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Abstract

We propose and investigate a new kernel regression estimator based on the minimization of the mean squared relative
error. We study the properties of the proposed recursive estimator and compare it with the recursive estimator based
on the minimization of the mean squared error proposed by Slaoui (2018). It turns out that, with an adequate choice
of the parameters, the proposed estimator performs better than the recursive estimator based on the minimization of
the mean squared error. We illustrate these theoretical results through a real chemometric dataset.
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square relative error, Nonparametric estimation, Stochastic approximation algorithm.
2010 MSC: Primary: 62G08, 62L.20, 62G09. Secondary: 65D10.

1. Introduction

Functional data have become more and more popular in modern statistics because of the progress in comput-
ing technology, in terms of both memory capacity and computing speed which have made it possible to record
vast amounts of data. It concerns many statistical methods dealing with random variables valued in some infinite-
dimensional space, called functional variables. Thus, a very large number of variables can be observed for the study
of the same phenomenon. This type of data appears in several fields including climatology, economics, psychology,
linguistics, medicine, and so on.

There has been an increasing interest in Functional Data Analysis (FDA) in the past decades, as it is highlighted
by the popular monograph of Ramsay and Silverman [43], who provide a detailed exposition of both theoretical and
practical aspects of functional data analysis. Statistical inference for FDA has been widely investigated (see, e.g.,
[28, 29]). The existing literature contains numerous studies on functional linear models (see, e.g., [7, 8, 26]). The
nonparametric treatment has been popularized by the book of Ferraty and Vieu [23] and now takes a large place in the
FDA literature; see the discussions in the recent surveys by Cuevas [15] who offers a short tutorial as well as a partial
survey of the FDA theory. We point also to the work [36] which gives a survey of nonparametric FDA and presents
a wide scope of open questions. Aneiro et al. [2] present various contributions into two categories: papers promoting
new methodology for data varying over a continuum, and papers concerned with very high- but finite-dimensional
problems.

In the last decade, data streams have become an increasingly important area of research. Common data streams
include Internet packet data, Twitter activity, Facebook news stream, and credit card transactions. In those situations,
data arrives regularly so that it is impossible to store them in a traditional database. In such a context, building a
recursive estimator which does not require to store all the data in memory and can be updated easily in order to deal
with online data is of great interest.

This work concerns nonparametric recursive estimation of the regression operator when the explanatory data are
curves and the response is real-valued, based on the minimization of the Mean Squared Relative Error (MSRE). This
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problem can be formulated by considering {Y;, X;}!_, a sample of independent and identically distributed couples,
where Y; is real-valued and X; takes values in some functional space & equipped with a semi-norm ||-||. A common
nonparametric model of this relationship is for i € {1, ..., n} given by

Y; =r(X)+¢;,

where g; is a random variable. In ordinary predictions, we estimate the operator r by minimizing the expected squared
loss function:

E[(¥ - r (X)) IX],

and we obtain as predictor the quantity E [Y|X], which gives the Mean Squared Error (MSE). However, when Y > 0
or in the presence of outliers, the use of the classical loss function can lead to unreasonable results, since all variables
have the same weight. Therefore, it is of interest to consider the response level (Y — r (X)) /Y rather than (Y — r (X))
and then it is necessary to consider the MSRE:

of[7=0) o]

Minimizing this loss function leads to predicting the quantity (see Park and Stefanski [40])
E[rIX]
E[y=21X]

By assuming that E |Yi_l|X| < oo, for I € {1, 2}, we define the regression functional as

E[Y;1X; = u

r(u) = —E [Yi‘lei . u]

o uedb, VieNlN.

Moreover, we set g; (u) = E[Y i‘IIX i = u], forall/ € N, u € & and i € N. Then, we have the following relation,
g1 (W) =ru) g (u).

The purpose of this study is to extend the work proposed first in the case of a real explanatory variable in Slaoui
[46] and then in the case of a functional explanatory variable in Slaoui [47]. The two previous estimators are based on
the minimization of the MSE. In the current work we propose to use the MSRE rather than the MSE criterion. Thus,
our proposed estimator is:

A1 (x> h)

A}1 ,h = )
ek =

with

I — Xall

ﬁln,j (X’ h) = (1 _yn) fhn—l,j (Xa h) +7nh;lK( A

)Y,,f; jeil), (D)
where (y,) and (h,) are sequences of positive real numbers which are converging to 0, K is a kernel and h €
{hi,...,h,}. The recursive property (1) is particularly useful for large samples, because 7, can be updated easily
using additional observation. Throughout this paper, we suppose that 7 ; (x,h) = 0, for j € {1,2}; and we let
[T, = I1%, (1 —¥). Then, we can estimate the operator r by

-1 —ly— Iy =Xkl
[T, 2 i thk]Yk lK( th : )

-1 “1y- =Xl \
[T, 2= i 7kthYk ZK( thk : )

Despite that the MSRE is widely used in practice as a measure of performance, the theoretical properties of this
alternative regression were not frequently used until the work of Narula and Wellington [39]. Since this work, we
2
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can find some criteria based on minimizing the sum of Absolute Relative Errors (ARE) and others on the sum of
squared relative errors (SRE). For example, see [33] for some models in software engineering, [9] for some examples
in medicine or [10] for some financial applications. Note that most of the recent methods are concerned with the
estimation of unknown parameters (see, [49] for recent advances and references).

In the framework of nonparametric estimations, Jones et al. [31] studied the asymptotic properties of an estimator
minimizing the sum of the squared relative errors by considering the kernel estimation methods and a local linear
approach. Moreover, in the functional framework, only the paper by Demongeot et al. [17] has paid attention to the
study of nonparametric prediction via relative error regression. As far as we know, there is no work on recursive
estimators in the functional nonparametric literature based on the minimization of the MSRE. The works of Amiri et
al. [1] and Slaoui [47], both proposed recursive estimation of the operator r based on the minimization of the MSE.

