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Abstract
In the present paper, we are mainly concerned with a family of kernel type estimators based upon spatial data. More precisely,
we establish large and moderate deviations principles for the recursive kernel estimators of a regression function for spatial data
defined by the stochastic approximation algorithm.
AMS 2010 subject classifications: 62G08, 62L20, 60F10.
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1 Introduction
Spatial data, collected on measurement sites in a variety of fields and the statistical treatment, typically arise in various fields of
research, including econometrics, epidemiology, environmental science, image analysis, oceanography, meteorology, geostatis-
tics and many others. For good sources of references to research literature in this area along with statistical applications consult
Ripley (1981), Rosenblatt (1985), Guyon (1995) and Cressie (2015) and the references therein. In the context of nonparametric
estimation for spatial data, the existing papier are mainly concerned with the estimation of a probability density and regression
functions, we cite some key references Tran (1990), Tran and Yakowitz (1993), Carbon et al. (1997), Biau and Cadre (2004),
Dabo-Niang and Yao (2013), Dabo-Niang et al. (2016) and the references therein. In the works of Amiri et al. (2016) and
Bouzebda and Slaoui (2019a,b), recursive versions of non-parametric density estimation for spatial data are investigated. These
results are extended to a more general setting in Bouzebda and Slaoui (2018), which includes the previous works as particular
cases, this generalization is far from being trivial. We start by giving some notation and definitions that are needed for the
forthcoming sections. We consider a spatial process (Zi = (Xi, Yi) ∈ Rd × R : i ∈ ZN ) defined over some probability space
(Ω,F ,P) with the same distribution as (X, Y ) having unknown density gX,Y (·) relatively to the Lebesgue measure on Rd+1.
The density function of X on Rd is gX(·). In this paper, we are interested in the following regression model

Yi = r(Xi) + εi,

where r(x) = E(Y |X = x) is an unknown function, with real values, the noise εi is centered and independent of Xi. The
process is observed over the domain In = {i = (i1, . . . , iN ) : 1 ≤ ik ≤ nk, k = 1, . . . , N}. For simplicity we restrict ourselves
to rectangles as domains for the observations. We denote n = (n1, . . . , nN ); let n̂ := n1 × · · · × nN be the sample size. We
consider the following family of estimators investigated in Bouzebda and Slaoui (2018). Given any two continuous functions
cf (·) and df (·), define

Ψ̂n,hn(x, f,K) = Πn

∑
i∈In

Π−1
i γih

−d
i

{
(cf (x)f(Yi) + df (x))K(h−1

i (x−Xi))
}
, (1.1)

where (γn) is a nonrandom positive sequence tending to zero as n̂ → ∞, (hn) is a nonrandom positive sequence tending
to zero as n̂ → ∞, called bandwidth and Πn =

∏
i∈In (1− γi). Here and elsewhere, f(·) denotes a specified measurable

function, which is assumed to be bounded on each compact subinterval of R. The process in (1.1) was considered, in non
recursive setting, by Einmahl and Mason (2000, 2005). For convenience, we treat the observations sites as an array that is
In = {sj : j = 1, . . . , n}. By enumerating the sites, one may rewrite Ψ̂n,hn(x, f,K) in the following way

Ψ̂n,hn(x, f,K) = Πn

n∑
j=1

Π−1
j γsjh

−d
sj

{
(cf (x)f(Ysj ) + df (x))K

(
h−1
sj

(
x−Xsj

)
)
)}

, (1.2)

where Πn =
∏n
j=1

(
1− γsj

)
. This recursive property is particularly useful when the number of the spatial sites increase on space

since Ψ̂n,hn(x, f,K) can be easily updated with each additional observation. In fact, if Xsn is a new observation of the process
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at a site sn added to In−1, the estimators Ψ̂n,hn(x, f,K) can be updated recursively by the relation (1.2). From a practical point
of view, this arrangement provides important savings in computational time and storage memory which a consequence of the fact
that the estimate updating is independent of the history of the data. The main drawback of the classical kernel kernel estimator
is the use of all data at each step of estimation. From a theoretical point of view, the main advantage of the investigation of
such processes is that we can prove almost sure consistency with exact rate for several kernel-type estimators simultaneously. It
is worth noting that the quantity Ψ̂n,hn(x, f,K) includes as particular cases : the kernel type density estimator, the Nadaraya
Watson estimator and the kernel type estimator of the conditional distribution, we may refer to Einmahl and Mason (2000, 2005)
for more details. In this sense, the present paper extends, in non trivial, way some previous results by considering a general
kernel-type estimators given in (1.2), see Remark 2.7, below.

Recently, large and moderate deviations results have been proved for the recursive density estimators defined by stochastic
approximation method in Slaoui (2013) and for the averaged stochastic approximation method for the estimation of a regression
function in Slaoui (2015a). The purpose of this paper is to establish large and moderate deviations principles for the recursive
regression estimator for spatial data Ψ̂n,hn(x, f,K), The present paper completes the investigation of Bouzebda and Slaoui
(2018) and extends in non trivial way the works Slaoui (2013) and Slaoui (2015a). In Bouzebda and Slaoui (2018), we have
obtained the central limit theorem and strong pointwise convergence rate for the nonparametric recursive general kernel-type
estimators under some mild conditions. We have investigated the MISE of the proposed estimators and provide the optimal
bandwidth. The aim of the present paper is quite different from the Bouzebda and Slaoui (2018), since we are interested in LDP
and MDP type results. Mokkadem et al. (2006, 2008) and Slaoui (2015a) have established some results about LDP and MDP
for some nonparametric estimators. Their results are not directly applicable here since we are considering more general setting
in the present work. Their results are not only useful in their own right but essential in some steps of our proofs. To the best of
our knowledge, the results presented here, respond to a problem that has not been studied systematically up to the present, which
was the basic motivation of the paper.
Let us first recall that a Rm-valued sequence (Zn)n≥1 satisfies a large deviations principle (LDP) with speed (νn) and good rate
function I if :

1. (νn) is a positive sequence such that limn→∞ νn =∞;

2. I : Rm → [0,∞] has compact level sets;

3. for every borel set B ⊂ Rm,

− inf
x∈
◦
B

I (x) ≤ lim inf
n→∞

ν−1
n logP [Zn ∈ B] ≤ lim sup

n→∞
ν−1
n logP [Zn ∈ B] ≤ − inf

x∈B
I (x) ,

where
◦
B and B denote the interior and the closure of B respectively. Moreover, let (vn) be a nonrandom sequence that

goes to infinity; if (vnZn) satisfies a LDP, then (Zn) is said to satisfy a moderate deviations principle (MDP).

