Domain evaluation and adaptation of word embeddings through the exploitation of syntaxic and semantic knowledge
Évaluation et adaptation de plongements lexicaux au domaine à travers l'exploitation de connaissances syntaxiques et sémantiques
Résumé
Word embeddings have established themselves as the most popular representation in NLP. To achieve good performance, they require training on large data sets mainly from the general domain and are frequently finetuned for specialty data. However, finetuning is a resource-intensive practice and its effectiveness is controversial.In this thesis, we evaluate the use of word embedding models on specialty corpora and show that proximity between the vocabularies of the training and application data plays a major role in the representation of out-of-vocabulary terms. We observe that this is mainly due to the initial tokenization of words and propose a measure to compute the impact of the tokenization of words on their representation. To solve this problem, we propose two methods for injecting linguistic knowledge into representations generated by Transformers: one at the data level and the other at the model level. Our research demonstrates that adding syntactic and semantic context can improve the application of self-supervised models to specialty domains, both for vocabulary representation and for NLP tasks.The proposed methods can be used for any language with linguistic information or external knowledge available. The code used for the experiments has been published to facilitate reproducibility and measures have been taken to limit the environmental impact by reducing the number of experiments.
Les modèles de plongements lexicaux se sont imposés comme les modèles de représentation les plus populaires en TAL. Afin d'obtenir de bonnes performances, ils nécessitent d'être entraînés sur de grands corpus de données provenant principalement du domaine général et sont fréquemment affinés pour être appliqués à des données de spécialité. Cependant, l'affinage des données est une pratique coûteuse en termes de ressources et son efficacité est controversée.Dans le cadre de cette thèse, nous évaluons l'utilisation de modèles de plongements lexicaux sur des corpus de spécialité et nous montrons que la proximité entre les vocabulaires des données d'entraînement et des données d'application joue un rôle majeur dans la représentation des termes hors-vocabulaire. Nous observons que cela est principalement dû à la tokenisation initiale des mots, et nous proposons une mesure pour calculer l'impact de la segmentation des mots sur leur représentation.Pour résoudre ce problème, nous proposons deux méthodes permettant d'injecter des connaissances linguistiques aux représentations générées par les Transformer : une méthode intervient à l'échelle des données et l'autre à l'échelle du modèle. Notre recherche démontre que l'ajout de contexte syntaxique et sémantique peut améliorer l'application de modèles auto-supervisés à des domaines de spécialité, tant pour la représentation du vocabulaire que pour la résolution de tâches de TAL. Les méthodes proposées peuvent être utilisées pour n'importe quelle langue disposant d'informations linguistiques ou d'autres connaissances externes. Le code utilisé pour les expériences a été publié pour faciliter la reproductibilité et des mesures ont été prises pour limiter l'impact environnemental en réduisant le nombre d'expériences.
Origine | Version validée par le jury (STAR) |
---|