Furthermore, the functional bootstrap literature is not widely developed. Poltis and Romano [41] developed some
weak convergence results for approximating sums of weakly dependent stationary Hilbert space valued random vari-
ables under the asymptotic validity of a stationary bootstrap method. Cuevas et al. [14] presented a Monte Carlo
study analyzing the performance of the bootstrap confidence bands of several functional estimators. Rafia et al. [42]
considered a naive and a wild bootstrap procedure to construct pointwise confidence intervals for a nonparametric
regression function when the predictor is of functional nature and when the data are dependent. More recently, Aneiro
et al. [3] proposed a naive and a wild bootstrap procedure to approximate the distribution of kernel-based estimators
under a-mixing conditions, whereas Shang [45] considered bootstrap methods for estimating the long-run covariance
of stationary functional time series.

The first purpose of this paper, is to study, under some general conditions, the asymptotic properties of an alterna-
tive functional recursive kernel estimator of the regression operator r. Secondly, we propose an automatic bandwidth
selection through a wild bootstrap method. Thirdly, we compare the performance of the proposed recursive estimator
7, based on the minimization of the MSRE to the recursive functional regression estimator introduced by Slaoui [47],
the latter is based on the minimization of the MSE and defined as

_ _ -X
I_In ZZ:] ITkl ykhk : YkK<“th AH)

Fu (Xs h) = — .
Hn Z:l Hl:l '}/khlle(HXh_:Yk”)

(©))

The layout of the present paper is as follows. Section 2 is devoted to the main results of the present work. Section 3
is dedicated to application results by using a real dataset. We conclude the article in Section 4. To avoid interrupting
the flow of this paper, all mathematical developments are relegated to Appendix A.
2. Assumptions and main results

Firstly, we define the following class of regularly varying sequences.

Definition 1. Let y € R and (v,),»1 be a non-random positive sequence. We say that (v,) € GS (y) if

lim n[l - V"_I} =y. (€]

n—+oo Vi

Condition (4) was introduced by Galambos and Seneta [24] to define regularly varying sequences (see also Bojanic
and Seneta [6]) and by Mokkadem and Pelletier [37] in the context of stochastic approximation algorithms. Note that
GS stands for Galambos and Seneta. Typical sequences in GS (y) are, for b € R, n” (logn)”, n” (loglogn)”, and
so on. In this section, we investigate the asymptotic properties of the proposed estimator (2). Before presenting the
assumptions, let us give some notations. Let F be the cumulative distribution function of the random variable ||X — x|l

Fy@=Pr(IX-xll <1
and let B (y, r) be the ball in & with center y and radius ¢:

By, ={x1 €& lvi —xll <1},
3



Moreover, we let for any s € [0, 1]

Fy (hs)
Fy(h)'

Ty.h (S) =
For any 8 € {1, 2}

U @) = E[{g5 0 - g5 (O} = xll = u].

For simplicity, we introduce the following notation:

&= lim ()", )
(W, ©-rwv,,0) (2200 =4r(0 g3 () +3r2 (1) g4 ()
B(x) = . V= 3 :
82 (X) 82 (/\/)

We denote by C or/and C’ some real generic constants supposed to be strictly positive. The assumptions which we
shall refer to are the following:

(A1) For 8 € {1,2,3,4} and for all u € & the functions gg () are bounded and continuous in a neighborhood of u.

(A2) For 8 € {1,2} and for all u € & the function ¢, g (1) is assumed to admit a derivative at # = 0 and z//)’(’ﬁ ©0) is
uniformly Lipschitz continuous of order @ € (0, 1] in y.

(A3) Forall y; € &, F,, (0) =0and F,, (t) /F, (¢) is Lipschitz continuous of order & € (0, 1] in 1, uniformly in ¢ in
a neighborhood of 0.

(A4) K : R — R is a continuous, bounded function with support on the compact [0, 1], such that min,e 11K (¢) > 0,
and is a differentiable function on (0, 1) where its first derivative function K’ is such that: —co < C < K’ (¥) <
C’'<0.

Now, it is possible to introduce the following notation used first by Ferraty et al. [21]:

1 1
%FKmi£WW@WW,%FKm1£MWMML

1
M, = K*(1) - fo (K2 ®) 70 (.

(AS5) For any s € [0, 1], there exists a function 7, (.) such that, 7, o (s) = limj_07, (), Ty0 (5) < oo,
SUPe(0.1] |TX,;, (8) = Ty0 (s)| =o0(1),M, ;> Ofor j€{0,1,2},and M, ; is Lipschitz continuous of order a € (0, 1]
for j € {0, 1, 2}.

(A6) (1) (yn) € GS (=y) withy € (1/2,1].
(ii) (1) € GS (—a) with a € (0, 1).
(iii) (Fy (h)) € GS (=F,) with 7, € (0, ).
(iv) lim,, e (ny,) € (min {F, (y + Fo) /2 — a} , o).
) (by) € GS (=b) with b € (y = o) /2, a).
Vi) (Fy (bn)) € GS (=F3) with F, € (0, Fo).

(A7) For each n, there existr, > 1,1, € GS (=) with [ > b+ (y = F,) /2 and t , . .., 1, , sSuch that
B(x.h) € U, B(ten. In). with r, = O (nP/™).