The first purpose of this paper is to establish pointwise LDP for the recursive kernel estimators of a regression function for spatial
data (1.2). It turns out that the rate function depend on the choice of the stepsize (γsn); We focus in the first part of this paper
on the following two special cases : (1) (γsn) =

(
n−1

)
and (2) (γsn) =

(
hdsn

(∑n
k=1 h

d
sk

)−1
)

, the first stepsize belongs to
the subclass of recursive kernel estimators which have a minimum MISE and the second stepsize belongs to the subclass of
recursive kernel estimators which have a minimum variance, we may refer to Bouzebda and Slaoui (2018).

We show that using the stepsize (γsn) =
(
n−1

)
and the bandwidth (hsn) ≡ (cn−a) with c > 0 and a ∈ ]0, 1/d[, the

sequence
(

Ψ̂n,hn(x, f,K)−Ψ(x, f)
)

satisfies a LDP with speed
(
nhdsn

)
and the rate function defined as follows:

Ia,x (t) = sup
u∈R
{ut− ψa,x (u)} , (1.3)

which is the Fenchel-Legendre transform of the function ψa,x defined as follows:

ψa,x (u) = g−1
X (x)

∫
Rd×R×[0,1]

[
exp

(
utadK (z) (cf (x) f (y) + df (x))

)
− 1
]
gX,Y (x, y) dzdydt. (1.4)

Moreover, we show that using the stepsize (γsn) =
(
hdsn

(∑n
k=1 h

d
sk

)−1
)

and more general bandwidths defined as hsn =

h (sn) for all n, where h is a regulary varing function with exponent (−a), a ∈ ]0, 1/d[. We prove that the sequence(
Ψ̂n,hn(x, f,K)−Ψ(x, f)

)
satisfies a LDP with speed

(
nhdsn

)
and the following rate function:

Ix (t) = sup
u∈R
{ut− ψx (u)} ,

which is the Fenchel-Legendre transform of the function ψx defined as follows:

ψx (u) = g−1
X (x)

∫
Rd×R

[exp (uK (z) (cf (x) f (y) + df (x)))− 1] gx,y (x, y) dzdy. (1.5)
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Our second purpose in this paper is to provide pointwise MDP for the proposed regression estimator for spatial data defined
by the stochastic approximation algorithm (1.2). In this case, we consider more general stepsizes defined as γsn = γ (sn) for all
n, where γ is a regularly function with exponent (−α), α ∈ ]1/2, 1]. Throughout this paper we will use the following notation:

ξ = lim
n→+∞

(nγsn)
−1
. (1.6)

We show that using the stepsize defined as γsn = γ (n) for all n, where γ is a regularly function with exponent (−α),
α ∈ ( 1

2 , 1], and for any positive sequence (vn) satisfying

lim
n→∞

vn =∞, lim
n→∞

γsnv
2
n

hsn
= 0 and lim

n→∞
vsnh

2
sn = 0

and the bandwidths defined as hsn = h (n) for all n, where h is a regularly function with exponent (−a), a ∈ (0, αd ), we prove

that the sequence vn
(

Ψ̂n,hn(x, f,K)−Ψ(x, f)
)

satisfies a LDP of speed
(
hsn/

(
γsnv

2
sn

))
and rate function Ja,α,x (.) defined

by 
if gX (x) 6= 0, Ja,α,x : t→ t2 (2− (α− ad) ξ)

2V (x, f)

∫
Rd
K2 (z) dz

if gX (x) = 0, Ja,α,x (0) = 0 and Ja,α,x (t) = +∞ for t 6= 0.

(1.7)

where V (x, f) is given in (2.2).
The layout of the present article is as follows. Section 2 is devoted to the main results of the present work. To avoid

interrupting the flow of the presentation, all mathematical developments are relegated to Section 3.

2 Assumptions and main results
Let us first define the class of positive sequences that will be used in the statement of our assumptions.

Definition 2.1 Let γ ∈ R and (vn)n≥1 be a nonrandom positive sequence. We say that (vn) ∈ GS (γ) if

lim
n→∞

n

[
1− vn−1

vn

]
= γ. (2.1)

Condition (2.1) was introduced by Galambos and Seneta (1973) to define regularly varying sequences (see also Bojanic and
Seneta (1973)); it was used in Mokkadem and Pelletier (2007) in the context of stochastic approximation algorithms. Typical
sequences in GS (γ) are, for b ∈ R, nγ (log n)

b, nγ (log log n)
b, and so on. To unburden our notation a bit, we let

L (x, f) = E (f (Y ) | X = x) gX (x) , Ψ(x, f) = cf (x)L (x, f) + df (x)gX (x) ,

V (x, f) = c2f (x)L
(
x, f2

)
+ d2

fgx (x) + 2cf (x) df (x)L (x, f) , (2.2)

g
(2)
ij (x) =

∂2gX
∂xi∂xj

(x) , L
(2)
ij (x, f) =

∂2L

∂xi∂xj
(x, f) , R (K) =

∫
Rd
K2 (z) dz.

2.1 Pointwise LDP for Ψ̂n,hn in the case when (γsn) = (n−1)

2.1.1 Choices of (γsn) minimizing the MISE of Ψ̂n,hn

In order to establish pointwise LDP for Ψ̂n,hn in the special case when (γsn) =
(
n−1

)
, we need the following assumptions. The

assumptions to which we shall refer are the following:

(L1) K : Rd → R is a continuous, bounded function satisfying
∫
Rd K (z) dz = 1, and, for all j ∈ {1, . . . , d},

∫
R zjK (z) dzj =

0 and
∫
Rd z

2
j ‖K (z)‖ dz <∞.

