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We propose and investigate a new kernel regression estimator based on the minimization of the mean squared relative error. We study the properties of the proposed recursive estimator and compare it with the recursive estimator based on the minimization of the mean squared error proposed by Slaoui (2018). It turns out that, with an adequate choice of the parameters, the proposed estimator performs better than the recursive estimator based on the minimization of the mean squared error. We illustrate these theoretical results through a real chemometric dataset.

Introduction

Functional data have become more and more popular in modern statistics because of the progress in computing technology, in terms of both memory capacity and computing speed which have made it possible to record vast amounts of data. It concerns many statistical methods dealing with random variables valued in some infinitedimensional space, called functional variables. Thus, a very large number of variables can be observed for the study of the same phenomenon. This type of data appears in several fields including climatology, economics, psychology, linguistics, medicine, and so on.

There has been an increasing interest in Functional Data Analysis (FDA) in the past decades, as it is highlighted by the popular monograph of Ramsay and Silverman [START_REF] Ramsay | Applied Functional Data Analysis: Methods and Case Studies[END_REF], who provide a detailed exposition of both theoretical and practical aspects of functional data analysis. Statistical inference for FDA has been widely investigated (see, e.g., [START_REF] Horvàth | Inference for Functional Data With Applications[END_REF][START_REF] Hsing | Theoretical Foundations of Functional Data Analysis, With an Introduction to Linear Operators[END_REF]). The existing literature contains numerous studies on functional linear models (see, e.g., [START_REF] Cardot | Functional linear regression. The Oxford handbook of functional data analysis[END_REF][START_REF] Cai | Prediction in functional linear regression[END_REF][START_REF] Hall | Methodology and convergence rates for functional linear regression[END_REF]). The nonparametric treatment has been popularized by the book of Ferraty and Vieu [START_REF] Ferraty | Non parametric Functional Data Analysis, Theory and Practice[END_REF] and now takes a large place in the FDA literature; see the discussions in the recent surveys by Cuevas [START_REF] Cuevas | A partial overview of the theory of statistics with functional data[END_REF] who offers a short tutorial as well as a partial survey of the FDA theory. We point also to the work [START_REF] Ling | Nonparametric modelling for functional data: selected survey and tracks for future[END_REF] which gives a survey of nonparametric FDA and presents a wide scope of open questions. Aneiro et al. [START_REF] Aneiros | Recent advances in functional data analysis and high-dimensional statistics[END_REF] present various contributions into two categories: papers promoting new methodology for data varying over a continuum, and papers concerned with very high-but finite-dimensional problems.

In the last decade, data streams have become an increasingly important area of research. Common data streams include Internet packet data, Twitter activity, Facebook news stream, and credit card transactions. In those situations, data arrives regularly so that it is impossible to store them in a traditional database. In such a context, building a recursive estimator which does not require to store all the data in memory and can be updated easily in order to deal with online data is of great interest.

This work concerns nonparametric recursive estimation of the regression operator when the explanatory data are curves and the response is real-valued, based on the minimization of the Mean Squared Relative Error (MSRE). This problem can be formulated by considering {Y i , X i } n i=1 a sample of independent and identically distributed couples, where Y i is real-valued and X i takes values in some functional space E equipped with a semi-norm • . A common nonparametric model of this relationship is for i ∈ {1, . . . , n} given by

Y i = r (X i ) + ε i ,
where ε i is a random variable. In ordinary predictions, we estimate the operator r by minimizing the expected squared loss function: E (Yr (X)) 2 |X , and we obtain as predictor the quantity E [Y|X], which gives the Mean Squared Error (MSE). However, when Y > 0 or in the presence of outliers, the use of the classical loss function can lead to unreasonable results, since all variables have the same weight. Therefore, it is of interest to consider the response level (Yr (X)) /Y rather than (Yr (X)) and then it is necessary to consider the MSRE:

E        Y -r (X) Y 2 |X        .
Minimizing this loss function leads to predicting the quantity (see Park and Stefanski [START_REF] Park | Relative-error prediction[END_REF])

E Y -1 |X E Y -2 |X .
By assuming that E Y -l i |X < ∞, for l ∈ {1, 2}, we define the regression functional as

r (u) := E Y -1 i |X i = u E Y -2 i |X i = u ; u ∈ E, ∀i ∈ N.
Moreover, we set g l (u) = E Y -l i |X i = u , for all l ∈ N, u ∈ E, and i ∈ N. Then, we have the following relation,

g 1 (u) = r (u) g 2 (u).
The purpose of this study is to extend the work proposed first in the case of a real explanatory variable in Slaoui [START_REF] Slaoui | Optimal bandwidth selection for semi-recursive kernel regression estimators[END_REF] and then in the case of a functional explanatory variable in Slaoui [START_REF] Slaoui | Recursive nonparametric regression estimation for independent functional data[END_REF]. The two previous estimators are based on the minimization of the MSE. In the current work we propose to use the MSRE rather than the MSE criterion. Thus, our proposed estimator is:

rn (χ, h) = mn,1 (χ, h) mn,2 (χ, h) , with mn, j (χ, h) = (1 -γ n ) mn-1, j (χ, h) + γ n h -1 n K χ -X n h n Y -j n ; j ∈ {1, 2} , (1) 
where (γ n ) and (h n ) are sequences of positive real numbers which are converging to 0, K is a kernel and h ∈ {h 1 , . . . , h n }. The recursive property (1) is particularly useful for large samples, because rn can be updated easily using additional observation. Throughout this paper, we suppose that m0, j (χ, h) = 0, for j ∈ {1, 2}; and we let

n = n i=1 (1 -γ i ).
Then, we can estimate the operator r by

rn (χ, h) = n n k=1 -1 k γ k h -1 k Y -1 k K χ-X k h k n n k=1 -1 k γ k h -1 k Y -2 k K χ-X k h k . ( 2 
)
Despite that the MSRE is widely used in practice as a measure of performance, the theoretical properties of this alternative regression were not frequently used until the work of Narula and Wellington [START_REF] Narula | Prediction, linear regression and the minimum sum of relative errors[END_REF]. Since this work, we can find some criteria based on minimizing the sum of Absolute Relative Errors (ARE) and others on the sum of squared relative errors (SRE). For example, see [START_REF] Khoshgoftaar | Predicting software errors, during development, using nonlinear regression models: a comparative study[END_REF] for some models in software engineering, [START_REF] Chatfield | The joys of consulting[END_REF] for some examples in medicine or [START_REF] Chen | Least absolute relative error estimation[END_REF] for some financial applications. Note that most of the recent methods are concerned with the estimation of unknown parameters (see, [START_REF] Yang | General relative error criterion and M-estimation[END_REF] for recent advances and references).

In the framework of nonparametric estimations, Jones et al. [START_REF] Jones | Relative error prediction via kernel regression smoothers[END_REF] studied the asymptotic properties of an estimator minimizing the sum of the squared relative errors by considering the kernel estimation methods and a local linear approach. Moreover, in the functional framework, only the paper by Demongeot et al. [START_REF] Demongeot | Relative-error prediction in nonparametric functional statistics: Theory and practice[END_REF] has paid attention to the study of nonparametric prediction via relative error regression. As far as we know, there is no work on recursive estimators in the functional nonparametric literature based on the minimization of the MSRE. The works of Amiri et al. [START_REF] Amiri | Recursive estimation of nonparametric regression with functional covariate[END_REF] and Slaoui [START_REF] Slaoui | Recursive nonparametric regression estimation for independent functional data[END_REF], both proposed recursive estimation of the operator r based on the minimization of the MSE.