Assumption (A1) ensures that the inverse moments of the response variable E [Yi_ﬁ |X; = u], for all, B € {1,2,3,4},
and all ¥ € & are bounded and continuous in a neighborhood of u. Assumption (A6) (iii) indicates that the small ball
probability satisfies y,' F, (h,) — oo as n goes to oo for any y € E. Assumption (A6) (iv) is standard in the frame-

work of stochastic approximation algorithms, it implies in particular that the limit of ([nyn]_l) is finite. Assumption

12
(A6) (v) ensures that b}l*” (y;lF Y (hn)) / — 0 as n goes to o for @ € (0,1]. Assumption (A6) (vi) indicates that

12
[FX (hy) | Fy (bn)] logn — 0 as n goes to co. Assumption (A7) ensures that [,b;! (y,leX (hn)) ? L 0asn goes to oo,
Moreover, we give two examples of functional spaces for which Assumption (A7) is fulfilled.

Example 1 (Functional spaces satisfying the assumption (A7)).

1. Let & is a separable Hilbert space, with inner product <, > and with orthonormal basis {ej cjedl,..., 00}}.
For any (x1,x2) € & X &, and for k > 0, we let d;. be the semi-metric defined by:

X
di (1, x2) = JZ <X1-X2.€ >

=1
The space (&, dy) fulfills Assumption (A7).

2. Let &is the space of all continuous functions x : [a,b] — Rwith ||xl, < C, where —o0 <a <b < 00,0 <7y <o,
let vy be the largest integer strictly smaller than y and ||.||, be the Euclidean norm:

IX(%) () _X(yl) (tZ)l

Y71
Ity — ll;

llyll, = max<y, sup, [y (1)] + sup,, .

The space (&, dr») fulfills the Assumption (A7), where dyp» is the L? distance in & and p € [1, oo].

Remark 1.

The intuition behind the use of such bandwidth h,, belonging to GS (—a) is that the ratio h,_1/h, is equal to 1 + a/n +
o (1/n), the application of Lemma 1 (given in the Appendix) under the assumption (A6), ensures that the bias and the
variance depend only on h, and not on hy, ..., h,.

Our first result is the following proposition, which gives the bias and the variance of 7.
Proposition 1 (Bias and variance of 7,). Let Assumptions (A1) — (A6) be satisfied.
1. Ifa e 0,(y —Fa) /2], then

1 - (Fa—a)§ Myo
1 _7:(1§ Mx,l

E[% (. W] = r () = B(x) ha [1+0(1)]. (6)

Ifae ((y—%a)/2,1), then

E[# (v, )] —r(x) =0 ( \VnFy (hn)l).

2. Ifae(0,(y - F,) /2), then
var [#, (v, h)] = o (h2). (7
Ifae((y-Fa)/2.1), then

(1= (Fa—-a)éy My vy,
Q- Faty 208 M2, Fy(hy)
5
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3. Iflim, o (ny,) > max{F,, (Fo +v) /2 — a}, then (6) and (8) hold simultaneously.

The bias and the variance of the estimator 7, defined by the stochastic approximation algorithm (2) then heavily
depends on the choice of the stepsize y,. Let us now recall that the bias and variance of the nonrecursive estimator
Tn (v, h), proposed in Demongeot et al. [17] are given by

M
E[F, (. )] = r () BW)ML"I’hn[Ho(m,
X

Mo v,
M2, Fy ()

var [7, (x, h)] YV (v) [1+o(1)].

To illustrate the benefit of choosing non-standard weights y,, we give some possible choices of the sequence vy, and
compare the bias and variance of 7, with those of 7,.

Example 2 (Choices of y, minimizing the bias of 7,).
In view of (6), the asymptotic bias of 7, is minimum when & = 0, that is, when (,) is chosen so that lim,_,, (ny,) = oo,
and then we have

M
E[# e, ] =r Q) =E[F (e, )] = r () :BW)ML?h"[l +o(1)].

X

This choice is not interesting since we have

var (r, (x, h))

im ————= =0.
oo var (7, (s 1)

It is advised in this situation to use the averaging principle for the stochastic approximation algorithm to ensure an
optimal convergence rate (see, [38]).

Example 3 (Choices of y, minimizing the variance of 7,).
It follows from (8), that, to minimize the asymptotic variance of 7, y should be equal to 1, (y,) must satisfy lim,_,., (ny,) =
1 — a, and we then have

Mo vy,

var [, (v, )] = (1 =F)V () M2, Fy ()

[I+o(D)].

Using an adequate choice of y,, the variance of the proposed recursive estimator 7, can be smaller than that of the
nonrecursive estimator. To conclude this example, let us mention that the two most simple stepsizes that minimize the

-1
variance of #, are y, = [1 —aln™" and vy, = h,, ( =1 hk) .

Let us now state the following theorem, which gives the convergence rate of the estimator 7, defined in (2).
Theorem 1 (Weak pointwise convergence rate). Let Assumptions (A1) — (A6) be satisfied.

1. Ifthere exists ¢ > 0 such that y;lhﬁFX (h,) — c, then

NV Fy (hy) (R O ) = 7 (x))

1= (Fa—a)§ Myo
I- ﬂf M/y,l ’

(1-(Fa-a)&) My,
Q- Faty 206 M2,

Vi

3 N(cl/ZB()()

2. If‘y;lh%F)( (hn) — 09, then

(Fa—a)é Myo
1- 7:115 M,\{,l ’

1 v 1 -
h—(fnw,m—ro(»isoo
6



D s e , . N Pr .
where — denotes convergence in distribution, N is the Gaussian distribution, and — denotes convergence in proba-
bility.

Let us now consider the case where the bandwidth £, is chosen so that lim, .y, ' h2F v (h,) = 0 (which corre-
sponds to under-smoothing). Thus, the proposed estimator fulfils the following central limit theorem:

. D Fa)
VP ) GG ) = 1600 5 N0,V ) el ).