(L2) (i) (hsn) = (cn−a) with a ∈ (0, 1/d) and c > 0.
(ii) (γsn) =

(
n−1

)
.

(L3) (i) gX,Y (s, t) is twice continuously differentiable with respect to s.
(ii) For q ∈ {0, 1, 2}, s 7→

∫
R t

qgX,Y (s, t) dt is a bounded function continuous at s = x.
For q ∈ [2, 3], s 7→

∫
R |t|

q
gX,Y (s, t) dt is a bounded function.

(iii) For q ∈ {0, 1},
∫
R |t|

q
∣∣∣∂gX,Y∂x (x, t)

∣∣∣ dt < ∞, and s 7→
∫
R t

q ∂
2gX,Y
∂s2 (s, t) dt is a bounded function continuous at

s = x.
(iv) For any i, j ∈ {1, . . . , n} such that si 6= sj , the random vector

(
Xsi , Xsj

)
and

(
Zsi , Zsj

)
admit a density fsi,sj (·)

and gsi,sj (·) such that supsi 6=sj
∥∥fsi,sj∥∥ <∞, and supsi 6=sj

∥∥gsi,sj∥∥ <∞.

3



(L4) For any u ∈ R, t→
∫
R exp (uf (y)) gX,Y (t, y) dy is continuous at x and bounded.

(L5) (i) The field (Zsi)1≤i≤n is α-mixing: there exists a function φ : R+ → R+ with φ (t) goes to zero as t goes to infinity,
such that for E, F ⊂ R2 with finite cardinals Card (E), Card (F )

α (σ (E) , σ (F )) := sup
A∈σ(E),B∈σ(F )

|P (A ∩B)− P (A)P (B)| ≤ φ (dist (E,F ))ψ (Card (E) , Card (F )) ,

where σ (E) = {Zi, i ∈ E} and σ (F ) = {Zi, i ∈ F}, dist (E,F ) is the Euclidean distance between E and F and ψ (.)
is a positive symmetric function nondecreasing in each variable. The functions φ and ψ are such that φ (i) ≤ Ci−θ and
ψ (n,m) ≤ C min (m,n).

(ii)
∑∞
k=0 (k + 1)

2
α

δ
4+δ
n (k) < c for some c, δ > 0 and all n, where

αn (k) = αn (Z, k) = sup
A∈Fn−∞,B∈F∞n+k

|P (A ∩B)− P (A)P (B)| ,

with Z = {Zsi}
n
i=1, Fnm denote the σ-algebra generated by {Zsi}

n
i=m.

Assumption (L1) on the kernel is widely used in the recursive and the nonrecursive framework for the functional estimation.
Assumption (L2) on the stepsize and the bandwidth was used in the recursive framework for the estimation of the density
function (see Mokkadem et al. (2009a) and Slaoui (2013, 2014a)) and for the estimation of the distribution function (see Slaoui
(2014b)), and Slaoui (2015a,b, 2016)) for the estimation of the regression function. Assumption (L3) on the density of Z was
used in Mokkadem et al. (2009b) and Slaoui (2015a,b, 2016)). Assumption (L5)(i) are classical in nonparametric estimation in
the spatial literature (see Amiri et al. (2016)). However, assumption (L5)(ii) was considered in Ekström (2014) to establish a
general central limit theorem for strong mixing sequences, see Rosenblatt (1956). The proof of the following comment is given
in Mokkadem et al. (2008).

Comment
Assumption (L2)(iii) on the limit of (nγsn) as n goes to infinity is standard in the framework of stochastic approximation

algorithms. It implies in particular that the limit of
(

[nγsn ]
−1
)

is finite.

Assumption (L4) implies that ∀m ≥ 0,∀ρ ≥ 0

the function t 7→
∫
R
|f (y)|m exp (ρ |f (y)|) gX,Y (t, y) dy is bounded. (2.3)

Before stating our results, we set S+ =
{
x ∈ Rd;K (x) > 0

}
and S− =

{
x ∈ Rd;K (x) < 0

}
and for fixed x ∈ R

T+ = {y ∈ R; cf (x) f (y) + df (x) > 0} and T− = {y ∈ R; cf (x) f (y) + df (x) < 0}

Moreover, we set O+ = (S+ ∩ T+) ∪ (S− ∩ T−) and O− = (S+ ∩ T−) ∪ (S− ∩ T+)

The following proposition gives the properties of the functions ψa,x and Ia,x; in particular, the behavior of the rate function Ia,x.

Proposition 2.2 (Properties of ψa,x and Ia,x)
Let λ be the Lebesgue measure on Rd and let Assumptions (L1) and (L4) hold.

(i) ψa,x is strictly convex, twice continuously differentiable on R, and Ia,x is a good rate function on R.

(ii) If λ (O−) = 0, Ia,x (t) = +∞, when t < 0, and

Ia,x (0) =

{
λ (S+) if λ (S+ ∩ T+) > 0
λ (S−) if λ (S− ∩ T−) > 0

Ia,x is strictly convex on R and continuous on (0,+∞), and for any t > 0

Ia,x (t) = t
(
ψ′a,x

)−1
(t)− ψa,x

((
ψ′a,x

)−1
(t)
)
, (2.4)

(iii) If λ (O−) > 0, then Ia,x is finite and strictly convex on R and (2.4) holds for any t ∈ R.

The following Theorem gives the pointwise LDP for Ψ̂n,hn in the case when (γsn) =
(
n−1

)
.

Theorem 2.3 (Pointwise LDP for Ψ̂n,hn in the case when (γsn) =
(
n−1

)
)

Let Assumptions (L1) and (L4) hold and assume that gX,Y is continuous at (x, y). Then, the sequence (Ψ̂n,hn(x, f,K) −
Ψ(x, f)) satisfies a LDP with speed

(
nhdsn

)
and rate function defined as follows:

Ia,x (t) = t
(
ψ′a,x

)−1
(t)− ψa,x

((
ψ′a,x

)−1
(t)
)
,

where ψa,x is defined in (1.4).
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2.1.2 Choices of (γsn) minimizing the Variance of Ψ̂n,hn

In order to establish pointwise LDP for Ψ̂n,hn in this case, we assume that.