Furthermore, the functional bootstrap literature is not widely developed. Poltis and Romano [START_REF] Politis | Limit theorems for weakly dependent Hilbert space valued random variables with application to the stationarity bootstrap[END_REF] developed some weak convergence results for approximating sums of weakly dependent stationary Hilbert space valued random variables under the asymptotic validity of a stationary bootstrap method. Cuevas et al. [START_REF] Cuevas | On the use of the bootstrap for estimating functions with functional data[END_REF] presented a Monte Carlo study analyzing the performance of the bootstrap confidence bands of several functional estimators. Raña et al. [START_REF] Aneiros | Bootstrap confidence intervals in functional nonparametric regression under dependence[END_REF] considered a naive and a wild bootstrap procedure to construct pointwise confidence intervals for a nonparametric regression function when the predictor is of functional nature and when the data are dependent. More recently, Aneiro et al. [START_REF] Aneiros | Bootstrap in semi-functional partial linear regression under dependence[END_REF] proposed a naive and a wild bootstrap procedure to approximate the distribution of kernel-based estimators under α-mixing conditions, whereas Shang [START_REF] Shang | Bootstrap methods for stationary functional time series[END_REF] considered bootstrap methods for estimating the long-run covariance of stationary functional time series.

The first purpose of this paper, is to study, under some general conditions, the asymptotic properties of an alternative functional recursive kernel estimator of the regression operator r. Secondly, we propose an automatic bandwidth selection through a wild bootstrap method. Thirdly, we compare the performance of the proposed recursive estimator rn based on the minimization of the MSRE to the recursive functional regression estimator introduced by Slaoui [START_REF] Slaoui | Recursive nonparametric regression estimation for independent functional data[END_REF], the latter is based on the minimization of the MSE and defined as

řn (χ, h) = n n k=1 -1 k γ k h -1 k Y k K χ-X k h k n n k=1 -1 k γ k h -1 k K χ-X k h k . (3) 
The layout of the present paper is as follows. Section 2 is devoted to the main results of the present work. Section 3 is dedicated to application results by using a real dataset. We conclude the article in Section 4. To avoid interrupting the flow of this paper, all mathematical developments are relegated to Appendix A.

Assumptions and main results

Firstly, we define the following class of regularly varying sequences.

Definition 1. Let γ ∈ R and (v n ) n≥1 be a non-random positive sequence. We say that

(v n ) ∈ GS (γ) if lim n→+∞ n 1 - v n-1 v n = γ. (4) 
Condition (4) was introduced by Galambos and Seneta [START_REF] Galambos | Regularly varying sequences[END_REF] to define regularly varying sequences (see also Bojanic and Seneta [START_REF] Bojanic | A unified theory of regularly varying sequences[END_REF]) and by Mokkadem and Pelletier [START_REF] Mokkadem | A companion for the Kiefer-Wolfowitz-Blum stochastic approximation algorithm[END_REF] in the context of stochastic approximation algorithms. Note that GS stands for Galambos and Seneta. Typical sequences in GS (γ) are, for b ∈ R, n γ log n b , n γ log log n b , and so on. In this section, we investigate the asymptotic properties of the proposed estimator [START_REF] Aneiros | Recent advances in functional data analysis and high-dimensional statistics[END_REF]. Before presenting the assumptions, let us give some notations. Let F be the cumulative distribution function of the random variable X -χ :

F χ (t) = Pr ( X -χ ≤ t)
and let B (χ, t) be the ball in E with center χ and radius t:

B (χ, t) = {χ 1 ∈ E; χ 1 -χ ≤ t} .
Moreover, we let for any s ∈ [0, 1]

τ χ,h (s) = F χ (hs) F χ (h) .
For any β ∈ {1, 2}

ψ χ,β (u) = E g β (X) -g β (χ) | X -χ = u .
For simplicity, we introduce the following notation:

ξ = lim n→+∞ (nγ n ) -1 , (5) 
B (χ) = ψ χ,1 (0) -r (χ) ψ χ,2 (0) 
g 2 (χ) , V (χ) = g 2 (χ) -4r (χ) g 3 (χ) + 3r 2 (χ) g 4 (χ) g 2 2 (χ)
.

We denote by C or/and C some real generic constants supposed to be strictly positive. The assumptions which we shall refer to are the following:

(A1) For β ∈ {1, 2, 3, 4} and for all u ∈ E the functions g β (u) are bounded and continuous in a neighborhood of u.

(A2) For β ∈ {1, 2} and for all u ∈ E the function ψ χ,β (u) is assumed to admit a derivative at t = 0 and ψ χ,β (0) is uniformly Lipschitz continuous of order α ∈ (0, 1] in χ.

(A3) For all χ 1 ∈ E, F χ 1 (0) = 0 and F χ 1 (t) /F χ (t) is Lipschitz continuous of order α ∈ (0, 1] in χ 1 , uniformly in t in a neighborhood of 0.

(A4) K : R → R is a continuous, bounded function with support on the compact [0, 1], such that min t∈[0,1] K (t) > 0, and is a differentiable function on (0, 1) where its first derivative function K is such that: -∞ < C < K (t) < C < 0. Now, it is possible to introduce the following notation used first by Ferraty et al. [START_REF] Ferraty | Nonparametric regression on functional data: Inference and practical aspects[END_REF]:

M χ,0 = K (1) - 1 0 (tK (t)) τ χ,0 (t) dt, M χ,1 = K (1) - 1 0 K (t) τ χ,0 (t) dt, M χ,2 = K 2 (1) - 1 0 K 2 (t) τ χ,0 (t) dt.
(A5) For any s ∈ [0, 1], there exists a function τ χ,0 (.) such that, τ χ,0 (s

) = lim h→0 τ χ,h (s), τ χ,0 (s) < ∞, sup s∈[0,1] τ χ,h (s) -τ χ,0 (s) = o (1), M χ, j > 0 for j ∈ {0, 1, 2}, and M χ, j is Lipschitz continuous of order α ∈ (0, 1] for j ∈ {0, 1, 2}. (A6) (i) (γ n ) ∈ GS (-γ) with γ ∈ (1/2, 1]. (ii) (h n ) ∈ GS (-a) with a ∈ (0, 1). (iii) F χ (h n ) ∈ GS (-F a ) with F a ∈ (0, γ). (iv) lim n→∞ (nγ n ) ∈ (min {F a , (γ + F a ) /2 -a} , ∞ . (v) (b n ) ∈ GS (-b) with b ∈ ((γ -F a ) /2, a). (vi) F χ (b n ) ∈ GS (-F b ) with F b ∈ (0, F a ). (A7) For each n, there exist r n ≥ 1, l n ∈ GS (-l) with l > b + (γ -F a ) /2 and t 1,n , . . . , t r n ,n such that B (χ, h) ⊂ r n k=1 B t k,n , l n , with r n = O n b n /h n .
Assumption (A1) ensures that the inverse moments of the response variable E Y -β i |X i = u , for all, β ∈ {1, 2, 3, 4}, and all u ∈ E are bounded and continuous in a neighborhood of u. Assumption (A6) (iii) indicates that the small ball probability satisfies γ -1 n F χ (h n ) → ∞ as n goes to ∞ for any χ ∈ E. Assumption (A6) (iv) is standard in the framework of stochastic approximation algorithms, it implies in particular that the limit of nγ n -1 is finite. Assumption

(A6) (v) ensures that b 1+α n γ -1 n F χ (h n ) 1/2 → 0 as n goes to ∞ for α ∈ (0, 1]. Assumption (A6) (vi) indicates that F χ (h n ) /F χ (b n ) log n → 0 as n goes to ∞. Assumption (A7) ensures that l n b -1 n γ -1 n F χ (h n ) 1/2
→ 0 as n goes to ∞. Moreover, we give two examples of functional spaces for which Assumption (A7) is fulfilled.