Let ¢ denote the distribution function N (0, 1), and #,,» be so that ¢ (t42) = 1 — 142 (Where @ € (0, 1)). Then the
approximate asymptotic confidence band of r (y), with level 1 — @, is given by

2 - 2 e
Fn (- ) — ¢(ta/z)\/m\/( (Faty=2a) M

(1= (Fa-a)&) MV

2- 2 M
rn(/\{h)+¢(ta/2)\/7;1F(n)\/( Fary= “)S)A | ]

(1-Fa-a)&)’ MV
where F' » 18 the empirical distribution function, and
n - i | _X H
o= 3k [T ek (A5
k=1 F (hk)
8n2 O ) = 47, O ) 83 (s h) + 355 (00) 8ua (0 1)
n _ 1y —X
[T, Sy [T vk v, Pk (L)
n - - -X :
I, Zk:l Hkl thklE [K(W)]

Remark 2. By considering the choice of the stepsize 'y, that minimize the variance of t,, the approximate asymptotic
confidence band of v (x) with level 1 — a of the proposed recursive estimator is given by

e
{rn()( h) — 1 = Fo (ta)n) \nE, (h)A A(X P O h) + N1 = Fut (ta)2) \RE, (hy)—— (V()()}

however the approximate asymptotic confidence band of r () with level 1 — @ of the nonrecursive estimator 1, is given
by

» 1ef{l,2},

V()

8np 0xs ) (€))

M M
[7,1 (v, 1) — ¢ (to)2) \nF, (hn)~ —— T (0, 1) + ¢ (tay2) \INE (hy )—}
MV (x) V)
where
— 1 o (I — Xl .
M; = - K'|———], 1,2},
nF(h,»; ( T ) retl2)

VOO = Bz () = 47, 0 M Tz 0 1) + 37 (0 s 0 ),
o K (M)
21 B [K(”X;lﬂ)]
Now, in order to measure the quality of our recursive estimator (2), we use the following quantity:
MSE[fy (. )] = (EG (1) = r0)) + var (7 (. ).

The next proposition gives the MSE of the proposed recursive estimator based on the minimization of the MSRE and
defined in (2).

&g h) =

7



Proposition 2 (MSE of 7, (x, h)). Let Assumptions (A1) — (A6) be satisfied,
1. Ifae0,(y—¥Fa)/2), then

L= uz ) o o)

MSE[?,,(X,h)]=Bz(X)( ey e
a Y1

2. Ifa=(y—%F,) /2, then

(1= (Fa—@)éP My vy,
Q2= (Faty—2a)&) M2, Fy (hy)

) 1= (Fu—a) &\ My
MSE[#, (x,h)] = B (/\/)( )
1-F ) M2,

+o|h* + Y )
( Fy (hn)

R+ YV (x)

3. Ifae((y—Fa)/2,1), then

. (1-Fu-a&’ Mo ( Vi )
MSE |7, (x,h = .
nbe = V0 G 200 12, B T \F, )

2.1. Bandwidth selection

In the framework of nonparametric kernel estimators, the data-driven bandwidth selection methods studied in the
literature can be divided into three broad classes: cross-validation techniques, plug-in methods, and the bootstrap
approach. A detailed comparison of the three techniques can be found in [16]. Here, we adapt the wild bootstrap
procedure proposed in [27] to approximate the distribution of the error of our proposed recursive kernel regression
estimator based on the minimization of the MSRE.

2.1.1. Wild bootstrap method
The wild bootstrap adapted first to functional data in [21], then under dependence conditions in [42], and more

recently to the recursive estimation of the functional variable in [47]. The main idea of the wild bootstrap is that, rather

than using the naive bootstrap approach of resampling from the pairs {¥;, X;}’_,, we resample from the estimated

residuals & = Y; — 7,(X;, h). Then, we use the obtained data to construct an estimator with a distribution that
approximates the distribution of the original estimator, and where each bootstrap residual & is drawn from a two-

point distribution, such that E(&;) = 0, E(£;?) = &7, and E (¢;) = &}. Such a distribution equals

. (5+ V5 5-45
=" o0 (S o,

Our adapted procedure for the bandwidth selection when estimating recursively the operator r based on the minimiza-
tion of the MSRE in the case of functional setting is performed in three steps:

Step 1: We construct the bootstrapped residuals &7 drawn from the distribution G.

Step 2: Resampling, new observations Yl.*" =8, (xi,b) + Yi‘lsj, for [ € {1,2}, where

[T, Sy T iy K (B2 v
I, S T b B[ (B2

b e {by,...,b,} and b, should be larger than #,,.

gn,l (Xa b) =



Step 3: Given the bootstrapped data {X is Yl.*}:zl, we compute the kernel regression estimator,
-1 - =Xl ) yrs—

Hn ZZ:] Hk ykhle(\Xh_kk) Yk !
-1 - I =Xill\ ys—2 "

I, X T v & (B ) vy 2

We repeat Np times this wild bootstrapping scheme, and we use the empirical distribution 7, (y, h) — 7, (v, b) for
selecting an optimal bandwidth.

Fo O ) =

Given Np replications of the proposed wild bootstrap procedure and given a fixed set H of bandwidths, the boot-
strapped bandwidth %" is defined by:

Np
. 1 " R
" =h" (y) = argminjey A Z (7 O, h) = 7y (xs b))2 . (10)
B =

We expect that the bootstrapped bandwidths will be close to the optimal ones. The good behavior of the bootstrapping
approach (10) as an automatic bandwidth selection procedure was shown in Ferraty et al. [21] via some simulations
in the case of regression estimation based on the minimization of the MSE. They indicate that both the theoretical
quadratic loss and its data-driven bootstrapping approach have the same convex shape. Moreover, they compare the
theoretical minimal quadratic loss with the error obtained by using the bootstrapped bandwidth 4*. As mentioned
in Ferraty et al. [21], the theoretical support for this bootstrap bandwidth procedure is still an open question.

