On set-based local search for multiobjective combinatorial optimization
Résumé
In this paper, we formalize a multiobjective local search paradigm by combining set-based multiobjective optimization and neighborhood-based search principles. Approximating the Pareto set of a multiobjective optimization problem has been recently defined as a set problem, in which the search space is made of all feasible solution-sets. We here introduce a general set-based local search algorithm, explicitly based on a set-domain search space, evaluation function, and neighborhood relation. Different classes of set-domain neighborhood structures are proposed, each one leading to a different set-based local search variant. The corresponding methodology generalizes and unifies a large number of existing approaches for multiobjective optimization. Preliminary experiments on multiobjective NK-landscapes with objective correlation validates the ability of the set-based local search principles. Moreover, our investigations shed the light to further research on the efficient exploration of large-size set-domain neighborhood structures.
Origine | Fichiers produits par l'(les) auteur(s) |
---|