Example 1 (Functional spaces satisfying the assumption (A7)).

1. Let E is a separable Hilbert space, with inner product <, > and with orthonormal basis e j : j ∈ {1, . . . , ∞} .

For any (χ 1 , χ 2 ) ∈ E × E, and for k > 0, we let d k be the semi-metric defined by:

d k (χ 1 , χ 2 ) = k j=1 < χ 1 -χ 2 , e j > 2 .
The space (E, d k ) fulfills Assumption (A7).

Let E is the space of all continuous functions

χ : [a, b] → R with χ γ ≤ C, where -∞ < a < b < ∞, 0 < γ < ∞,
let γ 1 be the largest integer strictly smaller than γ and . 2 be the Euclidean norm:

χ γ = max k≤γ 1 sup t χ (k) (t) + sup t 1 ,t 2 χ (γ 1 ) (t 1 ) -χ (γ 1 ) (t 2 ) t 1 -t 2 γ-γ 1 2
.

The space (E, d L p ) fulfills the Assumption (A7), where d L p is the L p distance in E and p ∈ [1, ∞].

Remark 1.

The intuition behind the use of such bandwidth h n belonging to GS (-a) is that the ratio h n-1 /h n is equal to 1 + a/n + o (1/n), the application of Lemma 1 (given in the Appendix) under the assumption (A6), ensures that the bias and the variance depend only on h n and not on h 1 , . . . , h n .

Our first result is the following proposition, which gives the bias and the variance of rn .

Proposition 1 (Bias and variance of rn ). Let Assumptions (A1) -(A6) be satisfied.

1. If a ∈ (0, (γ -F a ) /2], then E rn (χ, h) -r (χ) = B (χ) 1 -(F a -a) ξ 1 -F a ξ M χ,0 M χ,1 h n [1 + o (1)] . (6) 
If a ∈ ((γ -F a ) /2, 1), then E rn (χ, h) -r (χ) = o γ n F χ (h n ) -1 . 2. If a ∈ (0, (γ -F a ) /2), then var rn (χ, h) = o h 2 n . ( 7 
)
If a ∈ [(γ -F a ) /2, 1), then var rn (χ, h) = V (χ) (1 -(F a -a) ξ) 2 (2 -(F a + γ -2a) ξ) M χ,2 M 2 χ,1 γ n F χ (h n ) [1 + o (1)] . (8) 
3. If lim n→∞ (nγ n ) > max {F a , (F a + γ) /2 -a}, then ( 6) and ( 8) hold simultaneously.

The bias and the variance of the estimator rn defined by the stochastic approximation algorithm (2) then heavily depends on the choice of the stepsize γ n . Let us now recall that the bias and variance of the nonrecursive estimator r n (χ, h), proposed in Demongeot et al. [START_REF] Demongeot | Relative-error prediction in nonparametric functional statistics: Theory and practice[END_REF] are given by

E r n (χ, h) -r (χ) = B (χ) M χ,0 M χ,1 h n [1 + o (1)] , var r n (χ, h) = V (χ) M χ,2 M 2 χ,1 γ n F χ (h n ) [1 + o (1)] .
To illustrate the benefit of choosing non-standard weights γ n , we give some possible choices of the sequence γ n and compare the bias and variance of rn with those of r n .

Example 2 (Choices of γ n minimizing the bias of rn ).

In view of (6), the asymptotic bias of rn is minimum when ξ = 0, that is, when (γ n ) is chosen so that lim n→∞ (nγ n ) = ∞, and then we have

E rn (χ, h) -r (χ) = E r n (χ, h) -r (χ) = B (χ) M χ,0 M χ,1 h n [1 + o (1)] .
This choice is not interesting since we have

lim n→∞ var ( r n (χ, h)) var (r n (χ, h)) = 0.
It is advised in this situation to use the averaging principle for the stochastic approximation algorithm to ensure an optimal convergence rate (see, [START_REF] Mokkadem | Revisiting Révész's stochastic approximation method for the estimation of a regression function[END_REF]).

Example 3 (Choices of γ n minimizing the variance of rn ).

It follows from [START_REF] Cai | Prediction in functional linear regression[END_REF], that, to minimize the asymptotic variance of rn , γ should be equal to 1, (γ n ) must satisfy lim n→∞ (nγ n ) = 1a, and we then have

var rn (χ, h) = (1 -F a ) V (χ) M χ,2 M 2 χ,1 γ n F χ (h n ) [1 + o (1)] .
Using an adequate choice of γ n , the variance of the proposed recursive estimator rn can be smaller than that of the nonrecursive estimator. To conclude this example, let us mention that the two most simple stepsizes that minimize the variance of rn are

γ n = [1 -a] n -1 and γ n = h n n k=1 h k -1
.

Let us now state the following theorem, which gives the convergence rate of the estimator rn defined in (2).

Theorem 1 (Weak pointwise convergence rate). Let Assumptions (A1) -(A6) be satisfied.

1. If there exists c ≥ 0 such that γ -1 n h 2 n F χ (h n ) → c, then γ -1 n F χ (h n ) (r n (χ, h) -r (χ)) D → N        c 1/2 B (χ) 1 -(F a -a) ξ 1 -F a ξ M χ,0 M χ,1 , V (χ) (1 -(F a -a) ξ) 2 (2 -(F a + γ -2a) ξ) M χ,2 M 2 χ,1        . 2. If γ -1 n h 2 n F χ (h n ) → ∞, then 1 h n (r n (χ, h) -r (χ)) Pr → B (χ) 1 -(F a -a) ξ 1 -F a ξ M χ,0 M χ,1 ,
where D → denotes convergence in distribution, N is the Gaussian distribution, and Pr → denotes convergence in probability.

Let us now consider the case where the bandwidth h n is chosen so that lim n→∞ γ -1 n h 2 n F χ (h n ) = 0 (which corresponds to under-smoothing). Thus, the proposed estimator fulfils the following central limit theorem:

γ -1 n F χ (h n ) (r n (χ, h) -r (χ)) D → N 0, V (χ) (1-(F a -a)ξ) 2 (2-(F a +γ-2a)ξ) M χ,2 M 2 χ,1
.