The wild bootstrap method in the case of the nonrecursive regression estimator based on the minimization of MSE
is given in Ferraty et al. [21]. The case of the recursive regression estimator based on the minimization of the MSE is
given in Slaoui [47].

Theorem 2. Assume that Assumptions (A1) — (A7) hold. Then, we have

PrS(,/ W Fy (o) {7 (xs ) = 7 (x, b)}<y) Pr(w/y,, Fy (o) {7 O, ) — 1 ()} <y'—>0

where PrS denotes probability, conditionally on the the sample S (i.e., (X;,Y;), i € {1,...,n}).

SUPyer

Computational cost. The advantage of recursive estimators over their nonrecursive counterparts is that their update,
from a sample of size n to one of size n + 1, requires fewer computations. This property can be generalized, if we
suppose that we receive separately two sets of data, the first one of cardinal »; that should be smaller or equal to n — 1
and the second set of cardinal n — n;. We can check that it follows from (1) that for j € {1, 2}

n

n—1
[T 0-%)ami0m+ ]

2 . =X\ s v (b= Xl
Sri e = n(l‘yf)}%K(IXh k)Yk”Z_K(Wh )Yn’
j=mi+l k=n; Lj=k+1 k k n n
X X,
= a/lgnll()( h)"‘zﬁ ’)/kK(”X hk k”) f + h (”Xh ”)Yn ’

where a1 = []_,, ;1 (1 -y j) and i = [T 444 (1 -y j). It is clear, that we can use a bootstrap procedure to construct
an optimal bandwidth based on the first sample of size n; and separately an optimal bandwidth based on the second
sample of size n — n;. Then the proposed estimator can be viewed as a linear combination of two estimators, which
improves the computational cost significantly.

Remark 3. The proposed recursive estimator is much better than the nonrecursive estimator in terms of computa-
tional times.

3. Applications

The aim of this section is to compare the performance of the proposed recursive estimator 7, based on the mini-
mization of the MSRE defined in (2) to the recursive functional regression estimator introduced by Slaoui [47] based
on the minimization of the MSE and defined in (3) using a resampling bootstrap method.

9



3.1. A chemometric application

This data is available online at [20]. This time series of spectra has been measured from wavelengths 1 = 850
to A = 1050nm for 215 fined chopped pieces of meat. From this times series, we extracted the 215 spectra of light
absorbance curves X1, ..., X215 as functions of the wavelength, discretized into p = 100 points. The response variable
is the percentage of fat. These curves are displayed in Fig. 1.

In this functional context, the proposed estimator depends on the following parameters: Firstly, as measure of

%) M) ()2 ) o
R OES? (t)) dt, where y'" denotes the first derivatives

proximity we consider the semi-metric d (y1,x2) = \/ f (X
of x (since y'" is unknown we used B-spline approximation (see, [18, 19])). Secondly, since the choice of the kernel

function K was not crucial, we used the quadratic kernel K (u) = (1 - uz) 10,17 (u) for all u € R. Moreover, in order to
improve the speed of our proposed algorithm, the bandwidth # is assumed to belong to some grid in terms of k nearest

neighbors, h € {hy,...,hso} = H, where hy, is the radius of the ball of center y and containing exactly k data curves
from X1, ..., X215 and where the number £ is selected through a cross-validation procedure (here k£ = 8).
0
wn
o |
w
0 |
<
[%] o
8 < 7
2
2 @
o |
[sp]
0 |
N
o |
o

850 900 950 1000 1050

Wavelengths

Fig. 1. These spectrometric curves data are available in [20].

Our main interest in this section is to compare the performance of two discussed estimators by determining the
relation between the spectrum and the fatness by estimating a functional regression model using the recursive estima-
tor (3) and using the recursive estimator (2). Notice that the routine ODM in the R Package OutlierDM [13] detected
20-outliers in the response variable Y.

For that reason, we decompose our sample of 215 pairs (X}, ¥;) in a learning and a testing sample. The learning
sample (£) has size 195, on which the various statistical methods are constructed and a testing sample (7") of size 20,
which is used to examine the behavior of our method. We then measure the performance of the two estimators by the
Mean Squared Prediction Error (MSPE):

1 - 2
MSPE = - ;(Y,- -v),

10
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Fig. 2. Outlier detection for spectrometric data based on the MA plot. The MA plot visualizes the differences between measurements taken in two
samples, by transforming the data onto M (log ratio) and A (mean average) scales.

and the Mean Squared Prediction Relative Error (MSPRE):

1 . _
MSPRE = %Z(Y,.— Yi)2Yi 2

€T

where ¥; is the prediction for Y; obtained for each new curve X;, i € 7, using one of the two estimators.

Table 1

39y 9

MSPE and MSPRE results for the spectrometric data. Two approaches were implemented, (1) ’7,” is the recursive estimator based on the

w9

minimization of the MSE, and (2) #,” is our recursive estimator based on the minimization of the MSRE.

Estimator | MSPE

MSPRE

y 13.131
P 1.769

1.3302
0.0915

We can observe from Table 1, that the proposed recursive estimator 7, based on the minimization of the MSRE
gives a smaller MSPRE compared to the recursive estimator 7, based on the minimization of the MSE. Imposing
the quantile regression fence lines on a MA plot (see Fig. 2), then we can classify data points into outliers and non-
outliers. In Fig. 2, the dashed line corresponds to the first and the third quantile and the continuous line corresponds
to the lower and the upper bound. The lower and upper fences are respectively equal to Q; (A) — 1.5IQR(A) and
01 (A) + 1.5IQR (A), where IQR (A) = Q3 (A) — Q1 (A). The g-quantile is given by

argmingg " IM;=61+(1-q) Y M;-6],

i,M;>6;

i,M;<6;

where ¢ € 10,1[ and 6; = By + B1A;, used first by Koenker and Bassett [34] and more recently by Cho et al. [12].