(L2′) i) (hsn) ∈ GS (−a) with a ∈ (0, 1/d). ii) (γsn) =
(
hdsn

(∑n
k=1 h

d
sk

)−1
)

.

The following proposition gives the properties of the functions ψx and Ix; in particular, the behavior of the rate function Ix.

Proposition 2.4 (Properties of ψx and Ix)
Let λ be the Lebesgue measure on Rd and let Assumptions Let Assumptions (L1), (L2′), (L3) and (L4).

(i) ψx is strictly convex, twice continuously differentiable on R, and Ix is a good rate function on R.

(ii) If λ (O−) = 0, Ix (t) = +∞, when t < 0, and

Ix (0) =

{
λ (S+) if λ (S+ ∩ T+) > 0
λ (S−) if λ (S− ∩ T−) > 0

Ix is strictly convex on R and continuous on (0,+∞), and for any t > 0

Ix (t) = t (ψ′x)
−1

(t)− ψx

(
(ψ′x)

−1
(t)
)
, (2.5)

(iii) If λ (O−) > 0, then Ix is finite and strictly convex on R and (2.5) holds for any t ∈ R.

The following Theorem gives the pointwise LDP for Ψ̂n,hn in this case.

Theorem 2.5 (Pointwise LDP for Ψ̂n,hn in the case when (γsn) =
(
hdsn

(∑n
k=1 h

d
sk

)−1
)

)
Let Assumptions (L1), (L2′), (L3) and (L4) hold and assume that gX,Y is continuous at (x, y). Then, the sequence(

Ψ̂n,hn(x, f,K)−Ψ(x, f)
)

satisfies a LDP with speed
(
nhdsn

)
and rate function defined as follows:

Ix (t) = t (ψ′x)
−1

(t)− ψx

(
(ψ′x)

−1
(t)
)
,

where ψx is defined in (1.5).

2.2 Pointwise MDP for Ψ̂n,hn

Let (vn) be a positive sequence, we assume that

(M1) K : Rd → R is a continuous, bounded function satisfying
∫
Rd K (z) dz = 1, and, for all j ∈ {1, . . . , d},

∫
R zjK (z) dzj =

0 and
∫
Rd z

2
j ‖K (z)‖ dz <∞.

(M2) (i) (hsn) = (cn−a) with a ∈ (0, 1/d) and c > 0.
ii) (γsn) =

(
n−1

)
.

(M3) (i) gX,Y (s, t) is twice continuously differentiable with respect to s.
(ii) For q ∈ {0, 1, 2}, s 7→

∫
R t

qgX,Y (s, t) dt is a bounded function continuous at s = x.
For q ∈ [2, 3], s 7→

∫
R |t|

q
gX,Y (s, t) dt is a bounded function.

(iii) For q ∈ {0, 1},
∫
R |t|

q
∣∣∣∂gX,Y∂x (x, t)

∣∣∣ dt < ∞, and s 7→
∫
R t

q ∂
2gX,Y
∂s2 (s, t) dt is a bounded function continuous at

s = x.
(iv) For any i, j ∈ {1, . . . , n} such that si 6= sj , the random vector

(
Xsi , Xsj

)
and

(
Zsi , Zsj

)
admit a density fsi,sj (·)

and gsi,sj (·) such that supsi 6=sj
∥∥fsi,sj∥∥ <∞, and supsi 6=sj

∥∥gsi,sj∥∥ <∞.

(M4) (i) The field (Zsi)1≤i≤n is α-mixing: there exists a function φ : R+ → R+ with φ (t) goes to zero as t goes to infinity,
such that for E, F ⊂ R2 with finite cardinals Card (E), Card (F )

α (σ (E) , σ (F )) := sup
A∈σ(E),B∈σ(F )

|P (A ∩B)− P (A)P (B)|

≤ φ (dist (E,F ))ψ (Card (E) , Card (F )) ,

where σ (E) = {Zi, i ∈ E} and σ (F ) = {Zi, i ∈ F}, dist (E,F ) is the Euclidean distance between E and F and ψ (.)
is a positive symmetric function nondecreasing in each variable. The functions φ and ψ are such that φ (i) ≤ Ci−θ and
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ψ (n,m) ≤ C min (m,n).

(ii)
∑∞
k=0 (k + 1)

2
α

δ
4+δ
n (k) < c for some c, δ > 0 and all n, where

αn (k) = αn (Z, k) = sup
A∈Fn−∞,B∈F∞n+k

|P (A ∩B)− P (A)P (B)| ,

with Z = {Zsi}
n
i=1, Fnm denote the σ-algebra generated by {Zsi}

n
i=m.

(M5) For any u ∈ R, t→
∫
R exp (uf (y)) gX,Y (t, y) dy is continuous at x and bounded.

(M6) limn→∞ vsn =∞ and limn→∞ γsnv
2
sn/h

d
sn = 0.

The following Theorem gives the pointwise MDP for Ψ̂n,hn(x, f,K).

Theorem 2.6 (Pointwise MDP for the recursive estimators defined by (1.2))
Let Assumptions (M1)−(M5) hold. Then, the sequence

(
Ψ̂n,hn(x, f,K)−Ψ(x, f)

)
satisfies a MDP with speed

(
hdsn/

(
γsnv

2
sn

))
and rate function Ja,α,x defined in (1.7).

Remark 2.7 One can choose in (1.1), cf (x) = 1/gX(x) and df (x) = −E(f(Y ) | X = x)/gX(x) this corresponds to
regression setting, see equation (3.1) in Einmahl and Mason (2000). An other trivial choice cf (x) = 0 and df (x) = 1 correspond
to the kernel density estimator. The introduction of the function f(·) in (1.1), is motivated by the following choices. By setting
f(y) = y (or f(y) = yk, where k is a strictly positive integer) into (1.1) we get the recursive Nadaraya-Watson kernel regression
function estimator of m(x) := E(Y | X = x). The choice f(y) = ft(y) = 1{y ≤ t} may be used to study the recursive kernel
estimator of the conditional distribution function F (t|x) := P(Y ≤ t|X = x). For more motivation on the use of the function
f(·) in (1.1), one can see Remark 1.1 of Deheuvels (2011).