Let φ denote the distribution function N (0, 1), and t α/2 be so that φ t α/2 = 1t α/2 (where α ∈ (0, 1)). Then the approximate asymptotic confidence band of r (χ), with level 1 -α, is given by

         rn (χ, h) -φ t α/2 γ -1 n Fn (h n ) (2 -(F a + γ -2a) ξ) (1 -(F a -a) ξ) 2 M2 1 M2 V (χ) , rn (χ, h) + φ t α/2 γ -1 n Fn (h n ) (2 -(F a + γ -2a) ξ) (1 -(F a -a) ξ) 2 M2 1 M2 V (χ)          ,
where Fn is the empirical distribution function, and

Mi = n k=1 n -1 k γ k K i χ-X k h k F (h k ) , i ∈ {1, 2} , V (χ) = ĝn,2 (χ, h) -4r n (χ, h) ĝn,3 (χ, h) + 3r 2 n (χ) ĝn,4 (χ, h) , ĝn,β (χ, h) = n n k=1 -1 k γ k h -1 k Y -β k K χ-X k h k n n k=1 -1 k γ k h -1 k E K χ-X k h k . (9) 
Remark 2. By considering the choice of the stepsize γ n that minimize the variance of rn , the approximate asymptotic confidence band of r (χ) with level 1 -α of the proposed recursive estimator is given by

      rn (χ, h) -1 -F a φ t α/2 n Fn (h n ) M2 1 M2 V (χ) , rn (χ, h) + 1 -F a φ t α/2 n Fn (h n ) M2 1 M2 V (χ)       ,
however the approximate asymptotic confidence band of r (χ) with level 1 -α of the nonrecursive estimator r n is given by

       r n (χ, h) -φ t α/2 n Fn (h n ) M 2 1 M 2 V (χ) , r n (χ, h) + φ t α/2 n Fn (h n ) M 2 1 M 2 V (χ)        ,
where

M i = 1 n F (h n ) n k=1 K i χ -X k h n , i ∈ {1, 2} , V (χ) = g n,2 (χ, h) -4 r n (χ, h) g n,3 (χ, h) + 3 r 2 n (χ) g n,4 (χ, h) , g n,β (χ, h) = n k=1 Y -β k K χ-X k h n n k=1 E K χ-X k h n .
Now, in order to measure the quality of our recursive estimator (2), we use the following quantity:

MS E rn (χ, h) = (E (r n (χ, h)) -r (χ)) 2 + var (r n (χ, h)) .
The next proposition gives the MSE of the proposed recursive estimator based on the minimization of the MSRE and defined in (2).

Proposition 2 (MSE of rn (χ, h)). Let Assumptions (A1) -(A6) be satisfied,

1. If a ∈ (0, (γ -F a ) /2), then MS E rn (χ, h) = B 2 (χ) 1 -(F a -a) ξ 1 -F a ξ 2 M 2 χ,0 M 2 χ,1 h 2 n + o h 2 n . 2. If a = (γ -F a ) /2, then MS E rn (χ, h) = B 2 (χ) 1 -(F a -a) ξ 1 -F a ξ 2 M 2 χ,0 M 2 χ,1 h 2 n + V (χ) (1 -(F a -a) ξ) 2 (2 -(F a + γ -2a) ξ) M χ,2 M 2 χ,1 γ n F χ (h n ) +o h 2 n + γ n F χ (h n ) . 3. If a ∈ ((γ -F a ) /2, 1), then MS E rn (χ, h) = V (χ) (1 -(F a -a) ξ) 2 (2 -(F a + γ -2a) ξ) M χ,2 M 2 χ,1 γ n F χ (h n ) + o γ n F χ (h n ) .

Bandwidth selection

In the framework of nonparametric kernel estimators, the data-driven bandwidth selection methods studied in the literature can be divided into three broad classes: cross-validation techniques, plug-in methods, and the bootstrap approach. A detailed comparison of the three techniques can be found in [START_REF] Delaigle | Practical bandwidth selection in deconvolution kernel density estimation[END_REF]. Here, we adapt the wild bootstrap procedure proposed in [START_REF] Härdle | Bootstrap simultaneous error bars for nonparametric regression[END_REF] to approximate the distribution of the error of our proposed recursive kernel regression estimator based on the minimization of the MSRE.

Wild bootstrap method

The wild bootstrap adapted first to functional data in [START_REF] Ferraty | Nonparametric regression on functional data: Inference and practical aspects[END_REF], then under dependence conditions in [START_REF] Aneiros | Bootstrap confidence intervals in functional nonparametric regression under dependence[END_REF], and more recently to the recursive estimation of the functional variable in [START_REF] Slaoui | Recursive nonparametric regression estimation for independent functional data[END_REF]. The main idea of the wild bootstrap is that, rather than using the naive bootstrap approach of resampling from the pairs {Y i , X i } n i=1 , we resample from the estimated residuals εi = Y irn (X i , h). Then, we use the obtained data to construct an estimator with a distribution that approximates the distribution of the original estimator, and where each bootstrap residual

ε * i is drawn from a two- point distribution, such that E ε * i = 0, E ε * 2 i = ε2 i , and E ε * 3 i = ε3 i . Such a distribution equals G * i =       5 + √ 5 10       δ εi ( 1-√ 5 ) 2 +       5 - √ 5 10       δ εi ( 1+ √ 5 ) 2 .
Our adapted procedure for the bandwidth selection when estimating recursively the operator r based on the minimization of the MSRE in the case of functional setting is performed in three steps:

Step 1: We construct the bootstrapped residuals ε * i drawn from the distribution

G * i . Step 2: Resampling, new observations Y * -l i = ĝn,l (χ i , b) + Y -l i ε * i , for l ∈ {1, 2}, where ĝn,l (χ, b) = n n k=1 -1 k γ k b -1 k K χ-X k b k Y -l k n n k=1 -1 k γ k b -1 k E K χ-X k b k , b ∈ {b 1 , .
. . , b n } and b n should be larger than h n .

Step 3: Given the bootstrapped data

X i , Y * i n i=1
, we compute the kernel regression estimator,

r * n (χ, h) = n n k=1 -1 k γ k h -1 k K χ-X k h k Y * -1 k n n k=1 -1 k γ k h -1 k K χ-X k h k Y * -2 k .
We repeat N B times this wild bootstrapping scheme, and we use the empirical distribution r * n (χ, h)rn (χ, b) for selecting an optimal bandwidth.

Given N B replications of the proposed wild bootstrap procedure and given a fixed set H of bandwidths, the bootstrapped bandwidth h * is defined by:

h * = h * (χ) = arg min h∈H         1 N B N B J=1 r * n (χ, h) -rn (χ, b) 2         . ( 10 
)
We expect that the bootstrapped bandwidths will be close to the optimal ones. The good behavior of the bootstrapping approach (10) as an automatic bandwidth selection procedure was shown in Ferraty et al. [START_REF] Ferraty | Nonparametric regression on functional data: Inference and practical aspects[END_REF] via some simulations in the case of regression estimation based on the minimization of the MSE. They indicate that both the theoretical quadratic loss and its data-driven bootstrapping approach have the same convex shape. Moreover, they compare the theoretical minimal quadratic loss with the error obtained by using the bootstrapped bandwidth h * . As mentioned in Ferraty et al. [START_REF] Ferraty | Nonparametric regression on functional data: Inference and practical aspects[END_REF], the theoretical support for this bootstrap bandwidth procedure is still an open question.