11
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Fig. 3. Predicted values. Left plot: estimator (3) based on the MSE; Right plot: estimator (2) based on the MSRE.

Moreover, we plot in Fig. 3 the predicted values obtained using the two considered estimators as a function of the true
one for the 20 spectra in our testing sample.

4. Conclusion

In this article, we propose an automatic selection of the bandwidth of recursive nonparametric relative regression
for independent functional data. The proposed estimator asymptotically follows a normal distribution. The proposed
estimator is compared to the recursive estimator based on the minimization of the MSE for functional data proposed
by Slaoui [47] as an extension of the method introduced in Slaoui [46]. We showed that using some selected parame-
ters, the proposed recursive estimator outperformed the recursive estimator introduced in [47]. The application study
illustrates our finding.

We plan to extend this work by considering Bernstein polynomials rather than kernels and to propose an adaptation
of the estimators developed in Jmaei et al. [30] and Slaoui and Jmaei [48] in the case of functional data. We plan also to
compare these estimators to the kernel nearest-neighbor approach developed in Kara et al. [32], the semi-parametric
functional projection pursuit regression [11], the single index model [25], the partial linear models [4, 35] and the
sparse modeling approach [5].

A. Proofs
Before proving our main results, we state the following technical lemma.

Lemma 1. Letv, € GS (v*), v, € GS (—y), and m > 0 such that m — v*¢ > O where & is defined in (5). We have




Moreover, for all positive sequences b, such that lim, b, =0,

m
—+
e S Hk Vi

Lemma 1 is widely applied throughout the proofs. Let us underline that it is its application, which requires
Assumption (A2) (iii) on the limit of (ny,) as n goes to infinity.
Our proofs are organized as follows. Proposition 1 and Theorem 1 are proved respectively, in Sections A.1 and A.2.

A.1. Proof of Proposition 1

First, we consider the following decomposition:

) E [gn1 (. )] E {Zn1 06 1) [802 (0. 1) = E (a2 (r. )]}
E n ,h - = A’— - - . .
N T {E [2n2 (. WY

E (R (¢ 1) [2n2 (. 1) — E 82 (v 1))

(11)
(E [2n2 (r. WY
Now, we focus on computing the expectation of g, g (v, /). It follows from (9), that
R I, Hk ykh IE[ BK(IL'( Xk“)]
E2ns (e )| = R =Xl
I zkzl ITi v "B K (2]
Moreover, for a € R, we have
1 Ie=Xell
[K" (”X Xk”)] = f K (u) dPr( s )(u)
hi 0
1
= Fy() [K” (1) - f (K* (W) 7, (u) du] .
0
Then, since lim,,—, (ny,) > ¥, — a, we apply Lemma 1 to infer that
1, Yep HX = Xill 1 .
= M, .l F, (hy)[1 D]. 12
anhk T e e et [+ 0 (D) (12)

Further, we have

o)

TN
g (WE [K“ (W)] +E [K (W)E [{es X0 - g5 O} 11X —X||]]

85 (0 E [K“ ('L“;ﬂ)] +E [K (W) s 11X —X||)] .

k
A Taylor expansion of ¥, z around O ensures that

- X
E [K“ (w) Uy (1K —xn)}

=X

f lﬁxﬁ(hku)K“(u)dPr( K )(u)

Tt 0) f uk G el ) )+ o ).
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Moreover, it follows from the proof of Lemma 2 in Ferraty et al. [21], the Assumption (A2) and Fubini’s theorem

1 - 1
f uk® @y dPrl ) ) = F ) [K“(l)— f WK® W)Y T (u)du].
0 0

Then, we have, for all @ and 8in R

_ 1
E[YI:BKG(”/‘I/}Z&)] = gﬁ(/\/)FX(hk)[K“(l)—L(K"(u))"rhk(u)du]

k
1
i, 5 (O) F () [K (1)~ fo WK (W)Y T4, () du] . (13)

Whence, since we have lim,,_,, (ny,) > ¥, the application of Lemma 1 gives

1 - (Fa—a)§ Myo
1 _7:(15 Mx,l

Now, we focus on computing the variance of g, (v, h). It follows from (9), that
P B 1 (=Xl
[17 Sy TT vehyPvar [Yk K( Lvhk ) )]
noor-la - lly=Xell \ )\
(I iy T el B [& (H550)])

E (20 0t )| = 85 (1) + )5 (0) ha [1+0(1)]. (14)

ar [gn,ﬁ (X’ h)]

Moreover, it follows from (13)

o= Xdl\] 2 T EPUIRY
var |[YVPK (5= = g (0 Fy () | K2 (1) — i (K2 @) 7, () du

P [1+o0(D)].