Remark 2.8 Notice that the most existing results for random fields which require certain regularity conditions on the boundary
of In. Theorem 1 of El Machkouri et al. (2013) has the very interesting property that no condition on the boundary of In is
needed, and the central limit theorem holds under the minimal condition that the cardinal of In tends to infinity. This is a very
attractive property in spatial applications in which the underlying observation domains can be quite irregular, we can refer to
El Machkouri (2014). In the paper by Lu and Tjøstheim (2014), the authors proposed nonparametric kernel estimators for both
the marginal and in particular the joint probability density functions for nongridded spatial data. The asymptotic distribution
of the proposed estimators are obtained under general conditions, and in particular, a new interesting framework of expanding-
domain infill asymptotics is suggested to circumvent the shortcomings of spatial asymptotics in the existing literature, we refer
to the last cited paper for more details and discussions. In the paper by Al-Sulami et al. (2017), the authors considered the
semiparametric nonlinear regression allowing the sampling spatial grids can be irregular. It would be interesting to consider
the extension of the present work to a more general setting for boundary of In, that requires non trivial mathematics. Another
problem to be studied in the future is the characterization of the asymptotic properties of our estimators in the setting of stationary
random fields without the mixing conditions.

3 Proofs
This section is devoted to the proofs of our results. The previously defined notation continues to be used below. Throughout this
section we will use the following notation:

Zsn (x, f) = h−dsn f (Ysn)K
(
h−1
sn (x−Xsn)

)
, Wsn (x) = h−dsn K

(
h−1
sn (x−Xsn)

)
,

Tsn (x, f) = h−dsn {cf (x) f (Ysn) + df (x)}K
(
h−1
sn (x−Xsn)

)
,

Tsn = {cf (x) f (Ysn) + df (x)}K
(
h−1
sn (x−Xsn)

)
. (3.1)

Let us first state the following technical lemma.

Lemma 3.1 Let (vsn) ∈ GS (v∗), (γsn) ∈ GS (−α), and m > 0 such that m− v∗ξ > 0 where ξ is defined in (1.6). We have

lim
n→+∞

vsnΠm
n

n∑
i=1

Π−mi
γsi
vsi

=
1

m− v∗ξ
.

Moreover, for all positive sequence (αsn) such that limn→+∞ αsn = 0, and all δ ∈ R,

lim
n→+∞

vsnΠm
n

[
n∑
i=1

Π−mi
γsi
vsi

αsi + δ

]
= 0.
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The proof is given in Mokkadem et al. (2009a). Lemma 3.1 is widely applied throughout the proofs. Let us underline that it
is its application, which requires Assumption (A2)(iii) on the limit of (nγsn) as n goes to infinity. Now, we let (Φn) and (Bn)
be the sequences defined as follows:

Φn (x, f,K) = Πn

n∑
k=1

Π−1
k γskh

−d
sk

(Tsk − E [Tsk ]) , Bn (x, f,K) = E
[
Ψ̂n,hn(x, f,K)

]
−Ψ(x, f).

It is clear that, we have

Ψ̂n,hn(x, f,K)−Ψ(x, f) = Φn (x, f,K) +Bn (x, f,K) . (3.2)

We then deduce that, Theorems 2.3, 2.5 and 2.6 are consequences of (3.2) and the pointwise LDP and MDP for (Φn), which is
given in the following propositions.

Proposition 3.2 (Pointwise LDP and MDP for (Φn))

1. Under the assumptions (L1) and (L2), the sequence
(

Ψ̂n,hn(x, f,K)− E
[
Ψ̂n,hn(x, f,K)

])
satisfies a LDP with speed(

nhdsn
)

and rate function Ia,x.

2. Under the assumptions (L1) and (L3), the sequence
(

Ψ̂n,hn(x, f,K)− E
[
Ψ̂n,hn(x, f,K)

])
satisfies a LDP with speed(

nhdsn
)

and rate function Ix.

3. Under the assumptions (M1) − (M6), the sequence (vnΦn (x, f,K)) satisfies a LDP with speed
(
hdsn/

(
γsnv

2
n

))
and

rate function Ja,α,x.

The proof of the following proposition is given in Bouzebda and Slaoui (2018).

Proposition 3.3 (Pointwise convergence rate of (Bn))
Let Assumptions (M1) − (M5) hold. We assume that, for all i, j ∈ {1, . . . d}, g(2)

ij (·) and L(2)
ij (·) are continuous at x. Then,

we have

If a ≤ α/(d+ 4), Bn (x, f,K) = O
(
h2
sn

)
.

If a > α/(d+ 4), Bn (x, f,K) = o

(√
γsnh

−d
sn

)
.

Set x ∈ Rd; since the assumptions of Theorems 2.3 and 2.5 gives that limn→∞Bn (x, f,K) = 0, Theorem 2.3 (respectively
Theorem 2.5) is a consequence of the application of the first Part (respectively of the second Part) of Proposition 3.2. Moreover,
under the assumptions of Theorem 2.6, the application of Proposition 3.3, limn→∞ vnBn (x, f,K) = 0; Theorem 2.6 thus
follows from the application of third Part of Proposition 3.2.

Remark 3.4 It was shown in Bouzebda and Slaoui (2018) that under the assumptions of the previous proposition, that
V ar

[
Ψ̂n,hn(x, f,K)

]
= O

(
γsn
hdsn

)
. Then, we are interested by the following quantity

Λn,x (u) =
γsnv

2
n

hdsn
logE

[
exp

(
u

hdsn
γsnvsn

Φn (x, f,K)

)]
, ∀u ∈ R.

Let us now state a two preliminary lemmas, which are the key of the proof of Proposition 3.2.

Lemma 3.5 [Convergence of Λn,x in the case vn ≡ 1]
Let Assumption (L1) holds and vn ≡ 1. If gX is continuous at x, then for all u ∈ R,

lim
n→∞

Λn,x (u) =

{
gx (x) [ψa,x (u)− u (cf (x)E (f (Y ) |X = x) + df (x))] when (L2) holds
gx (x) [ψx (u)− u (cf (x)E (f (Y ) |X = x) + df (x))] when (L2′) holds .