The wild bootstrap method in the case of the nonrecursive regression estimator based on the minimization of MSE is given in Ferraty et al. [START_REF] Ferraty | Nonparametric regression on functional data: Inference and practical aspects[END_REF]. The case of the recursive regression estimator based on the minimization of the MSE is given in Slaoui [START_REF] Slaoui | Recursive nonparametric regression estimation for independent functional data[END_REF].

Theorem 2. Assume that Assumptions (A1) -(A7) hold. Then, we have

sup y∈R Pr S γ -1 n F χ (h n ) r * n (χ, h) -rn (χ, b) ≤ y -Pr γ -1 n F χ (h n ) {r n (χ, h) -r (χ)} ≤ y a.s. → 0,
where Pr S denotes probability, conditionally on the the sample S (i.e., (X i , Y i ), i ∈ {1, . . . , n}).

Computational cost. The advantage of recursive estimators over their nonrecursive counterparts is that their update, from a sample of size n to one of size n + 1, requires fewer computations. This property can be generalized, if we suppose that we receive separately two sets of data, the first one of cardinal n 1 that should be smaller or equal to n -1 and the second set of cardinal nn 1 . We can check that it follows from (1) that for j ∈ {1, 2} ĝn, j (χ, h)

= n j=n 1 +1 1 -γ j ĝn 1 , j (χ, h) + n-1 k=n 1         n j=k+1 1 -γ j         γ k h k K χ -X k h k Y -j k + γ n h n K χ -X n h n Y -j n = α 1 ĝn 1 , j (χ, h) + n-1 k=n 1 β k γ k h k K χ -X k h k Y -j k + γ n h n K χ -X n h n Y -j n ,
where α 1 = n j=n 1 +1 1 -γ j and β k = n j=k+1 1 -γ j . It is clear, that we can use a bootstrap procedure to construct an optimal bandwidth based on the first sample of size n 1 and separately an optimal bandwidth based on the second sample of size nn 1 . Then the proposed estimator can be viewed as a linear combination of two estimators, which improves the computational cost significantly. Remark 3. The proposed recursive estimator is much better than the nonrecursive estimator in terms of computational times.

Applications

The aim of this section is to compare the performance of the proposed recursive estimator rn based on the minimization of the MSRE defined in (2) to the recursive functional regression estimator introduced by Slaoui [START_REF] Slaoui | Recursive nonparametric regression estimation for independent functional data[END_REF] based on the minimization of the MSE and defined in (3) using a resampling bootstrap method.

A chemometric application

This data is available online at [START_REF] Ferraty | [END_REF]. This time series of spectra has been measured from wavelengths λ = 850 to λ = 1050nm for 215 fined chopped pieces of meat. From this times series, we extracted the 215 spectra of light absorbance curves X 1 , . . . , X 215 as functions of the wavelength, discretized into p = 100 points. The response variable is the percentage of fat. These curves are displayed in Fig. 1.

In this functional context, the proposed estimator depends on the following parameters: Firstly, as measure of proximity we consider the semi-metric

d (χ 1 , χ 2 ) = χ (1) 1 (t) -χ (1) 2 (t) 2
dt, where χ (1) denotes the first derivatives of χ (since χ (1) is unknown we used B-spline approximation (see, [START_REF] Febrero-Bande | Statistical computing in Functional Data Analysis: The R Package fda[END_REF][START_REF] Febrero-Bande | usc: Functional Data Analysis and Utilities for Statistical Computing[END_REF])). Secondly, since the choice of the kernel function K was not crucial, we used the quadratic kernel K (u) = 1u 2 1 [0,1] (u) for all u ∈ R. Moreover, in order to improve the speed of our proposed algorithm, the bandwidth h is assumed to belong to some grid in terms of k nearest neighbors, h ∈ {h 1 , . . . , h 50 } = H, where h k is the radius of the ball of center χ and containing exactly k data curves from X 1 , . . . , X 215 and where the number k is selected through a cross-validation procedure (here k = 8). Our main interest in this section is to compare the performance of two discussed estimators by determining the relation between the spectrum and the fatness by estimating a functional regression model using the recursive estimator (3) and using the recursive estimator [START_REF] Aneiros | Recent advances in functional data analysis and high-dimensional statistics[END_REF]. Notice that the routine ODM in the R Package OutlierDM [START_REF] Eo | OutlierDM: Outlier Detection for Multi-replicated High-throughput Data[END_REF] detected 20-outliers in the response variable Y.

For that reason, we decompose our sample of 215 pairs (X i , Y i ) in a learning and a testing sample. The learning sample (L) has size 195, on which the various statistical methods are constructed and a testing sample (T ) of size 20, which is used to examine the behavior of our method. We then measure the performance of the two estimators by the Mean Squared Prediction Error (MSPE): Outlier Detection by the OutlierD algorithm Fig. 2. Outlier detection for spectrometric data based on the MA plot. The MA plot visualizes the differences between measurements taken in two samples, by transforming the data onto M (log ratio) and A (mean average) scales.

MSPE = 1 20 i∈T Ŷi -Y i 2 , 1.2 1.4 1.
and the Mean Squared Prediction Relative Error (MSPRE):

MSPRE = 1 20 i∈T Ŷi -Y i 2 Y -2 i ,
where Ŷi is the prediction for Y i obtained for each new curve X i , i ∈ T , using one of the two estimators. We can observe from Table 1, that the proposed recursive estimator rn based on the minimization of the MSRE gives a smaller MSPRE compared to the recursive estimator řn based on the minimization of the MSE. Imposing the quantile regression fence lines on a MA plot (see Fig. 2), then we can classify data points into outliers and nonoutliers. In Fig. 2, the dashed line corresponds to the first and the third quantile and the continuous line corresponds to the lower and the upper bound. The lower and upper fences are respectively equal to Q 1 (A) -1.5IQR (A) and

Q 1 (A) + 1.5IQR (A), where IQR (A) = Q 3 (A) -Q 1 (A). The q-quantile is given by arg min θ i q i,M i ≥θ i |M i -θ i | + (1 -q) i,M i ≤θ i |M i -θ i | ,
where q ∈ ]0, 1[ and θ i = β 0 + β 1 A i , used first by Koenker and Bassett [START_REF] Koenker | Regression quantiles[END_REF] and more recently by Cho et al. [START_REF] Cho | OutlierD: an R package for outlier detection using quantile regression on mass spectrometry data[END_REF]. 11 Moreover, we plot in Fig. 3 the predicted values obtained using the two considered estimators as a function of the true one for the 20 spectra in our testing sample.

Conclusion

In this article, we propose an automatic selection of the bandwidth of recursive nonparametric relative regression for independent functional data. The proposed estimator asymptotically follows a normal distribution. The proposed estimator is compared to the recursive estimator based on the minimization of the MSE for functional data proposed by Slaoui [START_REF] Slaoui | Recursive nonparametric regression estimation for independent functional data[END_REF] as an extension of the method introduced in Slaoui [START_REF] Slaoui | Optimal bandwidth selection for semi-recursive kernel regression estimators[END_REF]. We showed that using some selected parameters, the proposed recursive estimator outperformed the recursive estimator introduced in [START_REF] Slaoui | Recursive nonparametric regression estimation for independent functional data[END_REF]. The application study illustrates our finding.

