
Y∗−l

k

]
(∏

n
∑n

k=1
∏−1

k γkh−1
k E

[
K

(
‖χ−Xk‖

hk

)])2 , (30)

ES
[
ĝ∗n,l (χ, h)

]
=

∏
n
∑n

k=1
∏−1

k γkh−1
k K

(
‖χ−Xk‖

hk

)
ES

[
Y∗−l

k

]
∏

n
∑n

k=1
∏−1

k γkh−1
k E

[
K

(
‖χ−Xk‖

hk

)] (31)

and

ES
[
ĝ∗n,1 (χ, h) ĝ∗n,2 (χ, h)

]
=

∏2
n
∑n

k=1
∏−2

k γ2
kh−2

k K2
(
‖χ−Xk‖

hk

)
ES

[
Y∗−3

k

]
(∏

n
∑n

k=1
∏−1

k γkh−1
k E

[
K

(
‖χ−Xk‖

hk

)])2

+

∏2
n
∑n

k,k′=1
k,k′

∏−1
k Π−1

k′ γkγk′h−1
k h−1

k′ K
(
‖χ−Xk‖

hk

)
K

(
‖χ−Xk′ ‖

hk′

)
ES

[
Y∗−1

k

]
ES

[
Y∗−2

k′

]
(∏

n
∑n

k=1
∏−1

k γkh−1
k E

[
K

(
‖χ−Xk‖

hk

)])2 . (32)

Since we have for l ∈ {1, 2, 3}

VarS
[
Y∗−l

k

]
= E

[
Y−2l

k

]
ε2

k , ES
[
Y∗−l

k

]
= ĝn,l (χk, b) , (33)

the combination of (29), (30), (31), (32), (33) and some computational analysis ensures that

VarS
[
r̂∗n (χ, h)

]
= var

[
r̂n (χ, h)

]
(1 + o (1)) .

A.3.3. Proof of Lemma 4
This proof follows the same steps as those used in Ferraty et al. [22]. First, we use the following decomposition:

ES
[
r̂∗n (χ, h)

]
− r̂n (χ, b) = U1 + U2 + U3,

where

U1 = J−1
1

n∑
k=1

∏
n γk∏
k hk

K
(
‖χ − Xk‖

hk

) {
ĝn,1 (χk, b) − r̂n (χ, b) ĝn,2 (χk, b)

− E
[
ĝn,1 (χk, b)

]
+ E

[
r̂n (χ, b) ĝn,2 (χk, b)

]}
,

U2 = J−1
1

n∑
k=1

∏
n γk∏
k hk

K
(
‖χ − Xk‖

hk

) {
E

[
ĝn,1 (χk, b)

]
− E

[
r̂n (χ, b) ĝn,2 (χk, b)

]
−g1 (χk) + r (χ) g2 (χk)} ,

U3 = J−1
1

n∑
k=1

∏
n γk∏
k hk

K
(
‖χ − Xk‖

hk

)
{g1 (χ) − r (χ) g2 (χk)} ,

J1 =

n∑
k=1

∏
n γk∏
k hk

K
(
‖χ − Xk‖

hk

)
ĝn,2 (χk, b) .

Moreover, we can check that U3 = E
[
r̂n (χ, h)

]
− r (χ) + o

( √
γ−1

n Fχ (hn)
)

a.s., whereas U1 and U2 are o
( √

γ−1
n Fχ (hn)

)
a.s. by Lemmas 5 and 6.

Lemma 5. Assume that Assumptions (A1) − (A6) hold. Then

sup‖χ−χ1‖≤h

∣∣∣E [
ĝn,1 (χ, b)

]
− E

[
r̂n (χ, b) ĝn,2 (χ1, b)

]
− g1 (χ1) + r (χ) g2 (χ1)

∣∣∣ = o
(√

γ−1
n Fχ (hn)

)
a.s.
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Lemma 6. Assume that Assumptions (A1) − (A6) hold. Then

sup‖χ−χ1‖≤h

∣∣∣E [
ĝn,1 (χ1, b))

]
− E

[
r̂n (χ, b) ĝn,2 (χ1, b)

]
− ĝn,1 (χ1, b) + r̂n (χ, b) ĝn,2 (χ1, b)

∣∣∣ = o
(√

γ−1
n Fχ (hn)

)
a.s.

The proof of Lemmas 5 and 6 are obtained by following the same lines and decompositions used in the proof of
Lemmas A.5 and A.6 given in Ferraty et al. [22].
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[38] A. Mokkadem, M. Pelletier, Y. Slaoui, Revisiting Révész’s stochastic approximation method for the estimation of a regression function,

ALEA Lat. Am. J. Probab. Math. Stat. 6 (2009) 63–114.
[39] S.C. Narula, J.F. Wellington, Prediction, linear regression and the minimum sum of relative errors, Technometrics 19 (1977) 185–190.
[40] H. Park, L.A. Stefanski, Relative-error prediction. Statist. Probab. Lett. 40 (1998) 227–236.
[41] D.N. Politis, J.P. Romano, Limit theorems for weakly dependent Hilbert space valued random variables with application to the stationarity

bootstrap, Statist. Sinica 4 (1994) 461–476.
[42] P, Raña, G. Aneiros, J. Vilar, P. Vieu, Bootstrap confidence intervals in functional nonparametric regression under dependence, Electron. J.

Stat. 10 (2016) 1973–1999.
[43] J.O. Ramsay, B. W. Silverman, Applied Functional Data Analysis: Methods and Case Studies, Springer, New York, 2002.
[44] R.J. Serfling, Approximation Theorems of Mathematical Statistics, Wiley, New York, 1980.
[45] H.L. Shang, Bootstrap methods for stationary functional time series, Statist. Comput. 28 (2018) 1–10.
[46] Y. Slaoui, Optimal bandwidth selection for semi-recursive kernel regression estimators. Stat. Interface 9 (2016) 375–388.
[47] Y. Slaoui, Recursive nonparametric regression estimation for independent functional data, Statist. Sinica (2018) http://dx.doi.org/10.

5705/ss.202018.0069.
[48] Y. Slaoui, A. Jmaei, Recursive density estimators based on Robbins-Monro’s scheme and using Bernstein polynomials, Stat. Interface (2019)

To appear.
[49] Y. Yang, F. Ye, General relative error criterion and M-estimation, Front. Math. China 8 (2013) 695–715.

21