Then, since lim,_,., (ny,) > (F, + ) /2 — a, we make use of Lemma 1 to infer that

S [y (= Xl _
;WW[Y" K( I )]" 2—<ﬂ+y—2a>§g2ﬁ(")M“h2F x B+ o (D1 >
The combination of (12) and (15) ensures that
. 1 - (Fa -
varftns 0] = 5o mf)f;) 2800 1 iy o1 (16)

In order to compute the covariance between g, 1 (x, h) and g, (x, h), we use (9), then we readily have
Hi ZZ:I ;2 25 ZE[ y3K2 ( IX-XkH)]
(Hn i T Yl 1E[ ('LV Xk”)])
Hn Zk,k':l Hk k’ 7’k7’k h 1E[ IK(”"/ Xk”)] hlz/lE [Y—,ZK(HXZ:\,’MI)]
kK

E [gn,l (X’ h) gn,Z (X, h)] =

+

n - - =X 2
(T 2 T i B[R (B54))])
Since lim,—,o, (ny,) > (F, +7y) /2 — a, the application of Lemma 1 together with (12) and (13), ensures that
(1-Fa-a)&)’

cov [8n1 (s h) s 8n2 (s W] = _F.ra-20)E 83 (X) F (h ) [1+o(D]. 17
Let us now compute the expectation of 7, (v, ). First, it follows from (16), that
. . . B Vn

E{g:1 O 1) [8n2 (6, 1) — E(8n2 (v )]} = O (F)( (hn)) , (18)
X A A 2] _ Vn

E{fs 0. 1) (802 0. 1) — E (82 (. )P} = 0 (—FX (hn)) . (19)
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Then (6) follows from (11), (14), (18) and (19). Now, in order to compute the variance of 7, (v, i), we use the following
decomposition

var [8n1 0. D] B8t O, 1oV (But O ). 82 O, 1)
(Egn2 (- W)’ (E(8n2 0. W]’
2

(E {201 (. ]}
3v " h)| ——————
T

The combination of (14), (16), (17) and (20), implies that

var[7, (v, h)] =

(20)

(1= (Fa-a)& v,

var[?n(/\/,h)] = (V(X) MZ Q- (F, +y - Za){-')F (hy,)

[1+o(D].

A.2. Proof of Theorem 1
Let us at first assume that, if a > (y + F,) /2, then

o oM Bl 2 (1-Fa-a)&’ M
i Fr () (3 (. ) = B[22 O ]) MOV Ty 2B, ) @1

In the case when y; /2 F, (h,) — c, Part 1 of Theorem 1 follows from the combination of (6) and (21). In the case
Yo 'h2F, (hy) — o0, (7) 1mphes that

152 G 0 1) = E (3, (. 1) 5 0,

and the application of (6) gives Part 2 of Theorem 1.
We now prove (21). Using the fact that, for x such that g, (v, #) # 0, we have the following decomposition:

82 ()

i'n()ﬁh)_r(/\/) = Dn()(h) nz(/\{h)

(22)
with

[ 5
D, (. h) = m{gn,l()(,h) r () &n2 (-}

It follows from (22), that the asymptotic behavior of 7, (y, h) — r (y) can be deduced from the one of D, (y, h). Let us
set

R ) g (e = Xl
4l = [Tk 7 {Yk r0 Y }K( I )
, nILW(M—&”
: = K
Jn Or) kZ:; [Tk 7 hy
and
T (v) =Z(v) —E[Z: ()] (23)
Hence, we directly have
Dy () ~E[Dy (x. )] = an
82 ()() E fn (X)
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Since lim,,_,o (ny,) > (F4 +v) /2 — a, we apply Lemma 1 as well as (12), (13) and (23), to deduce that
2

2 Zvar(Tk(X))=ZHykh2var[{ vk (mzkxkn)}

k=1 k=1 k

U YuFy (hy)
O[Z Hy,fhz Fell k)] ( )

k=1

Moreover, using the fact that, for all p > 0,

F, (h
- o)
k

and, since lim,_,o (ny,) > (F,+v) /2 — a, there exists a p > 0 such that lim,_,. (ny,) > % (Fa+v)/2-a).
Applying Lemma 1, we get

< n 2+p n -2-p _2+p
2 BT oor] = O[Z ot [lzkoof“’]J:o(Z k Z@Fx(hk)

k=1 k=1 k k=1 k

0 ¥ T Fy (hy)
1—12+ph1+p ’

and we thus obtain
1 n

2+p
n k=1

E[TeoP?] = o[yl Fe (h]) = 01

The convergence in (21) then follows from the application of Lyapounov’s theorem.

A.3. Proof of Theorem 2
The proof is based on the following decomposition:

PeS (7 Py ) 75 060 = 7 e ) < 9) = Pr(§a o o ) = (0] <)
ST W+ T2 )+ T30,

where

Y = NYa Fy () {E® [F, O )] = 7 (. b)
Tiw) = P (5 Fe ) s () = (0} < 3) = @ 0| l
Vi Fy () VarS (7 (v )]

V= 7 Ey ) E [ (v, )] —r(x)}] A
7- = QJ —P _IF hn n ,h - = )
20 ( i Fy iy var [7, G, )] r(\’“ x () {F (s ) r()()}<y)
Y= Vy,;lFX(hn){ES[?:()(,h)]—?,,()(,b)} [y_ yan (hy) { [rn()( h)]—r()()}]
7-3()7) = O )}
V¥ Fy () var [7, (. b))

\/yrleX (h) VarS [ (g, )]

where ES and Var® denote expectation and variance, conditionally on the sample S, and ® denotes the standard
normal distribution function. The first part of Theorem 1 ensures that

To@)—0 as. VyeR 24)
Moreover,
T1) =0 as. VyeR, 25)

follows from the next lemma.
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Lemma 2. Assume that Assumptions (A1) — (A6) hold. Then, we have

o, ) —BS [7 (v, )] a
VarS 7 (x, h)|

- N(@O1.