Lemma 3.6 [Convergence of Λn,x in the case vn →∞]
Let Assumptions (M1)− (M5) hold and vn →∞. If gX is continuous at x, then for all u ∈ R,

lim
n→∞

Λn,x (u) =
u2

2 (2− (α− ad) ξ)
V (x, f)R (K) .

Our proofs are now organized as follows: Lemma 3.5 and 3.6 are proved in Section 3.1 and Proposition 3.2 in Section 3.4.
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3.1 Proof of Lemmas 3.5 and 3.6.
Set u ∈ R, un = u/vn and asn = hdsnγ

−1
sn . We have:

Λn,x (u) =
v2
n

asn
logE [exp (unasnΦn (x, f,K))] =

v2
n

asn

n∑
k=1

logE
[
exp

(
un
asnΠn

askΠk
Tsk

)]
− uvnΠn

n∑
k=1

Π−1
k a−1

sk
E [Tsk ] .

By Taylor expansion, there exists ck,n between 1 and E
[
exp

(
un

asnΠn
askΠk

Tsk

)]
in such a way that we have

logE
[
exp

(
un

asnΠn

askΠsk

Tsk

)]
= E

[
exp

(
un
asnΠn

askΠk
Tsk

)
− 1

]
− 1

2c2k,n

(
E
[
exp

(
un
asnΠn

askΠk
Tsk

)
− 1

])2

,

and Λn,x can be rewriten as

Λn,x (u) =
v2
n

asn

n∑
k=1

E
[
exp

(
un
asnΠn

askΠk
Tsk

)
− 1

]
− v2

n

2asn

n∑
k=1

1

c2k,n

(
E
[
exp

(
un
asnΠn

askΠk
Tsk

)
− 1

])2

−uvnΠn

n∑
k=1

Π−1
k a−1

sk
E [Tsk ] . (3.3)

3.1.1 Proof of Lemma 3.5

We obtain from (3.3) that

Λn,x (u) =
1

asn

n∑
k=1

E
[
exp

(
u
asnΠn

askΠk
Tsk

)
− 1

]
− 1

2asn

n∑
k=1

1

c2k,n

(
E
[
exp

(
u
asnΠn

askΠk
Tsk

)
− 1

])2

− uΠn

n∑
k=1

Π−1
k a−1

sk
E [Tsk ]

=
1

asn

n∑
k=1

hdsk

[∫
Rd×R

(exp (uVn,k (cf (x) f (y) + df (x))K (z))− 1)

−uVn,k (cf (x) f (y) + df (x))K (z)] gX,Y (x, y) dzdy −R(1)
n,x (u) +R(1)

n,x (u) , (3.4)

with

Vn,k =
asnΠn

askΠk
, R(1)

n,x (u) =
1

2asn

n∑
k=1

1

c2k,n

(
E
[
exp

(
u
asnΠn

askΠk
Tsk

)
− 1

])2

R(2)
n,x (u) =

1

asn

n∑
k=1

hdsk

∫
Rd×R

[
exp

(
u
asnΠn

askΠk
(cf (x) f (y) + df (x))K (z)

)
− 1

]
[gX,Y (x− zhsk , y)− gX,Y (x, y)] dzdy

−uΠn

n∑
k=1

Π−1
k γsk

∫
Rd×R

(cf (x) f (y) + df (x))K (z) [gX,Y (x− zhsk , y)− gX,Y (x, y)] dzdy.

Moreover, it follows from (3.10), that limn→∞

∣∣∣R(1)
n,x (u)

∣∣∣ = 0. Now, since |et − 1| ≤ |t| e|t|, we have

∣∣∣R(2)
n,x (u)

∣∣∣ ≤ |u|
(
e|u||cf (x)f(y)+df (x)|‖K‖∞ + 1

)
Πn

n∑
k=1

Π−1
k γsk

∫
Rd
|K (z)| |cf (x) f (y) + df (x)|

× |gX,Y (x− zhsk , y)− gX,Y (x, y)| dzdy.

Since, Lemma 3.1 ensures that, the sequence
(
Πn

∑n
k=1 Π−1

k γsk
)

is bounded, then, the dominated convergence theorem ensures
that limn→∞R

(2)
n,x (u) = 0. Then, it follows from (3.4), that

lim
n→∞

Λn,x (u) = lim
n→∞

γsn
hdsn

n∑
k=1

hdsk

∫
Rd×R

[(exp (uVn,k (cf (x) f (y) + df (x))K (z))− 1)

−uVn,k (cf (x) f (y) + df (x))K (z)] gX,Y (x, y) dzdy. (3.5)
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In the case when (γsn) =
(
n−1

)
We have, see Slaoui (2013, 2015a)

Πn

Πk
=

n∏
j=k+1

(
1− γsj

)
=
k

n
, then, Vn,k =

asnΠn

askΠk
=

(
k

n

)ad
.

Consequently, it follows from (3.5) and from some analysis considerations that

lim
n→∞

Λn,x (u) =

∫
Rd×R

[∫ 1

0

t−ad exp
(
utad (cf (x) f (y) + df (x))K (z)

)
− 1

−utad (cf (x) f (y) + df (x))K (z)
]
gX,Y (x, y) dtdzdy

= gx (x) [ψa,x (u)− u (cf (x)E (f (Y ) |X = x) + df (x))] .

In the case when (γsn) =
(
hdsn

(∑n
k=1 h

d
sk

)−1
)

We have, see Slaoui (2013, 2015a), Πn
Πk

=
∏n
j=k+1

(
1− γsj

)
=

γsn
γsk

hdsk
hdsn

, then, Vn,k = 1. Consequently, it follows from (3.5)
that

lim
n→∞

Λn,x (u) =

∫
Rd×R

[(exp (u (cf (x) f (y) + df (x))K (z))− 1)− u (cf (x) f (y) + df (x))K (z)] gX,Y (x, y) dtdzdy

= gx (x) [ψx (u)− u (cf (x)E (f (Y ) |X = x) + df (x))] ,

and thus Lemma 3.5 is proved. �

3.1.2 Proof of Lemma 3.6

A Taylor’s expansion implies the existence of c′k,n between 0 and un
asnΠn
askΠk

Tsk such that

E
[
exp

(
un
asnΠn

askΠk
Tsk

)
− 1

]
= un

asnΠn

askΠk
E [Tsk ] +

1

2

(
un
asnΠn

askΠk

)2

E
[
T 2
sk

]
+

1

6

(
un
asnΠn

askΠk

)3

E
[
T 3
sk
ec
′
k,n

]
.