We plan to extend this work by considering Bernstein polynomials rather than kernels and to propose an adaptation of the estimators developed in Jmaei et al. [START_REF] Jmaei | Recursive distribution estimators defined by stochastic approximation method using Bernstein polynomials[END_REF] and Slaoui and Jmaei [START_REF] Slaoui | Recursive density estimators based on Robbins-Monro's scheme and using Bernstein polynomials[END_REF] in the case of functional data. We plan also to compare these estimators to the kernel nearest-neighbor approach developed in Kara et al. [START_REF] Kara | Data-driven kNN estimation in nonparametric functional data analysis[END_REF], the semi-parametric functional projection pursuit regression [START_REF] Chen | Single and multiple index functional regression models with nonparametric link[END_REF], the single index model [START_REF] Goia | A partitioned single functional index model[END_REF], the partial linear models [START_REF] Aneiros | Semi-functional partial linear regression[END_REF][START_REF] Lian | Functional partial linear model[END_REF] and the sparse modeling approach [START_REF] Aneiros | Partial linear modelling with multi-functional covariates[END_REF].

A. Proofs

Before proving our main results, we state the following technical lemma. Lemma 1. Let v n ∈ GS (v * ), γ n ∈ GS (-γ), and m > 0 such that mv * ξ > 0 where ξ is defined in [START_REF] Aneiros | Partial linear modelling with multi-functional covariates[END_REF]. We have

lim n→+∞ v n n k=1 m n γ k m k v k = 1 m -v * ξ .
Moreover, for all positive sequences b n such that lim n→+∞ b n = 0,

lim n→+∞ v n n k=1 m n γ k m k v k b k = 0.
Lemma 1 is widely applied throughout the proofs. Let us underline that it is its application, which requires Assumption (A2) (iii) on the limit of (nγ n ) as n goes to infinity. Our proofs are organized as follows. Proposition 1 and Theorem 1 are proved respectively, in Sections A.1 and A.2.

A.1. Proof of Proposition 1

First, we consider the following decomposition:

E rn (χ, h) -r (χ) = E ĝn,1 (χ, h) E ĝn,2 (χ, h) -r (χ) - E ĝn,1 (χ, h) ĝn,2 (χ, h) -E ĝn,2 (χ, h) E ĝn,2 (χ, h) 2 + E rn (χ, h) ĝn,2 (χ, h) -E ĝn,2 (χ, h) 2 E ĝn,2 (χ, h) 2 . ( 11 
)
Now, we focus on computing the expectation of ĝn,β (χ, h). It follows from [START_REF] Chatfield | The joys of consulting[END_REF], that

E ĝn,β (χ, h) = n n k=1 -1 k γ k h -1 k E Y -β k K χ-X k h k n n k=1 -1 k γ k h -1 k E K χ-X k h k . Moreover, for α ∈ R, we have E K α χ -X k h k = 1 0 K α (u) dPr χ-X k h k (u) = F χ (h k ) K α (1) - 1 0 (K α (u)) τ h k (u) du .
Then, since lim n→∞ (nγ n ) > F aa, we apply Lemma 1 to infer that

n k=1 n γ k k h k E K χ -X k h k = 1 1 -(F a -a) ξ M χ,1 h -1 n F χ (h n ) [1 + o (1)] . (12) 
Further, we have

E Y -β k K α χ -X k h k = E K α χ -X k h k E Y -β k |X k |X k = g β (χ) E K α χ -X k h k + E K α χ -X k h k E g β (X k ) -g β (χ) | X k -χ = g β (χ) E K α χ -X k h k + E K α χ -X k h k ψ χ,β ( X k -χ ) .
A Taylor expansion of ψ χ,β around 0 ensures that

E K α χ -X k h k ψ χ,β ( X k -χ ) = 1 0 ψ χ,β (h k u) K α (u) dPr χ-X k h k (u) = h k ψ χ,β (0) 1 0 uK α (u) dPr χ-X k h k (u) + o (h k ) .
Moreover, it follows from the proof of Lemma 2 in Ferraty et al. [START_REF] Ferraty | Nonparametric regression on functional data: Inference and practical aspects[END_REF], the Assumption (A2) and Fubini's theorem

1 0 uK α (u) dPr χ-X k h k (u) = F χ (h k ) K α (1) - 1 0 (uK α (u)) τ h k (u) du .
Then, we have, for all α and β in R

E Y -β k K α χ -X k h k = g β (χ) F χ (h k ) K α (1) - 1 0 (K α (u)) τ h k (u) du +h k ψ χ,β (0) F χ (h k ) K α (1) - 1 0 (uK α (u)) τ h k (u) du . (13) 
Whence, since we have lim n→∞ (nγ n ) > F a , the application of Lemma 1 gives

E ĝn,β (χ, h) = g β (χ) + ψ χ,β (0) 1 -(F a -a) ξ 1 -F a ξ M χ,0 M χ,1 h n [1 + o (1)] . (14) 
Now, we focus on computing the variance of ĝn,β (χ, h). It follows from [START_REF] Chatfield | The joys of consulting[END_REF], that var ĝn,β (χ, h) =

2 n n k=1 -2 k γ 2 k h -2 k var Y -β k K χ-X k h k n n k=1 -1 k γ k h -1 k E K χ-X k h k 2 .
Moreover, it follows from [START_REF] Eo | OutlierDM: Outlier Detection for Multi-replicated High-throughput Data[END_REF] var

Y -β k K χ -X k h k = g 2β (χ) F χ (h k ) K 2 (1) - 1 0 K 2 (u) τ h k (u) du [1 + o (1)] .
Then, since lim n→∞ (nγ n ) > (F a + γ) /2a, we make use of Lemma 1 to infer that

n k=1 2 n γ 2 k k h 2 k var Y -β k K χ -X k h k = 1 2 -(F a + γ -2a) ξ g 2β (χ) M χ,2 γ n h 2 n F χ (h n ) [1 + o (1)] . (15) 
The combination of ( 12) and ( 15) ensures that var ĝn,

β (χ) = (1 -(F a -a) ξ) 2 2 -(F a + α -2a) ξ g 2β (χ) M χ,2 M 2 χ,1 γ n F χ (h n ) [1 + o (1)] . (16) 
In order to compute the covariance between ĝn,1 (χ, h) and ĝn,2 (χ, h), we use [START_REF] Chatfield | The joys of consulting[END_REF], then we readily have

E ĝn,1 (χ, h) ĝn,2 (χ, h) = 2 n n k=1 -2 k γ 2 k h -2 k E Y -3 k K 2 χ-X k h k n n k=1 -1 k γ k h -1 k E K χ-X k h k 2 + 2 n n k,k =1 k k -1 k Π -1 k γ k γ k h -1 k E Y -1 k K χ-X k h k h -1 k E Y -2 k K χ-X k h k n n k=1 -1 k γ k h -1 k E K χ-X k h k 2 .
Since lim n→∞ (nγ n ) > (F a + γ) /2a, the application of Lemma 1 together with ( 12) and ( 13), ensures that cov ĝn,1 (χ, h) , ĝn,2 (χ,

h) = (1 -(F a -a) ξ) 2 2 -(F a + α -2a) ξ g 3 (χ) M χ,2 M 2 χ,1 γ n F χ (h n ) [1 + o (1)] . (17) 
Let us now compute the expectation of rn (χ, h). First, it follows from [START_REF] Delaigle | Practical bandwidth selection in deconvolution kernel density estimation[END_REF], that