Now, from (24), (25) and Polya’s theorem (see, e.g., Serfling [44], p. 18) together with the continuity of the
function @, we arrive at

supyeg [71 W+ supyer [72 (I = 0 as. VyeR.
Finally, it remains to study the term 773 (y). Using the fact that, for any a > 0 and ¢ € R,
SUp, e, [0 (¢ + ay) = D ()| < || + max{a.a”'} - 1,

and considering

var [#, (x, h)]
VarsS [#; (v, h)]

and
VY Fy ) E 1R 0 ] = 00 = S [7 G )] + 7 (1, b)}
\/yan (h) VarS [ (¢, )]

C =

we get

V¥ Fy ) (E 7 0, ] = 00) = ES [ 0 )] + 7 (1, D)
i Fy () VarS [, )]

var [#, (v, h)] VarsS [ (y, h)]
e { \/VarS 7 G ]’ \/ var [7 ¢, )] } - 20

The combination of (8), (26) and the following two lemmas ensure the convergence of SUPyer (73 D).

supycg [73 (V)] <

Lemma 3. Assume that Assumptions (A1) — (A6) hold. Then

var [#, (x, h)]
VarS 7 (o h)]

Lemma 4. Assume that Assumptions (A1) — (A7) hold. Then

Vi Fe ) R 0. )] = 7 00) = ES [7 (. )] + 70 (1. D)) > 0 as.

A.3.1. Proof of Lemma 2
Using the fact that, for x such that &, , (x) # 0, we have the following decomposition:

. _ g2 (x)
O —r(y) = D(Xh)“ﬁ o’

(27)
with

D, (x-h)

S {8 G = r 0 g, 0}
17
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It follows from (27), that the asymptotic behavior of 7 (x, h) — r () can be deduced from the one of D} (x, h). Let us
set

5 — se— “X - Xk“
o gl o {5
and
T; (00) = Z; () - E% |2 (0)]- (28)
Hence, we readily infer that
D, (0. - S (D, ()] = —— N 7).

2 WE[fHw] &

Moreover, since we have for [ € {1, 2, 3}
Var® [YZ‘I] = E[Yk_y] &, ES [Y,f_l] = &ni (xi: b)

and given that lim, . (ny,) > (¥, +7¥) /2 — a, the application of Lemma 1 together with (12), (13) and (28), ensures

that
" Z Var® T* (X)) Z th Lk _yars [{Yz—l ) Y;_Z}K(”X ;lk/\’k“)}

k=1 k

n ; ]’l
O[Z n?’k F (hk)] (7 Fy( ))'

k=1 k k
2+p F)( (hk)
[ ] = 0( h1+p ’
k

and, since lim,,_,o, (ny,) > (F, + v) /2—a, there exists p > 0 such that lim,,_,, (ny,) > % ((Fo +v) /2 —a). Applying
again Lemma 1, we get

n 2+p . H—Z P 2+pF (h)
kZ_;ES[ O(Z lzllkzﬁ,ES[ ’ P]] [Z P - ]

k=1 k k=1 k
o YaPF, (hy)
1—12+p h1+p ’

| = o[ Feaw]) =00,

=
Il

Now, we have, for all p > 0,

2+p]

and thus we obtain

1 “og
T 2E
|V;‘,|2+p k=1

The convergence in (21) then follows from the application of Lyapounov’s theorem.

A.3.2. Proof of Lemma 3
First, we use the following decomposition:

Var g, em]  B[g, (o] Cov* (&, (). 8,0 )
(B (85 e ] (B & o))

{Es [, el

CLACE

VarS [7: (v, h)] =

+3Var® (g5, (¢ )| ———— (29)



Moreover, we have for [ € {1, 2}

Var|g,, 0. )| =

and

ES[g;

[g,, 1 O h) 8 gn,z (v, h)]

Since we have for [ € {1, 2, 3}

10 h)] -

M2 S, T 72h 2k (0520 varS [ v,
(oSt 1 ot B ()

[1n ZIIZ:I H/:l ykh,:lK(lLY;f("”)ES [YZ_Z]

[, Sy T v B [ (252

(nn Zk lnk ykh IE[ ( ST ‘)])2

7 St T T vy iy K (520 K () B9 [ B9 v

k#k’

(i T i B [k (S5

VarS v, = E[v2] el ES[¥;7] = 2 (v ).

the combination of (29), (30), (31), (32), (33) and some computational analysis ensures that

VarS [# (y, )] = var [#, (¢, )] (1 + 0 (1)).

A.3.3. Proof of Lemma 4

(30)

€19}

(32)

(33)

This proof follows the same steps as those used in Ferraty et al. [22]. First, we use the following decomposition:

where

Uu =

U; =

Ji =

Jr

Ji!

Ji'

Z

ES [F (¢, h)] = 74 (x. b) = Uy + Uy + Us,

Z L ('LY Xk”){ nt Otk D) = 7 (4. 0) 22 (ks b)
[Tk A hy
-E [gn 1 Ok D]+ E [ (0. 5) 8n2 (ra D)1}

Z M (HX Xk”) (201 (o )] — E [ (6, 5) 202 (ris b))
[Tk A hy
-8 ()(k) +r(0 & (ot

o L

nn 7k

[Tk 2

(IIX ka”) Ba (i )

Moreover, we can check that Us = E[#, (x,h)] —r(x) + 0 ( w/y,;lFX (h,l)) a.s., whereas U; and U, are o ( \/%TlFx (hn))

a.s. by Lemmas 5 and 6.

Lemma 5. Assume that Assumptions (A1) — (A6) hold. Then

supyy i< |E [8n1 O D] = E[Fa O B) 8n2 (x1. D)) = 81 (k1) + 1 (00) 82 (xn)| = 0 ( \Yi'Fy (hn)) a.s.
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Lemma 6. Assume that Assumptions (A1) — (A6) hold. Then

SUD||y ., l1<h |E [8n.1 Oc1- D] = E [72 (6, B) 82 (15 B)] = 8t (01.D) + 7 (2 b) 82 (11, b)| = 0 ( \NYa ' Fy (hn)) a.s.

The proof of Lemmas 5 and 6 are obtained by following the same lines and decompositions used in the proof of
Lemmas A.5 and A.6 given in Ferraty et al. [22].
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