Therefore, we infer that

Λn,x (u) =
1

2
V (x, f)u2asnΠ2

n

n∑
k=1

Π−2
k a−1

sk
γsk

∫
Rd
K2 (z) dz +R(3)

n,x (u)−R(4)
n,x (u) +R(5)

n,x (u) , (3.6)

with

R(3)
n,x (u) =

1

2
u2c2f (x) asnΠ2

n

n∑
k=1

Π−2
k a−1

sk
γsk

∫
Rd
K2 (z)

[
L
(
x− zhsk , f

2
)
− L

(
x, f2

)]
dz

+
1

2
u2d2

f (x) asnΠ2
n

n∑
k=1

Π−2
k a−1

sk
γsk

∫
Rd
K2 (z) [gx (x− zhsk)− gx (x)] dz

+cf (x) df (x)u2asnΠ2
n

n∑
k=1

Π−2
k a−1

sk
γsk

∫
Rd
K2 (z) [L (x− zhsk , f)− L (x, f)] dz,

R(4)
n,x (u) =

1

2
u2asnΠ2

n

n∑
k=1

Π−2
k a−1

sk
γskh

d
sk

(∫
Rd
K (z) (cf (x)L (x− zhsk , f) + df (x) gx (x− zhsk)) dz

)2

.

R(5)
n,x (u) =

1

6

u3

vn
a2
snΠ3

n

n∑
k=1

Π−3
k a−3

sk
E
[
T 3
sk
ec
′
k,n

]
− v2

n

2asn

n∑
k=1

1

c2k,n

(
E
[
exp

(
un
asnΠn

askΠk
Tsk

)
− 1

])2

.

In view of the assumption (A3), we have

lim
k→∞

∣∣L (x− zhsk , f
2
)
− L

(
x, f2

)∣∣ = 0, lim
k→∞

|gx (x− zhsk)− gx (x)| = 0, lim
k→∞

|L (x− zhsk , f)− L (x, f)| = 0.

Thus a straightforward application of Lebesgue dominated convergence theorem in connection with condition (M1) implies that

lim
k→∞

∫
Rd
K2 (z)

∣∣L (x− zhsk , f
2
)
− L

(
x, f2

)∣∣ dz = 0, lim
k→∞

∫
Rd
K2 (z) |gx (x− zhsk)− gx (x)| dz = 0,

lim
k→∞

∫
Rd
K2 (z) |L (x− zhsk , f)− L (x, f)| dz = 0.
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Morever, since (asn) ∈ GS (α− ad), and limn→∞ (nγsn) > (α− ad) /2. The application of Lemma 3.1 ensures that

asnΠ2
n

n∑
k=1

Π−2
k a−1

sk
γsk =

1

(2− (α− ad) ξ)
+ o (1) . (3.7)

Then, we have limn→∞

∣∣∣R(3)
n,x (u)

∣∣∣ = 0. Moreover, since L and gX are bounded and in view of Lemma 3.1, we have

asnΠ2
n

n∑
k=1

Π−2
k a−1

sk
γskh

d
sk

= O
(
hdsn
)
.

Then, we have limn→∞

∣∣∣R(4)
n,x (u)

∣∣∣ = 0. Moreover, in view of (3.1), we have |Tsk | ≤ |cf (x) f (Y ) + df (x)| ‖K‖∞ , then

c′k,n ≤
∣∣∣∣un asnΠn

askΠk
Tsk

∣∣∣∣ ≤ |un| |cf (x) f (Y ) + df (x)| ‖K‖∞ . (3.8)

Since, we have

E |Tsk |
3 ≤ hdsk

∣∣c3f (x)L
(
x, f3

)
+ 3c2f (x) df (x)L

(
x, f2

)
+ 3cf (x) d2

f (x)L (x, f) + d3
f (x) gX (x)

∣∣ ∫
Rd

∣∣K3 (z)
∣∣ dz.

It follows from, Lemma 3.1 and (3.8), that, there exists a positive constant c1 such that, for n large enough,

∣∣∣∣∣u3

vn
a2
snΠ3

n

n∑
k=1

Π−3
k a−3

sk
E
[
T 3
sk
ec
′
k,n

]∣∣∣∣∣ ≤ c1e|un||cf (x)f(Y )+df (x)|‖K‖∞
u3

vn∣∣c3f (x)L
(
x, f3

)
+ 3c2f (x) df (x)L

(
x, f2

)
+ 3cf (x) d2

f (x)L (x, f) + d3
f (x) gX (x)

∣∣ ∫
Rd

∣∣K3 (z)
∣∣ dz, (3.9)

which goes to 0 as n→∞. Furthermore, Lemma 3.1 ensures that∣∣∣∣∣ v2
n

2asn

n∑
k=1

1

c2k,n

(
E
[
exp

(
un
asnΠn

askΠk
Tsk

)
− 1

])2
∣∣∣∣∣ ≤ v2

n

2asn

n∑
k=1

(
E
[
exp

(
un
asnΠn

askΠk
Tsk

)
− 1

])2

=
u2

2
V (x, f)R (K) 2asnΠ2

n

n∑
k=1

Π−2
k a−1

sk
γskh

d
sk

+ o

(
asnΠ2

n

n∑
k=1

Π−2
k a−1

sk
γskh

d
sk

)
= o (1) . (3.10)

The combination of (3.9) and (3.10) ensures that limn→∞

∣∣∣R(5)
n,x (u)