E ĝn,1 (χ, h) ĝn,2 (χ, h) -E ĝn,2 (χ, h) = O γ n F χ (h n ) , (18) 
E rn (χ, h) ĝn,2 (χ, h) -E ĝn,2 (χ, h)

2 = O γ n F χ (h n ) . (19) 
Then [START_REF] Bojanic | A unified theory of regularly varying sequences[END_REF] follows from ( 11), ( 14), ( 18) and [START_REF] Febrero-Bande | usc: Functional Data Analysis and Utilities for Statistical Computing[END_REF]. Now, in order to compute the variance of rn (χ, h), we use the following decomposition var rn (χ, h) var ĝn,1 (χ, h)

E ĝn,2 (χ, h) 2 -4 E ĝn,1 (χ, h) cov ĝn,1 (χ, h)), ĝn,2 (χ, h) E ĝn,2 (χ, h) 3 +3var ĝn,2 (χ, h) E ĝn,1 (χ, h) 2 E ĝn,2 (χ, h) 4 . ( 20 
)
The combination of ( 14), ( 16), ( 17) and [START_REF] Ferraty | [END_REF], implies that

var rn (χ, h) = V (χ) M χ,2 M 2 χ,1 (1 -(F a -a) ξ) 2 (2 -(F a + γ -2a) ξ) γ n F χ (h n ) [1 + o (1)] .

A.2. Proof of Theorem 1

Let us at first assume that, if a ≥ (γ + F a ) /2, then

γ -1 n F χ (h n ) rn (χ, h) -E rn (χ, h) D → N        0, V (χ) (1 -(F a -a) ξ) 2 (2 -(F a + γ -2a) ξ) M χ,2 M 2 χ,1        . (21) 
In the case when γ -1 n h 2 n F χ (h n ) → c, Part 1 of Theorem 1 follows from the combination of ( 6) and ( 21). In the case

γ -1 n h 2 n F χ (h n ) → ∞, (7) implies that h -2 n (r n (χ, h) -E (r n (χ, h))) Pr → 0,
and the application of ( 6) gives Part 2 of Theorem 1. We now prove [START_REF] Ferraty | Nonparametric regression on functional data: Inference and practical aspects[END_REF]. Using the fact that, for x such that ĝn,2 (χ, h) 0, we have the following decomposition:

rn (χ, h) -r (χ) = D n (χ, h) g 2 (χ) ĝn,2 (χ, h) , (22) 
with

D n (χ, h) = 1 g 2 (χ) ĝn,1 (χ, h) -r (χ) ĝn,2 (χ, h) .
It follows from [START_REF] Ferraty | On the validity of the bootstrap in non-parametric functional regression[END_REF], that the asymptotic behavior of rn (χ, h)r (χ) can be deduced from the one of D n (χ, h). Let us set

Z k (χ) = γ k k h k Y -1 k -r (χ) Y -2 k K χ -X k h k , fn (χ) = n k=1 n γ k k h k K χ -X k h k and T k (χ) = Z k (χ) -E Z k (χ) . (23) 
Hence, we directly have

D n (χ, h) -E D n (χ, h) = n g 2 (χ) E fn (χ) n k=1 T k (χ) .
Since lim n→∞ (nγ n ) > (F a + γ) /2a, we apply Lemma 1 as well as ( 12), ( 13) and ( 23), to deduce that

v 2 n = n k=1 var (T k (χ)) = n k=1 γ 2 k 2 k h 2 k var Y -1 k -r (χ) Y -2 k K χ -X k h k = O        n k=1 γ 2 k 2 k h 2 k F χ (h k )        = O γ n F χ (h n ) 2 n h 2 n .
Moreover, using the fact that, for all p > 0,

E |Z k (χ)| 2+p = O        F χ (h k ) h 1+p k        ,
and, since lim n→∞ (nγ n ) > (F a + γ) /2a, there exists a p > 0 such that lim n→∞ (nγ n ) > 1+p 2+p ((F a + γ) /2a). Applying Lemma 1, we get

n k=1 E |T k (χ)| 2+p = O        n k=1 γ 2+p k 2+p k E |Z k (χ)| 2+p        = O        n k=1 -2-p k γ 2+p k F χ (h k ) h 1+p k        = O        γ 1+p n F χ (h n ) 2+p n h 1+p n        ,
and we thus obtain

1 v 2+p n n k=1 E |T k (χ)| 2+p = O γ n h -1 n F χ (h n ) p/2 = o (1) .
The convergence in [START_REF] Ferraty | Nonparametric regression on functional data: Inference and practical aspects[END_REF] then follows from the application of Lyapounov's theorem.

A.3. Proof of Theorem 2

The proof is based on the following decomposition:

Pr S γ -1 n F χ (h n ) r * n (χ, h) -rn (χ, b) ≤ y -Pr γ -1 n F χ (h n ) {r n (χ, h) -r (χ)} ≤ y = T 1 (y) + T 2 (y) + T 3 (y) ,
where

T 1 (y) = Pr S γ -1 n F χ (h n ) r * n (χ, h) -rn (χ, b) ≤ y -Φ             y -γ -1 n F χ (h n ) E S r * n (χ, h) -rn (χ, b) γ -1 n F χ (h n ) Var S r * n (χ, h)             , T 2 (y) = Φ        y -γ -1 n F χ (h n ) E rn (χ, h) -r (χ) γ -1 n F χ (h n ) var rn (χ, h)        -Pr γ -1 n F χ (h n ) {r n (χ, h) -r (χ)} ≤ y , T 3 (y) = Φ             y -γ -1 n F χ (h n ) E S r * n (χ, h) -rn (χ, b) γ -1 n F χ (h n ) Var S r * n (χ, h)             -Φ        y -γ -1 n F χ (h n ) E rn (χ, h) -r (χ) γ -1 n F χ (h n ) var rn (χ, h)        ,
where E S and Var S denote expectation and variance, conditionally on the sample S, and Φ denotes the standard normal distribution function. The first part of Theorem 1 ensures that T 2 (y) → 0 a.s. ∀y ∈ R.

Moreover,

T 1 (y) → 0 a.s. ∀y ∈ R, (25) 
follows from the next lemma.