∣∣∣ = 0. Then, it follows from (3.6) and (3.7), that limn→∞ Λn,x (u) =

u2

2(2−(α−ad)ξ)V (x, f)R (K) . Lemma 3.6 is proved. �

3.2 Proof of Proposition 2.2
• Since |et − 1| ≤ |t| e|t|, it follows from (2.3) and (L1), that

|ψa,x (u)| ≤
∫
Rd×R×[0,1]

g−1
X (x)

∣∣exp
(
utadK (z) (cf (x) f (y) + df (x))

)
− 1
∣∣ gX,Y (x, y) dzdydt <∞

which ensures the existence of ψa,x. It is straightforward to check that ψa,x is twice differentiable, with

ψ′a,x (u) = g−1
X (x)

∫
[0,1]×Rd×R

tadK (z) (cf (x) f (y) + df (x))

× exp
(
utadK (z) (cf (x) f (y) + df (x))

)
gX,Y (x, y) dtdzdy

ψ′′a,x (u) = g−1
X (x)

∫
[0,1]×Rd×R

t2ad (K (z))
2

(cf (x) f (y) + df (x))
2

× exp
(
utadK (z) (cf (x) f (y) + df (x))

)
gX,Y (x, y) dtdzdy.

Since ψ′′a,x (u) > 0 ∀u ∈ R, ψ′a,x is increasing on R, and ψa,x is strictly convex on R. It follows that its Cramer transform
Ia,x is a good rate function on R (see Dembo and Zeitouni (2010)) and (i) of Proposition 2.2 is proved.
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• Let us now assume that λ (O−) = 0. We then have limu→−∞ ψ′a,x (u) = 0 and limu→+∞ ψ′a,x (u) = +∞ so that the
range of ψ′a,x is (0,+∞). Moreover

lim
u→−∞

ψa,x (u) =

{
−λ (S+) if λ (S+ ∩ T+) > 0
−λ (S−) if λ (S− ∩ T−) > 0

(which can be −∞). This implies in particular that

Ia,x (0) =

{
λ (S+) if λ (S+ ∩ T+) > 0
λ (S−) if λ (S− ∩ T−) > 0

Now, when t < 0, limu→−∞ (ut− ψa,x (u)) = +∞ and Ia,x (t) = +∞. Since ψ′a,x is increasing with range (0,+∞),

when t > 0, supu (ut− ψa,x (u)) is reached for u0 (t) such that ψa,x (u0 (t)) = t, i.e., for u0 (t) =
(
ψ′a,x

)−1
(t); this

prove (2.4). (Note that, since ψ′′a,x (t) > 0, the function t 7→ u0 (t) is differentiable on (0,+∞)). Now, differentiat-

ing (2.4), we haveI ′a,x (t) = u0 (t) + tu′0 (t) − ψ′a,x (u0 (t))u′0 (t) =
(
ψ′a,x

)−1
(t) + tu′0 (t) − tu′0 (t) =

(
ψ′a,x

)−1
(t) .

Since
(
ψ′a,x

)−1
is an increasing function on (0,+∞), it follows that Ia,x is strictly convex on (0,+∞) (and differentiable).

Thus (ii) is proved.

• We assume that λ (O−) > 0. In this case, ψ′a,x can be rewritten as

ψ′a,x (u) =

∫
[0,1]×(Rd+1∩O+)

tadK (z) ((cf (x) f (y) + df (x)))

× exp
(
utadK (z) (cf (x) f (y) + df (x))

)
gX,Y (x, y) dtdzdy

+

∫
[0,1]×(Rd+1∩O−)

tadK (z) (cf (x) f (y) + df (x))

× exp
(
utadK (z) (cf (x) f (y) + df (x))

)
gX,Y (x, y) dtdzdy

and we have limu→−∞ ψ′a,x (u) = −∞ and limu→+∞ ψ′a,x (u) = +∞ so that the range of ψ′a,x is R in this case. The

proof of (iii) follows the same lines as previously, except that, in the present case,
(
ψ′a,x

)−1
is defined on R, and not only

on (0,+∞).

�
3.3 Proof of Proposition 2.4
The proof of this Proposition can be found in Bouzebda and Slaoui (2019c) and is available upon request. �

3.4 Proof of Proposition 3.2
To prove Proposition 3.2, we apply similar result as the one given by Proposition 1 Mokkadem et al. (2006) in the non spatial
case, Lemmas 3.5 and 3.6 and the following result (see Puhalskii (1994)).

Lemma 3.7 Let (Wn) be a sequence of real random variables, (νn) a positive sequence satisfying limn→∞ νn = +∞, and sup-
pose that there exists some convex non-negative function Γ defined on R such that ∀u ∈ R, limn→∞

1
νn

logE [exp (uνnWn)] =

Γ (u) . If the Legendre function Γ∗ of Γ is a strictly convex function, then the sequence (Wn) satisfies a LDP of speed (νn) and
good rate fonction Γ∗.

In our framework, when vn ≡ 1 and γsn = n−1, we take Wn = Ψ̂n,hn (x, f,K) − E
(

Ψ̂n,hn (x, f,K)
)

, νn = nhdsn with

hsn = cn−a where a ∈ ]0, 1/d[ and Γ = ΛL,1x . In this case, the Legendre transform of Γ = ΛL,1x is the rate function Ia,x
defined in (1.3) which is strictly convex by Proposition 2.2. Farther, when vn ≡ 1 and γsn = hdsn

(∑n
k=1 h

d
sk

)−1
, we take

Wn = Ψ̂n,hn (x, f,K) − E
(

Ψ̂n,hn (x) , f,K
)

, νn = nhdsn with hsn ∈ GS (−a) where a ∈ ]0, 1/d[ and Γ = ΛL,2x . In this

case, the Legendre transform of Γ = ΛL,2x is the rate function Ix which is st rictly convex by Proposition 2.4. Otherwise, when,
vn → ∞, we take Wn = vn

(
Ψ̂n,hn (x, f,K)− E

(
Ψ̂n,hn (x, f,K)

))
, νn = hdsn/

(
γsnv

2
n

)
and Γ = ΛMx ; Γ∗ is then the

quadratic rate function Ja,α,x defined in (1.7) and thus Proposition 3.2 follows. �
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