It follows from [START_REF] Härdle | Bootstrap simultaneous error bars for nonparametric regression[END_REF], that the asymptotic behavior of r * n (χ, h)r (χ) can be deduced from the one of D * n (χ, h). Let us set

Z * k (χ) = γ k k h k Y * -1 k -r (χ) Y * -2 k K χ -X k h k and T * k (χ) = Z * k (χ) -E S Z * k (χ) . (28) 
Hence, we readily infer that

D * n (χ, h) -E S D * n (χ, h) = n g 2 (χ) E fn (χ) n k=1 T * k (χ) .
Moreover, since we have for l ∈ {1, 2, 3}

Var S Y * -l k = E Y -2l k ε 2 k , E S Y * -l k = ĝn,l (χ k , b) ,
and given that lim n→∞ (nγ n ) > (F a + γ) /2a, the application of Lemma 1 together with ( 12), ( 13) and ( 28), ensures that

v * 2 n = n k=1 Var S T * k (χ) = n k=1 γ 2 k 2 k h 2 k Var S Y * -1 k -r (χ) Y * -2 k K χ -X k h k = O        n k=1 γ 2 k 2 k h 2 k F χ (h k )        = O γ n F χ (h n ) 2 n h 2 n
. Now, we have, for all p > 0,

E Z * k (χ) 2+p = O        F χ (h k ) h 1+p k        ,
and, since lim n→∞ (nγ n ) > (F a + γ) /2-a, there exists p > 0 such that lim n→∞ (nγ n ) > 1+p 2+p ((F a + γ) /2a). Applying again Lemma 1, we get

n k=1 E S T * k (χ) 2+p = O        n k=1 γ 2+p k 2+p k E S Z * k (χ) 2+p        = O        n k=1 -2-p k γ 2+p k F χ (h k ) h 1+p k        = O        γ 1+p n F χ (h n ) 2+p n h 1+p n        ,
and thus we obtain

1 v * n 2+p n k=1 E S T * k (χ) 2+p = O γ n h -1 n F χ (h n ) p/2 = o (1) .
The convergence in [START_REF] Ferraty | Nonparametric regression on functional data: Inference and practical aspects[END_REF] then follows from the application of Lyapounov's theorem.

A.3.2. Proof of Lemma 3

First, we use the following decomposition: 

Var S r
k γ 2 k h -2 k K 2 χ-X k h k Var S Y * -l k n n k=1 -1 k γ k h -1 k E K χ-X k h k 2 , (30) 
E S ĝ * n,l (χ, h) = n n k=1 -1 k γ k h -1 k K χ-X k h k E S Y * -l k n n k=1 -1 k γ k h -1 k E K χ-X k h k (31) 
and

E S ĝ * n,1 (χ, h) ĝ * n,2 (χ, h) = 2 n n k=1 -2 k γ 2 k h -2 k K 2 χ-X k h k E S Y * -3 k n n k=1 -1 k γ k h -1 k E K χ-X k h k 2 + 2 n n k,k =1 k k -1 k Π -1 k γ k γ k h -1 k h -1 k K χ-X k h k K χ-X k h k E S Y * -1 k E S Y * -2 k n n k=1 -1 k γ k h -1 k E K χ-X k h k 2 . (32) 
Since we have for l ∈ {1, 2, 3}

Var S Y * -l k = E Y -2l k ε 2 k , E S Y * -l k = ĝn,l (χ k , b) , (33) 
the combination of ( 29), ( 30), ( 31), ( 32), [START_REF] Khoshgoftaar | Predicting software errors, during development, using nonlinear regression models: a comparative study[END_REF] and some computational analysis ensures that Var S r * n (χ, h) = var rn (χ, h) (1 + o (1)) .

A.3.3. Proof of Lemma 4

This proof follows the same steps as those used in Ferraty et al. [START_REF] Ferraty | On the validity of the bootstrap in non-parametric functional regression[END_REF]. First, we use the following decomposition:

E S r * n (χ, h) -rn (χ, b) = U 1 + U 2 + U 3 ,
where -g 1 (χ k ) + r (χ) g 2 (χ k )} ,

U 1 = J -1 1 n k=1 n γ k k h k K χ -X k h k ĝn,
U 3 = J -1 1 n k=1 n γ k k h k K χ -X k h k {g 1 (χ) -r (χ) g 2 (χ k )} , J 1 = n k=1 n γ k k h k K χ -X k h k ĝn,2 (χ k , b) .
Moreover, we can check that U 3 = E rn (χ, h)r (χ) + o γ -1 n F χ (h n ) a.s., whereas U 1 and U 2 are o γ -1 n F χ (h n ) a.s. by Lemmas 5 and 6. The proof of Lemmas 5 and 6 are obtained by following the same lines and decompositions used in the proof of Lemmas A.5 and A.6 given in Ferraty et al. [START_REF] Ferraty | On the validity of the bootstrap in non-parametric functional regression[END_REF].

Fig. 1 .

 1 Fig.1. These spectrometric curves data are available in[START_REF] Ferraty | [END_REF].

Fig. 3 .

 3 Fig. 3. Predicted values. Left plot: estimator (3) based on the MSE; Right plot: estimator (2) based on the MSRE.

U 2 =

 2 1 (χ k , b)rn (χ, b) ĝn,2 (χ k , b) -E ĝn,1 (χ k , b) + E rn (χ, b) ĝn,2 (χ k , b) , 1 (χ k , b) -E rn (χ, b) ĝn,2 (χ k , b)

Lemma 5 .Lemma 6 .

 56 Assume that Assumptions (A1) -(A6) hold. Thensup χ-χ 1 ≤h E ĝn,1 (χ, b) -E rn (χ, b) ĝn,2 (χ 1 , b)g 1 (χ 1 ) + r (χ) g 2 (χ 1 ) = o γ -1 n F χ (h n ) a.s. Assume that Assumptions (A1) -(A6) hold. Then sup χ-χ 1 ≤h E ĝn,1 (χ 1 , b)) -E rn (χ, b) ĝn,2 (χ 1 , b)ĝn,1 (χ 1 , b) + rn (χ, b) ĝn,2 (χ 1 , b) = o γ -1 n F χ (h n ) a.s.

Table 1

 1 MSPE and MSPRE results for the spectrometric data. Two approaches were implemented, (1) "ř n " is the recursive estimator based on the minimization of the MSE, and (2) "r n " is our recursive estimator based on the minimization of the MSRE.

	Estimator MSPE MSPRE
	řn	13.131 1.3302
	rn	1.769	0.0915

  Moreover, we have for l ∈ {1, 2}

			2	n	-2
	Var S ĝ * n,l (χ, h) =	n	k=1
	* n (χ, h)	Var S ĝ * n,1 (χ, h) E S ĝ * n,2 (χ, h) 2 -4	E S ĝ * n,1 (χ, h) Cov S ĝ * n,1 (χ, h)), ĝ * n,2 (χ, h) E S ĝ * n,2 (χ, h)

3 +3Var S ĝ * n,2 (χ, h) E S ĝ * n,1 (χ, h) 2 E S ĝ * n,2 (χ, h)

.[START_REF] Hsing | Theoretical Foundations of Functional Data Analysis, With an Introduction to Linear Operators[END_REF] 
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Lemma 2. Assume that Assumptions (A1) -(A6) hold. Then, we have r * n (χ, h) -E S r * n (χ, h) Var S r * n (χ, h) d → N (0, 1) . Now, from ( 24), ( 25) and Polya's theorem (see, e.g., Serfling [START_REF] Serfling | Approximation Theorems of Mathematical Statistics[END_REF], p. 18) together with the continuity of the function Φ, we arrive at

Finally, it remains to study the term T 3 (y). Using the fact that, for any a > 0 and c ∈ R,

and considering

The combination of ( 8), [START_REF] Hall | Methodology and convergence rates for functional linear regression[END_REF] and the following two lemmas ensure the convergence of sup y∈R |T 3 (y)|.

Lemma 3. Assume that Assumptions (A1) -(A6) hold. Then